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Abstract. This article concerns the Hamiltonian elliptic system

−∆u + V (x)u = Hv(x, u, v), x ∈ RN ,

−∆v + V (x)v = Hu(x, u, v), x ∈ RN ,

u(x)→ 0, v(x)→ 0, as |x| → ∞,

where z = (u, v) : RN → R×R, N ≥ 3 and the potential V (x) is allowed to be

sign-changing. Under weak superquadratic assumptions for the nonlinearities,
by applying the variant generalized weak linking theorem for strongly indefinite

problem developed by Schechter and Zou, we obtain the existence of nontrivial

and ground state solutions.

1. Introduction and statement of main results

In this article, we study the superquadratic Hamiltonian elliptic system

−∆u+ V (x)u = Hv(x, u, v), x ∈ RN ,

−∆v + V (x)v = Hu(x, u, v), x ∈ RN ,
u(x)→ 0, v(x)→ 0, as |x| → ∞,

(1.1)

where z = (u, v) : RN → R× R, N ≥ 3, V ∈ C(RN ,R) and H ∈ C1(RN × R2,R).
A number of authors have focused on the case of bounded domain, see for in-

stance [6, 9, 10, 11, 15, 17] and the references therein. Recently, system (1.1) or
systems similar to (1.1) in the whole space RN was considered by some authors.
See for instance [1, 2, 3, 4, 12, 13, 14, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34]
and the references therein. Most of these authors focused on the case that V ≡ 1.
The lack of compactness for Sobolev’s embedding theorem is the main difficulty of
this problem. A usual way to overcome this difficulty is to work on the radically
symmetric function space which possesses compact embedding. In this way, De
Figueiredo and Yang [12] obtained a positive radially symmetric solution which
decays exponentially to 0 at infinity. Sirakov [19] generalized the results of De
Figueiredo and Yang. Later, Bartsch and De Figueiredo [4] proved that the sys-
tem possesses infinitely many radial solutions as well as non-radial solutions. By a
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linking argument, Li and Yang [18] proved that the system has a positive ground
state solution for that case that V = 1 and with an asymptotically quadratic non-
linearity. Another usual way to overcome the difficulty is to avoid the indefinite
character of the original functional by applying the dual variational method, see
for instance [1, 2, 3].

Very recently, many authors considered system (1.1) with general periodic po-
tential, see [25, 28, 32, 33]. By applying a generalized linking theorem for the
strongly indefinite functionals developed recently by Bartsch and Ding [5] (see also
[16, 8]), the authors obtained the existence of solutions (ground state) and multiple
geometrically distinct solutions under different assumptions. For more detailed de-
scriptions related to the non-periodic potential, see [26, 27, 23] for asymptotically
quadratic case, in [14, 24] for superquadratic case. Moreover, for other related top-
ics including the superquadratic singular perturbation problem and concentration
phenomenon of semi-classical states, we refer the readers to [13, 29, 31, 34] and the
references therein.

Motivated by these works, we continue to consider system (1.1) with non-periodic
and sign-changing potential and superquadratic nonlinearities. Under some mild
assumptions which are different from those studied previously, we mainly study
the existence of solutions and ground states via variational methods. To state our
results, we need the following assumptions:

(H1) V ∈ C(RN ,R) and infx∈RN V (x) > −∞, and there exists a constant l0 > 0
such that

lim
|y|→∞

meas
{
x ∈ RN : |x− y| ≤ l0, V (x) ≤ h

}
= 0, ∀h > 0, (1.2)

where meas(·) denotes the Lebesgue measure in RN ;
(H2) H ∈ C1(RN ×R2, [0,∞)) and |Hz(x, z)| ≤ c(1 + |z|p−1) for some c > 0 and

2 < p < 2∗, where 2∗ = 2N
N−2 is the Sobolev critical exponent;

(H3) |H(x, z)| ≤ 1
2γ|z|

2 if |z| < δ for some 0 ≤ γ < µ, where δ > 0 and µ will be
defined later in (2.14);

(H4) H(x,z)
|z|2 →∞ as |z| → ∞ uniformly in x;

(H5) H(x, z + η)−H(x, z)− rHz(x, z)η + (r−1)2

2 Hz(x, z)z ≥ −W1(x), r ∈ [0, 1],
W1(x) ∈ L1(RN ) and z, η ∈ R2.

On the existence of solutions and ground state solutions we have the following
results.

Theorem 1.1. Let (H1)–(H5) be satisfied, then system (1.1) has at least one so-
lution.

Theorem 1.2. Let M be the collection of solutions of system (1.1). Then there is
a solution that minimizes the energy functional Φ over M, where Φ will be defined
later. In addition, if |Hz(x, z)| = o(|z|) uniformly in x as |z| → 0, then there is a
nontrivial solution that minimize the energy functional over M\ {0}.

Remark 1.3. Condition (H5) was first introduced by Schechter [20] in studying the
scalar Schrödinger equation, it replaces the usual monotonic condition. Our main
results provide general existence results for semilinear elliptic systems of Hamilton-
ian type with general superquadratic nonlinearities and can be viewed as extension
to the main results in [20] from the scalar Schrödinger equation to the elliptic
system.
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Remark 1.4. It is not difficult to find the functions V satisfying (H1). For example,
let V (x) be a zig-zag function with respect to |x| defined by

V (x) =

{
2n|x| − 2n(n− 1) + a0, n− 1 ≤ |x| < (2n− 1)/2,
−2n|x|+ 2n2 + a0, (2n− 1)/2 ≤ |x| ≤ n,

(1.3)

where n ∈ N and a0 ∈ R.

Remark 1.5. There are functions satisfying conditions (H2)–(H5). For example,

H(x, z) =
1
p
|z|p and Hz(x, z) = |z|p−2z, where p > 2. (1.4)

Clearly, the function H satisfies the conditions (H2)–(H4). Note that h(|z|) :=
|z|p−2 is strictly increasing on [0,+∞), Therefore, H satisfies the condition (H5)
by the argument in [20].

The rest of this article is organized as follows. In Section 2, we establish the
variational framework associated with (1.1), and we also give some preliminary
lemmas, which are useful in the proofs of our main results. In Section 3, we give
the detailed proofs of our main results.

2. Variational setting and preliminary lemmas

Here, by ‖ · ‖q we denote the usual Lq-norm, (·, ·)2 denote the usual L2 inner
product, ci, C, Ci stand for different positive constants. Let X and Y be two
Banach spaces with norms ‖ · ‖X and ‖ · ‖Y . We always choose equivalent norm
‖(x, y)‖X×Y = (‖x‖2X + ‖y‖2Y ) on the product space X × Y . In particular, if X
and Y are two Hilbert spaces with inner products (·, ·)X and (·, ·)Y , we choose the
inner product ((x, y), (w, z)) = (x,w)X + (y, z)Y on the product space X × Y .

For the sake of simplicity, let A := −∆ +V and σ(A), σd(A) be the spectrum of
A, the discrete spectrum of A, respectively. It is well known that under condition
(H1), the operator A is a selfadjoint operator on L2 := L2(RN ,R2) with D(A) ⊂
H2(RN ,R2). To establish a variational setting for the system (1.1), we have the
following result.

Lemma 2.1. Suppose (H1) holds, then σ(A) = σd(A).

Following the ideas of [7, 35], it is easy to prove the above lemma, so we omit its
proof. From Lemma 2.1, we know that the operator A has a sequence of eigenvalues

λ1 < λ2 ≤ · · · ≤ λn ≤ · · · → ∞, (2.1)

and corresponding eigenfunctions {ei}i∈N, forming an orthogonal basis in L2. Let
n− = ]{i|λi < 0}, n0 = ]{i|λi = 0} and n+ = n− + n0. Moreover, we have an
orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+,

such that A is negative definite on L− and positive definite on L+ and L0 = KerA.
Let |A| denote the absolute of A and |A|1/2 be the square root of |A|, {Fλ : λ ∈ R}
be the spectral family of A, A = U |A| is the polar decomposition of A, where
U = I − F0 − F−0, I is the identity operator. Then U commutes with A, |A| and
|A|1/2. Set H := D(|A|1/2) be the domain of the selfadjoint operator |A|1/2 which
is a Hilbert space equipped with the inner product

(u, v)H = (|A|1/2u, |A|1/2v)2 + (u0, v0)2
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and the norm ‖u‖2H = (u, u)H . Let

H− := span{e1, . . . , en−}, H0 := span{en−+1, . . . , en+},

H+ := span{en++1, . . . }.

Then there is an induced decomposition H = H− ⊕H0 ⊕H+ which is orthogonal
with respect to the inner products (·, ·)2 and (·, ·)H . Let E = H×H with the inner
product

((u, v), (ϕ,ψ)) = (u, ϕ)H + (v, ψ)H
and the corresponding norm

‖(u, v)‖ =
[
‖u‖2H + ‖v‖2H

]1/2
.

Setting
E+ = H+ ×H−, E− = H− ×H+, E0 = H0 ×H0.

Then for any z = (u, v) ∈ E, we have z = z− + z0 + z+, where z+ = (u+, v−),
z− = (u−, v+) and z0 = (u0, v0). Clearly, E−, E0, E+ are the orthogonal with
respect to the products (·, ·)2 and (·, ·)H . Hence E = E− ⊕ E0 ⊕ E+.

Lemma 2.2. E ↪→ Lq := Lq(RN ,R2) is continuous for q ∈ [2, 2∗] and E ↪→ Lq is
compact for q ∈ [2, 2∗).

Next, on E we define the functional

Φ(z) =
1
2

(‖z+‖2 − ‖z−‖2)−Ψ(z), z ∈ E, (2.2)

where

Ψ(z) =
∫

RN

H(x, z)dx.

Clearly, Φ is strongly indefinite, and our hypotheses imply that Φ ∈ C1(E,R), and
a standard argument shows that critical points of Φ are solutions of system (1.1)
(see [8, 22]).

The following abstract critical point theorem plays an important role in proving
our main results. Let E be a Hilbert space with norm ‖ · ‖ and have an orthogonal
decomposition E = N ⊕N⊥, N ⊂ E being a closed and separable subspace. There
exists a norm |v|ω ≤ ‖v‖ for all v ∈ N and induces a topology equivalent to the
weak topology of N on a bounded subset of N . For z = v + w ∈ E = N ⊕ N⊥
with v ∈ N,w ∈ N⊥, we define |z|2ω = |v|2ω + ‖w‖2. Particularly, if zn = vn +wn is

| · |ω-bounded and zn
|·|ω−−→ z, then vn ⇀ v weakly in N , wn → w strongly in N⊥,

zn ⇀ v + w weakly in E.
Let E = E− ⊕ E0 ⊕ E+, e ∈ E+ with ‖e‖ = 1. Let N := E− ⊕ E0 ⊕ Re and

E+
1 := N⊥ = (E− ⊕ E0 ⊕ Re)⊥. For R > 0, let

Q := {z := z− + z0 + se : s ∈ R+, z− + z0 ∈ E− ⊕ E0, ‖z‖ < R}. (2.3)

For 0 < s0 < R, we define

D := {z := se+ w+ : s ≥ 0, w+ ∈ E+
1 , ‖se+ w+‖ = s0}. (2.4)

For Φ ∈ C1(E,R), define

Γ :=
{
h : h : R× Q̄→ E is | · |ω-continuous, h(0, z) = z and Φ(h(s, z)) ≤ Φ(z)

for all z ∈ Q̄, For any (s0, z0) ∈ R× Q̄, there is a | · |ω-neighborhood
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U(s0, z0) s. t. {z − h(t, z) : (t, z) ∈ U(s0, z0) ∩ (R× Q̄)} ⊂ Efin.
}

where Efin denotes various finite-dimensional subspaces of E; Γ 6= 0 since id ∈ Γ.
Now we state the following variant weak linking theorem which will be used later

(see [21]).

Lemma 2.3. The family of C1-functionals Φλ has the form

Φλ(z) := λK(z)− J(z), ∀λ ∈ [1, λ0], (2.5)

where λ0 > 1. Assume that
(a) K(z) ≥ 0, ∀ z ∈ E, Φ1 = Φ;
(b) |J(z)|+K(z)→∞ as ‖z‖ → ∞;
(c) Φλ is | · |ω-upper semicontinuous, Φ′λ is weakly sequentially continuous on

E, Φλ maps bounded sets to bounded sets;
(d) sup∂Q Φλ < infD Φλ, ∀λ ∈ [1, λ0].

Then for almost all λ ∈ [1, λ0], there exists a sequence {zn} such that

sup
n
‖zn‖ <∞, Φ′λ(zn)→ 0,Φλ(zn)→ cλ, (2.6)

where
cλ := inf

h∈Γ
sup
z∈Q̄

Φλ(h(1, z)) ∈ [inf
D

Φλ, sup
Q̄

Φλ]. (2.7)

To apply Lemma 2.3, we shall prove a few Lemmas. We pick λ0 such that λ0 > 1.
For 1 ≤ λ ≤ λ0, we consider

Φλ(z) :=
λ

2
‖z+‖2 −

(1
2
‖z−‖2 +

∫
RN

H(x, z)dx
)

:= λK(z)− J(z). (2.8)

It is easy to see that Φλ satisfies condition (a) in Lemma 2.3. To check (c), if

zn
|·|ω−−→ z, and Φλ(zn) ≥ c, then z+

n → z+ and z−n ⇀ z− in E, zn → z a.e. on
RN , going to a subsequence if necessary. Using Fatou’s lemma, we know Φλ(z) ≥
c, which means that Φλ is | · |ω-upper semicontinuous; Φ′λ is weakly sequentially
continuous on E, see [22].

Lemma 2.4. Under the assumptions of Theorem 1.1,

J(z) +K(z)→∞ as ‖z‖ → ∞. (2.9)

Proof. Suppose to the contrary that there exists {zn} with ‖zn‖ → ∞ such that
J(zn) + K(zn) ≤ M0 for some M0 > 0. Let wn = zn

‖zn‖ = w−n + w0
n + w+

n , then
‖wn‖ = 1 and

M0

‖zn‖2
≥ K(zn) + J(zn)

‖zn‖2

=
1
2

(‖w+
n ‖2 + ‖w−n ‖2) +

∫
RN

H(x, zn)
‖zn‖2

dx

=
1
2

(‖wn‖2 − ‖w0
n‖2) +

∫
RN

H(x, zn)
‖zn‖2

dx.

(2.10)

Going to a subsequence if necessary, we may assume that w−n ⇀ w−, w+
n ⇀ w+,

w0
n → w0 in E and wn(x) → w(x) a.e. on RN . If w0 = 0, by (H2) and (2.10) we

have
1
2
‖wn‖2 +

∫
RN

H(x, zn)
‖zn‖2

dx ≤ 1
2
‖w0

n‖2 +
M0

‖zn‖2
, (2.11)
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which implies ‖wn‖ → 0, this contradicts ‖wn‖ = 1. If w0 6= 0, then w 6= 0.
Therefore, |zn| = |wn|‖zn‖ → ∞. By (H2), (H4) and Fatou’s lemma we have∫

RN

H(x, zn)
|zn|2

|wn|2dx→∞. (2.12)

Hence by (2.10) again, we obtain 0 ≥ +∞, which is a contradiction. The proof is
complete. �

Lemma 2.4 implies condition (b) holds. To continue the discussion, we still need
to verify condition (d); that is done by the following two Lemmas.

Lemma 2.5. Under the assumptions of Theorem 1.1, there are two positive con-
stants κ, ρ such that

Φλ(z) ≥ κ for z ∈ E+, |z‖ = ρ, λ ∈ [1, λ0]. (2.13)

Proof. Set
µ := min{−λn− , λn++1}. (2.14)

Obviously, for any z ∈ E+, ‖z‖2 ≥ µ‖z‖22. Thus, for any z ∈ E+, by (H2), (H3)
and Lemma 2.2, we have

Φλ(z) =
λ

2
‖z‖2 −

∫
RN

H(x, z)dx

≥ 1
2
‖z‖2 −

∫
{|z|<δ}

H(x, z)dx−
∫
{|z|≥δ}

H(x, z)dx

≥ 1
2
‖z‖2 − 1

2
γ

∫
{|z|<δ}

|z|2dx− c
∫
{|z|≥δ}

(|z|2 + |z|p)dx

≥ 1
2
‖z‖2 − γ

µ

1
2
‖z‖2 − C ′‖z‖p

=
1
2
‖z‖2(1− γ

µ
− 2C ′‖z‖p−2), 0 ≤ γ < µ.

(2.15)

This implies the conclusion if we take ‖z‖ sufficiently small. �

Lemma 2.6. Under the assumptions of Theorem 1.1, there exists a constant R > 0
such that

Φλ(z) ≤ 0, for z ∈ ∂QR, λ ∈ [1, λ0], (2.16)
where

QR := {z := v + se : s ≥ 0, v ∈ E− ⊕ E0, e ∈ E+ with ‖e‖ = 1, ‖z‖ ≤ R}. (2.17)

Proof. By contradiction, we suppose that there exit Rn → ∞, λn ∈ [1, λ0] and
zn = vn + sne = v−n + v0

n + sne ∈ ∂QRn
such that Φλn

(zn) > 0. If sn = 0, by (H2),
we get

Φλn(zn) = −1
2
‖v−n ‖2 −

∫
RN

H(x, zn)dx ≤ −1
2
‖v−n ‖2 ≤ 0. (2.18)

Therefore,
sn 6= 0, ‖zn‖2 = ‖vn‖2 + s2

n. (2.19)
Let

z̃n =
zn
‖zn‖

= s̃ne+ ṽn. (2.20)

Then
‖z̃n‖2 = ‖ṽn‖2 + s̃2

n = 1. (2.21)
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Thus, passing to a subsequence, we may assume that

s̃n → s̃, λn → λ,

z̃n =
zn
‖zn‖

= s̃ne+ ṽn ⇀ z̃ in E,

z̃n → z̃ a.e. on RN .

It follows from Φλn
(zn) > 0 and the definition of Φ that

0 <
Φλn

(zn)
‖zn‖2

=
1
2

(λns̃2
n − ‖ṽn‖2)−

∫
RN

H(x, zn)
|zn|2

|z̃n|2dx

=
1
2

[(λn + 1)s̃2
n − 1]−

∫
RN

H(x, zn)
|zn|2

|z̃n|2dx.
(2.22)

From (H2) and (2.22), we know that (λ+ 1)s̃2 − 1 ≥ 0, that is

s̃2 ≥ 1
1 + λ

≥ 1
1 + λ0

> 0.

Thus z̃ 6= 0. It follows from (H4) and Fatou’s lemma that∫
RN

H(x, zn)
|zn|2

|z̃n|2dx→∞ as n→∞, (2.23)

which contradicts (2.22). The proof is complete. �

Hence, Lemmas 2.5 and 2.6 imply condition (d) of Lemma 2.3. Applying Lemma
2.3, we obtain the following result.

Lemma 2.7. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists a sequence {zn} such that

sup
n
‖zn‖ <∞, Φ′λ(zn)→ 0, Φλ(zn)→ cλ, (2.24)

where cλ is defined in Lemma 2.3.

Lemma 2.8. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists a zλ ∈ E such that

Φ′λ(zλ) = 0, Φλ(zλ) = cλ. (2.25)

Proof. Let {zn} be the sequence obtained in Lemma 2.7. Since {zn} is bounded,
we can assume zn ⇀ zλ in E and zn → zλ a.e. on RN . By Lemma 2.7 and the fact
Φ′λ is weakly sequentially continuous, we have

〈Φ′λ(zλ), ϕ〉 = lim
n→∞

〈Φ′λ(zn), ϕ〉 = 0, ∀ϕ ∈ E. (2.26)

That is Φ′λ(zλ) = 0. By Lemma 2.7, we have

Φλ(zn)− 1
2
〈Φ′λ(zn), zn〉 =

∫
RN

[1
2
Hz(x, zn)zn −H(x, zn)

]
dx→ cλ. (2.27)

On the other hand, by Lemma 2.2, it is easy to prove that∫
RN

1
2
Hz(x, zn)zndt→

∫
RN

1
2
Hz(x, zλ)zλdx, (2.28)∫

RN

H(x, zn)dt→
∫

RN

H(x, zλ)dx, (2.29)



8 W. ZHANG, X. XIE, H. MI EJDE-2017/164

Therefore, by (2.28), (2.29) and the fact Φ′λ(zλ) = 0, we obtain

Φλ(zλ) = Φλ(zλ)− 1
2
〈Φ′λ(zλ), zλ〉 =

∫
RN

[1
2
Hz(x, zλ)zλ−H(x, zλ)

]
dx = cλ. (2.30)

The proof is complete. �

Applying Lemma 2.8, we obtain the following result.

Lemma 2.9. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists sequences zn ∈ E and λn ∈ [1, λ0] with λn → λ such that

Φ′λn
(zn) = 0, Φλn

(zn) = cλn
.

Lemma 2.10. Under the assumptions of Theorem 1.1,∫
RN

[
H(x, z)−H(x, rw) + r2Hz(x, z)w −

1 + r2

2
Hz(x, z)z

]
dx ≤ C, (2.31)

where z ∈ E, w ∈ E+, 0 ≤ r ≤ 1 and the constant C does not depend on z, w, r.

Proof. This follows from (H5) if we take z = z and η = rw − z. �

Lemma 2.11. Under the assumptions of Theorem 1.1, the sequences {zn} given
in Lemma 2.9 are bounded.

Proof. Suppose to the contrary that {zn} is unbounded. Without loss of generality,
we can assume that ‖zn‖ → ∞ as n→∞. Let wn = zn

‖zn‖ = w+
n + w0

n + w−n , then
‖wn‖ = 1. Going to a subsequence if necessary, we can assume that wn ⇀ w in E,
wn → w in Lp for p ∈ [2, 2∗), wn → w(x) a.e. on RN . For w, we have only the
following two cases: w 6= 0 or w = 0.
Case 1: w 6= 0. It follows from (H4) and Fatou’s Lemma that∫

RN

H(x, zn)
‖zn‖2

dx =
∫

RN

H(x, zn)
|zn|2

|wn|2dx→∞ as n→∞, (2.32)

which, together with Lemma 2.5 and 2.9 imply

0 ≤ cλn

‖zn‖2
=

Φλn(zn)
‖zn‖2

=
λn
2
‖w+

n ‖2 −
1
2
‖w−n ‖2 −

∫
RN

H(x, zn)
‖zn‖2

dx→ −∞

as n→∞. This is a contradiction.
Case 2: w = 0. We claim that there exist a constant C independent of zn and λn
such that

Φλn(rz+
n )− Φλn(zn) ≤ C, ∀r ∈ [0, 1]. (2.33)

Since
1
2
〈Φ′λn

(zn), ϕ〉 =
1
2
λn(z+

n , ϕ
+)− 1

2
(z−n , ϕ

−)− 1
2

∫
RN

Hz(x, zn)ϕdx = 0,

for all ϕ ∈ E, it follows from the definition of Φ that

Φλn
(rz+

n )− Φλn
(zn)

=
1
2
λn(r2 − 1)‖z+

n ‖2 +
1
2
‖z−n ‖2 +

∫
RN

[
H(x, zn)−H(x, rz+

n )
]
dx

+
1
2
λn(z+

n , ϕ
+)− 1

2
(z−n , ϕ

−)− 1
2

∫
RN

Hz(x, zn)ϕdx.

(2.34)
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Take

ϕ = (r2 + 1)z−n − (r2 − 1)z+
n + (r2 + 1)z0

n = (r2 + 1)zn − 2r2z+
n , (2.35)

which together with Lemma 2.10 and (2.34) imply that

Φλn
(rz+

n )− Φλn
(zn)

= −1
2
‖z−n ‖2 +

∫
RN

[
H(x, zn)−H(x, rz+

n ) + r2Hz(x, zn)z+
n

− 1 + r2

2
Hz(x, zn)zn

]
dx ≤ C.

Hence, (2.33) holds. Let C0 be a constant and take

rn :=
C0

‖zn‖
→ 0 as n→∞.

Therefore, (2.33) implies

Φλn(rnz+
n )− Φλn(zn) ≤ C

for all sufficiently large n. From w+
n = z+n

‖zn‖ and Lemma 2.9 we have

Φλn(C0w
+
n ) ≤ C ′ (2.36)

for all sufficiently large n. Note that Lemmas 2.5 and 2.9, and (H2) imply

0 ≤ cλn

‖zn‖2
=

Φλn(zn)
‖zn‖2

=
λn
2
‖w+

n ‖2 −
1
2
‖w−n ‖2 −

∫
RN H(x, zn)dx
‖zn‖2

≤ λ0

2
‖w+

n ‖2 −
1
2
‖w−n ‖2;

therefore
λ0‖w+

n ‖2 ≥ ‖w−n ‖2.
If w+

n → 0, then from the above inequality, we have w−n → 0, and therefore

‖w0
n‖2 = 1− ‖w+

n ‖2 − ‖w−n ‖2 → 1. (2.37)

Hence, w0
n → w0 because of dimE0 <∞. Thus, w 6= 0, a contradiction. Therefore,

w+
n 9 0 and ‖w+

n ‖2 ≥ c0 for all n and some c0 > 0. By (H2) and (H3), we have∫
RN

H(x,C0w
+
n )dx

≤ 1
2
γC2

0

∫
{|C0w

+
n |<δ}

|w+
n |2dx+

1
2
c

∫
{|C0w

+
n |≥δ}

(
C2

0 |w+
n |2 + Cp0 |w+

n |p
)
dx

≤ 1
2
γC2

0

∫
{|C0w

+
n |<δ}

|w+
n |2dx+ C ′1

∫
{|C0w

+
n |≥δ}

|w+
n |pdx.

(2.38)

For all sufficiently large n, if follows from (2.36), (2.38) and the fact λn → λ,
w+
n → w+ = 0 in Lp for all [2, 2∗) that

Φλn(C0w
+
n ) =

1
2
λnC

2
0‖w+

n ‖2 −
∫

RN

H(x,C0w
+
n )dx

≥ 1
2
λnC

2
0α−

1
2
γC2

0

∫
{|C0w

+
n |<δ}

|w+
n |2dx− C ′1

∫
{|C0w

+
n |≥δ}

|w+
n |pdx
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→ 1
2
λαC2

0 , as n→∞.

This implies that Φλn
(C0w

+
n ) → ∞ as C0 → ∞, contrary to (2.36). Therefore,

{zn} are bounded. The proof is complete. �

3. Proofs of main results

Proof of Theorem 1.1. From Lemma 2.9, there are sequences 1 < λn → 1 and
{zn} ⊂ E such that Φ′λn

(zn) = 0 and Φλn
(zn) = cλn

. By Lemma 2.11, we know
{zn} is bounded in E, thus we can assume zn ⇀ z in E, zn → z in Lq for q ∈ [2, 2∗),
zn → z(x) a.e. on RN . Therefore,

〈Φ′λn
(zn), ϕ〉 = λn(z+

n , ϕ)− (z−n , ϕ)−
∫

RN

Hz(x, zn)ϕdx = 0, ∀ϕ ∈ E. (3.1)

Hence, in the limit

〈Φ′(z), ϕ〉 = (z+, ϕ)− (z−, ϕ)−
∫

RN

Hz(x, z)ϕdx = 0, ∀ϕ ∈ E. (3.2)

Thus Φ′(z) = 0. Note that

Φλn
(zn)− 1

2
〈Φ′λn

(zn), zn〉 =
∫

RN

[
1
2
Hz(x, zn)zn −H(x, zn)

]
dx = cλn

≥ c1. (3.3)

Similar to (2.28) and (2.29), we know that∫
RN

[1
2
Hz(x, zn)zn −H(x, zn)

]
dx→

∫
RN

[1
2
Hz(x, z)z −H(x, z)

]
dx,

as n→∞. It follows from Φ′(z) = 0, (3.3) and Lemma 2.5 that

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉

=
∫

RN

[
1
2
Hz(x, z)z −H(x, z)

]
dx

= lim
n→∞

∫
RN

[1
2
Hz(x, zn)zn −H(x, zn)

]
dx

≥ c1 ≥ κ > 0.

Therefore, z 6= 0. �

Proof of Theorem 1.2. By Theorem 1.1, M 6= ∅, where M is the collection of
solution of (1.1). Let

θ := inf
z∈M

Φ(z). (3.4)

If z is a solution of (1.1), by Lemma 2.10, (take r = 0)

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉

=
∫

RN

[1
2
Hz(x, z)z −H(x, z)

]
dx

≥ −C = −
∫

RN

|W1(x)|dx.

Thus, θ > −∞. Let {zn} be a subsequence in M such that

Φ(zn)→ θ. (3.5)
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By Lemma 2.11, the sequence {zn} is bounded in E. Thus, zn ⇀ z in E zn → z in
Lq for q ∈ [2, 2∗) and zn → z a.e. on RN , after passing to a subsequence. Therefore

〈Φ′(zn), ϕ〉 = (z+
n , ϕ)− (z−n , ϕ)−

∫
RN

Hz(x, zn)ϕdx = 0, ∀ϕ ∈ E. (3.6)

Hence, in the limit

〈Φ′(z), ϕ〉 = (z+, ϕ)− (z−, ϕ)−
∫

RN

Hz(x, z)ϕdx = 0, ∀ϕ ∈ E. (3.7)

Thus, Φ′(z) = 0. Similar to (2.28) and (2.29), we have

Φ(zn)− 1
2
〈Φ′(zn), zn〉 =

∫
RN

[1
2
Hz(x, zn)zn −H(x, zn)

]
dx

→
∫

RN

[1
2
Hz(x, z)z −H(x, z)

]
dx as n→∞.

If follows from Φ′(z) = 0 and (3.5) that

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉 =

∫
RN

[1
2
Hz(x, z)z −H(x, z)

]
dx

= lim
n→∞

∫
RN

[1
2
Hz(x, zn)zn −H(x, zn)

]
dx

= lim
n→∞

Φ(zn) = θ.

Now suppose that |Hz(x, z)| = o(|z|) as |z| → 0. It follows from (H2) that for any
ε > 0, there exists a constant Cε > 0 such that

|Hz(x, z)| ≤ ε|z|+ Cε|z|p−1. (3.8)

Let
α := inf

z∈M′
Φ(z),

where M′ :=M\ {0}. Let {zn} be a sequence in M\ {0} such that

Φ(zn)→ α. (3.9)

Note that
0 = 〈Φ′(zn), z+

n 〉 = ‖z+
n ‖2 −

∫
RN

Hz(x, zn)z+
n dx, (3.10)

which together with (3.8), Hölder inequality and the Sobolev embedding theorem
implies

‖z+
n ‖2 =

∫
RN

Hz(x, zn)z+
n dx

≤ ε
∫

RN

|zn||z+
n |dx+ Cε

∫
RN

|zn|p−1|z+
n |dx

≤ ε‖zn‖‖z+
n ‖+ C ′ε‖zn‖p−1

p ‖z+
n ‖

≤ ε‖zn‖‖z+
n ‖+ C ′′ε ‖zn‖p−2

p ‖zn‖‖z+
n ‖

≤ ε‖zn‖2 + C ′′ε ‖zn‖p−2
p ‖zn‖2.

(3.11)

Similarly, we obtain

‖z−n ‖2 ≤ ε‖zn‖2 + C ′′ε ‖zn‖p−2
p ‖zn‖2. (3.12)

From (3.11) and (3.12), we have

‖zn‖2 ≤ 2ε‖zn‖2 + 2C ′′ε ‖zn‖p−2
p ‖zn‖2, (3.13)
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which means ‖zn‖p ≥ c for some constant c > 0. Since zn → z in Lp, we know
z 6= 0. As before, Φ(zn)→ Φ(z) = α as n→∞. �
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