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ASYMPTOTIC BEHAVIOR OF TRAVELING WAVES FOR A
NONLOCAL EPIDEMIC MODEL WITH DELAY

HAIQIN ZHAO

Abstract. In this article we study the traveling wave solutions of a monos-

table nonlocal reaction-diffusion system with delay arising from the spread of

an epidemic by oral-faecal transmission. From [23], there exists a minimal
wave speed c∗ > 0 such that a traveling wave solution exists if and only if the

wave speed is above c∗. In this article, we first establish the exact asymptotic

behavior of the traveling waves at ±∞. Then, we construct some annihilating-
front entire solutions which behave like a traveling wave front propagating from

the left side (or the right side) on the x-axis or two traveling wave fronts prop-
agating from both sides on the x-axis as t→ −∞ and converge to the unique

positive equilibrium as t → +∞. From the viewpoint of epidemiology, these

results provide some new spread ways of the epidemic.

1. Introduction

Capasso and Maddalena [2] proposed an epidemic model to describe the spa-
tial spread of epidemics via the environmental pollution produced by the infective
population. The model has been generalized in several directions: to include the
latent period of a virus (e.g. [17]), to include the indirect transmission because of
the infective population (e.g. [1, 28]) and to include both the two facts (e.g. [23]).
For example, one of the above generalizations has the following form (e.g. [23]):

ut(x, t) = duxx − αu(x, t) +
∫

R
J(x− y)v(y, t)dy,

vt(x, t) = −βv(x, t) + g(u(x, t− τ)),
(1.1)

where u(x, t) and v(x, t), respectively, represent the spatial densities of bacteria
and infective population at a point x in the habitat Ω ⊂ R and time t, d > 0 is
the diffusion coefficient, τ > 0 represents the latent period of a virus, α > 0 is the
natural death rate of bacteria, and β > 0 is the natural diminishing rate of infected
individuals. The nonlinearity g(u) gives the “force of infection” on human because
of the concentration of bacteria. The function J(x) describes the transfer kernel of
the infective agents produced by the infective humans.

In epidemiology, one of the central issues is the traveling wave solution because
of their significant roles in epidemic spreading. In the past decades, this topic
has been widely studied for various evolution equations, see e.g. the survey paper

2010 Mathematics Subject Classification. 35K57, 35B05, 35B40, 92D30.
Key words and phrases. Traveling wave front; epidemic model; reaction-diffusion system;

monostable nonlinearity.
c©2017 Texas State University.

Submitted December 20, 2016. Published June 30, 2017.

1



2 H. ZHAO EJDE-2017/160

[7] and the book [18]. In particular, the traveling wave problem of (1.1) have
been widely discussed, see e.g. [27, 28, 17, 29, 23]. For example, in the case
where τ = 0 and J(·) = δ(·), Xu and Zhao [27] proved the existence, uniqueness
and stability of bistable traveling wave fronts of (1.1), and Zhao and Wang [29]
established the existence of the minimal wave speed of monostable traveling wave
fronts. For the case τ = 0, Xu and Zhao [28] considered the spreading speed
and monostable traveling wave fronts. When J(·) = δ(·), Thieme and Zhao [17]
obtained the existence of spreading speed and minimal wave speed of (1.1) with
distributed delay by applying their theory for integral equations. Recently, Wu and
Liu [23] extended the results in [29, 28, 17] to a general nonlocal reaction-diffusion
model with distributed delay, which includes (1.1) as a particular case. However,
to the best of our knowledge, there has been no results on the asymptotic behavior
of the traveling waves of (1.1) at ±∞ which reflect important information of the
traveling waves. This constitutes the first purpose of this paper.

The second purpose of this paper is to study solutions of (1.1) that are defined
for all time t ∈ R and for all space points. In some publications these solutions are
called entire solutions. (It does not mean entire functions in the sense of complex
analysis). One of typical examples of entire solutions appear as traveling wave
solution. Inspired by the work of Hamel and Nadirashvili [9], there have many
significant works devoted to the entire solutions for various diffusion equations. We
refer to [4, 8, 9, 11, 14, 12, 20, 16, 21, 15, 22, 24, 25, 26] and the references therein.

To this end, we impose the following assumptions on the functions J(·) and g(·):
(A1) J ∈ L1(R), J(−x) = J(x) ≥ 0 for x ∈ R,

∫ +∞
−∞ J(y)dy = 1 and there exists

a λ0 > 0 (λ0 may be +∞) such that∫ +∞

−∞
e−λyJ(y)dy < +∞ for λ ∈ [0, λ0) and lim

λ→λ0−0

∫ +∞

−∞
e−λyJ(y)dy = +∞.

(A2) α, β > 0, g ∈ C2([0,K1], [0,+∞)), g(0) = g(K1)−αβK1 = 0, g′(K1) < αβ,
g(u) > αβu for u ∈ (0,K1), and g(u) ≤ g′(0)u and g′(u) ≥ 0 for u ∈ [0,K1],
where K1 > 0 is a constant.

Throughout this paper, we use the usual notation for the ordering in R2: Let
u = (u1, u2) and v = (v1, v2). We write u ≤ v if ui ≤ vi for i = 1, 2; we write
u < v if uileqvi, for i = 1, 2, with u 6= v; we write u � v if ui < vi, for i = 1, 2.
We also use ‖ · ‖ to denote the Euclidean norm in R2. In order to state our results,
we first recall some known results on traveling wave solutions of (1.1). Let K :=
(K1,K2), where K2 = g(K1)/β. A solution w(x, t) :=

(
u(x, t), v(x, t)

)
of system

(1.1) is called a traveling wave solution connecting 0 := (0, 0) and K := (K1,K2)
with speed c, if

(
u(x, t), v(x, t)

)
=
(
φc(ξ), ψc(ξ)

)
, ξ := x + ct for some function

Φc := (φc, ψc) : R→ [0,K] := [0,K1]× [0,K2] which satisfies

cφ′c(ξ) = dφ′′c (ξ)− αφc(ξ) +
∫ ∞
−∞

J(y)ψc(ξ − y)dy,

cψ′c(ξ) = −βψc(ξ) + g
(
φc(ξ − cτ)

)
,

(1.2)

and (
φc(−∞), ψc(−∞)

)
= 0,

(
φc(+∞), ψc(+∞)

)
= K. (1.3)

Moreover, we say that (φc, ψc) is a traveling (wave) front if (φc(·), ψc(·)) is mono-
tone.
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Proposition 1.1 ([23]). Assume that (A1), (A2) hold. There exists a c∗ > 0
such that for each c ≥ c∗, system (1.1) has a traveling wave front Φc(x + ct) =
(φc(x+ ct), ψc(x+ ct)) connecting 0 and K.

To ensure the strict positivity of (φc(·), ψc(·)), we need the following additional
assumption:

(A3) J(0) > 0 and J(x) is continuous at x = 0.

Theorem 1.2. Assume that (A1)–(A3) hold. Let (φ, ψ) be a traveling wave solution
of (1.1) with speed c ≥ c∗. Then, φ(ξ) ∈ (0,K1) and ψ(ξ) ∈ (0,K2) for all ξ ∈ R.

As mentioned above, the asymptotic behavior of the traveling waves at ±∞
reflect important information of the traveling waves. By appealing to Ikehara’s
theorem (see [3]), we can obtain the following results on the asymptotic behavior
of the traveling waves.

Theorem 1.3. Assume that (A1)–(A3) hold. Let (φc(ξ), ψc(ξ)) be a traveling wave
solution of (1.1) with speed c ≥ c∗. Then,

(i) for c > c∗,

lim
ξ→−∞

φc(ξ)e−λ1(c)ξ = a0(c), lim
ξ→−∞

φ′c(ξ)e
−λ1(c)ξ = a0(c)λ1(c), (1.4)

lim
ξ→−∞

ψc(ξ)e−λ1(c)ξ = Aca0(c), lim
ξ→−∞

ψ′c(ξ)e
−λ1(c)ξ = Aca0(c)λ1(c), (1.5)

and for c = c∗,

lim
ξ→−∞

φc(ξ)ξ−1e−λ1(c)ξ = −a0(c), lim
ξ→−∞

φ′c(ξ)ξ
−1e−λ1(c)ξ = −a0(c)λ1(c), (1.6)

lim
ξ→−∞

ψc(ξ)ξ−1e−λ1(c)ξ = −Aca0(c), lim
ξ→−∞

ψ′c(ξ)ξ
−1e−λ1(c)ξ = −Aca0(c)λ1(c),

(1.7)

(ii) for c ≥ c∗,

lim
ξ→+∞

[
K1 − φc(ξ)

]
e−λ3(c)ξ = a1(c), lim

ξ→+∞
φ′c(ξ)e

−λ3(c)ξ = −a1(c)λ3(c), (1.8)

lim
ξ→+∞

[
K2 − ψc(ξ)

]
e−λ3(c)ξ = Bca1(c), lim

ξ→+∞
ψ′c(ξ)e

−λ3(c)ξ = −Bca1(c)λ3(c),

(1.9)

where λ1(c) is the smallest positive root of the characteristic equation of (1.2) at
(0, 0) and λ3(c) is the unique negative root of the characteristic equation of (1.2)
at (K1,K2) (see Proposition 2.3); a0(c), a1(c) are positive constants,

Ac =
g′(0)e−cλ1(c)τ

cλ1(c) + β
> 0, Bc =

g′(K1)e−cλ3(c)τ

cλ3(c) + β
> 0 for c ≥ c∗.

To construct some new types of solutions, we also establish the following result
on the spatially independent solution of (1.1) by applying the standard monotone
iteration technique and the method of the sub- and super-solution.

Theorem 1.4. Assume that (A1)–(A3) hold. System (1.1) has a spatially inde-
pendent solution Γ(t) =

(
Γ1(t),Γ2(t)

)
which satisfies

Γ(+∞) = K, Γ(t)� 0, lim
t→−∞

Γ(t)e−λ
∗t = (1, b∗), Γ(t) ≤ (1, b∗)eλ

∗t

for t ∈ R, where λ∗ is the unique positive root of the equation (λ + α)(λ + β) −
g′(0)e−λτ = 0 (see Proposition 2.3) and b∗ = g′(0)e−λ

∗τ/(λ∗ + β).
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Based on the above results on the traveling wave solutions and spatially indepen-
dent solutions of (1.1), we shall construct some new types of entire solutions which
are different from the traveling wave solution and spatially independent solution.
More precisely, these solutions behave like a traveling wave front propagating from
left side (or right side) of the x-axis or two traveling wave front propagating from
both sides of the x-axis as t→ −∞ and converge to the unique positive equilibrium
K as t → +∞. We call such solutions annihilating-front entire solutions. From
the viewpoint of epidemiology, the results provide some new spread ways of the
epidemic.

The main existence result on entire solutions is stated as follows. For the sake
of convenience, we denote

Π1(x, t) := χ1Φc1(x+ c1t+ h1) + χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + χ3(1, b∗)eλ
∗(t+h3),

Π2(x, t) := χ1(1, Ac1)eλ1(c1)(x+c1t+h1) + χ2Φc2(−x+ c2t+ h2) + χ3(1, b∗)eλ
∗(t+h3),

Π3(x, t) := χ1(1, Ac1)eλ1(c1)(x+c1t+h1) + χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + χ3Γ(t+ h3).

Theorem 1.5. Let (A1)–(A3) hold. Assume g′(u) ≤ g′(0) for u ∈ [0,K1]. For
any h1, h2, h3 ∈ R, c1, c2 > c∗ and χ1, χ2, χ3 ∈ {0, 1} with χ1 + χ2 + χ3 ≥ 2, there
exists an entire solution Wp(x, t) = (Up(x, t), Vp(x, t)) of (1.1) such that

max
{
χ1Φc1(x+ c1t+ h1), χ2Φc2(−x+ c2t+ h2), χ3Γ(t+ h3)

}
≤Wp(x, t) ≤ min

{
K,Π1(x, t),Π2(x, t),Π3(x, t)

} (1.10)

for (x, t) ∈ R2, where p := pχ1,χ2,χ3 =
(
χ1c1, χ2c2, χ1h1, χ2h2, χ3h3

)
. Moreover,

the following properties hold.
(1) limt→+∞ supx∈R

∥∥Wp(x, t)−K
∥∥ = 0.

(2) If χ1 = χ2 = 1, then

lim
t→−∞

sup
x≥0

∥∥Wp(x, t)− Φc1(x+ c1t+ h1)
∥∥ = 0, (1.11)

lim
t→−∞

sup
x≤0

∥∥Wp(x, t)− Φc2(−x+ c2t+ h2)
∥∥ = 0. (1.12)

(3) If χ1 = χ3 = 1 and χ2 = 0, then (1.11) holds and

lim
t→−∞

sup
x≤0

∥∥Wp(x, t)− Γ(t+ h3)
∥∥ = 0. (1.13)

(4) If χ2 = χ3 = 1 and χ1 = 0, then (1.12) holds and

lim
t→−∞

sup
x≥0

∥∥Wp(x, t)− Γ(t+ h3)
∥∥ = 0. (1.14)

Various other qualitative features of the entire solutions, such as the monotonicity
and limit of Wp(x, t) with respect to the variables x and t, and the shift parameters
hi, are also investigated in Section 3.

To prove Theorem 1.5, we use the comparison principle coupled with the method
of super- and sub-solutions, which is inspired by [9, 21, 25]. The method in-
cludes the following steps. First, we study the Cauchy problems for (1.1) start-
ing at times −n, where the combinations of the traveling wave fronts with speeds
c > c∗ and a spatially independent solution are taken as the initial values. Then,
we show that there exists a convergence subsequence of the solution sequence
{Wn(x, t) = (un(x, t), vn(x, t))}n∈N. Finally, by constructing appropriate subso-
lutions and supersolutions, the entire solution Wp(x, t) are obtained by passing
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n → ∞. To prove Wp(x, t) is a classical solution, it is crucial to establish some
prior estimate for Wn(x, t). However, since the diffusion coefficient in v−equation
is zero, a lack of regularizing effect occurs for the system (1.1). In particular, the
function vn(x, t) is not smooth enough with respect to the spatial variable x. To
overcome this difficulty, we have to show that vn(x, t) possess a property which is
similar to a global Lipschitz condition with respect to x (see Lemma 3.3).

The rest of this article is organized as follows. In Section 2, we first investigate
two characteristic problems related to traveling wave solutions of (1.1). Then, we
establish the asymptotic behavior of the traveling wave solutions. In Section 3, we
first establish some existence and comparison theorems for solutions, supersolutions
and subsolutions of (1.1) and the existence of the spatially independent solution.
Then, we prove the existence result of entire solutions. Finally, some qualitative
properties of the entire solutions are further investigated.

2. Asymptotic behavior of traveling wave solutions

In this section, we first investigate two characteristic problems related to the
traveling wave solutions of (1.1). Then, we establish the asymptotic behavior of
the traveling wave solutions. Define

k(x, t) = g′(0)
∫ t

0

∫
R

Γ1(x− y, t− s)J(y)k2(s) dy ds,

where

Γ1(x, t) =
1√

4πdt
e−

x2
4dt−αt, k2(t) =

{
e−β(t−τ), t > τ,

0, t ∈ [0, τ ].

By solving the v-equation of (1.1), we can write the first equation of (1.1) as the
integral equation (see [23])

u(x, t) = u0(x, t) +
∫ t

0

∫
R
k(x− y, t− s)

g
(
u(y, s)

)
g′(0)

dy ds,

where the function u0(x, t) only depends on the initial data u(x, s) and v(x, 0),
x ∈ R, s ∈ [−τ, 0]. Motivated by the theory of the spreading speeds for integral
equations developed in [17], we define

Kk(c, λ) :=
∫ ∞

0

∫
R
e−λ(cs+y)k(y, s) dy ds, ∀c, λ ≥ 0.

One can verify that

Kk(c, λ) =
g′(0)e−λcτ

cλ+ β

∫ ∞
−∞

J(y)e−λydy
∫ ∞

0

e−(cλ−dλ2+α)sds.

Let

λ](c) = min
{
λ0,

c+
√
c2 + 4dα
2d

}
.

Then Kk(c, λ) <∞ for λ ∈ [0, λ](c)) and limλ↗λ](c)Kk(c, λ) =∞ for every c ≥ 0.
From assumption (A2), we have

g′(0)
K1

2
≥ g(

K1

2
) > αβ

K1

2
,
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which implies that g′(0) > αβ. Moreover, it is easy to verify that k(t, x) satisfies
[17, assumption (B)]. Define

c∗ := inf{c ≥ 0 : Kk(c, λ) < 1 for some λ > 0}.

By Thieme and Zhao [17, Lemmas 2.1 and 2.2 and Proposition 2.3], we have the
following result.

Proposition 2.1. The following statements are valid:

(a) For each c ≥ 0, Kk(c, λ) is a convex function of λ ∈ [0, λ](c)).
(b) c∗ ∈ (0,∞) and for any c > c∗, there exists some λ > 0 such that Kk(c, λ) <

1.
(c) There exists a unique λ∗ ∈ (0, λ](c)) such that c∗ and λ∗ are uniquely

determined as the solutions of the system

Kk(c, λ) = 1,
d

dλ
Kk(c, λ) = 0. (2.1)

Similarly, we define

k1(x, t) = g′(K1)
∫ t

0

∫
R

Γ1(x− y, t− s)J(y)k2(s) dy ds.

Since Kk1(c, 0) = g′(K1)/(αβ) < 1, Kk(c, λ) is convex for λ ∈ (−λ](c), λ](c)), and
limλ↗λ](c)Kk(c, λ) =∞ for every c ≥ 0, we see that the following result holds.

Proposition 2.2. The equation Kk1(c, λ) = 1 has a unique root λ3(c) in the in-
terval (−λ](c), 0).

Substituting (u(t, x), v(x, t)) = eλ(x+ct)(φ1, φ2) into the linearization of (1.1) at
(0, 0) and (K1,K2), respectively, we obtain the following two characteristic func-
tions:

∆1(c, λ) = (cλ− dλ2 + α)(cλ+ β)− g′(0)
∫ ∞
−∞

J(y)e−λ(y+cτ)dy, (2.2)

∆2(c, λ) = (cλ− dλ2 + α)(cλ+ β)− g′(K1)
∫ ∞
−∞

J(y)e−λ(y+cτ)dy, (2.3)

for λ ∈ R and c ≥ 0. Thus, Propositions 2.1 and 2.2 imply the following result.

Proposition 2.3. The following statements hold:

(a) If c ≥ c∗, the equation ∆1(c, λ) = 0 has two positive real roots λ1(c) and
λ2(c) with λ1(c) ≤ λ2(c).

(b) If c = c∗, then λ1(c∗) = λ2(c∗) := λ∗, and if c > c∗, then λ1(c) < λ∗ <
λ2(c), and

∆1(c, λ)

{
< 0 for λ ∈ R \ (λ1(c), λ2(c)),
> 0 for λ ∈ (λ1(c), λ2(c)).

(c) The equation ∆2(c, λ) = 0 has a unique root λ3(c) in (−λ](c), 0).

Proof of Theorem 1.2. Set H(ξ) =
∫∞
−∞ J(y)ψc(ξ − y)dy. From the first equation

of (1.2), we have
dφ′′c (ξ)− cφ′c(ξ)− αφc(ξ) +H(ξ) = 0. (2.4)
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By the theory of linear ordinary differential equations, we obtain

φc(ξ) =
1

d(λ4 − λ3)

[ ∫ ξ

−∞
eλ3(ξ−s)H(s)ds+

∫ +∞

ξ

eλ4(ξ−s)H(s)ds
]
, (2.5)

where

λ3 :=
(
c−

√
c2 + 4αd

)/
(2d) < 0 and λ4 :=

(
c+

√
c2 + 4αd

)/
(2d) > 0.

We first show that φc(·) > 0 by a contradiction argument. Assume that there exists
ξ1 ∈ R such that φc(ξ1) = 0. Then

0 = φc(ξ1) =
1

d(λ4 − λ3)

[ ∫ ξ1

−∞
eλ3(ξ1−s)H(s)ds+

∫ +∞

ξ1

eλ4(ξ1−s)H(s)ds
]
.

Since H(ξ) ≥ 0 for all ξ ∈ R, H(ξ) = 0 for all ξ ∈ R, and hence

0 = H(ξ) =
∫ ∞
−∞

J(y)ψc(ξ − y)dy, ∀ξ ∈ R.

By (A3), we have ψc(ξ) = 0 for any ξ ∈ R which contradicts to ψc(+∞) = K2.
Therefore φc(·) > 0. Similarly, we can prove that φc(·) < K1.

Since g(u) > 0 for u ∈ (0,K1] and ψc(ξ) = 1
c

∫ ξ
−∞ e−

β
c (ξ−s)g(φc(s− cτ))ds, it is

easy to show that ψc(ξ) ∈ (0,K2) for all ξ ∈ R. This completes the proof. �

The following lemma is important for obtaining the the asymptotic behavior of
the wave profiles, which can be found in Carr and Chmaj [3].

Lemma 2.4. Let u(ξ) be a positive decreasing function and

H1(Λ) :=
∫ +∞

0

e−Λξu(ξ)dξ.

If H1 can be written as H1(Λ) = H(Λ)(Λ + Λ0)−(k+1), where k > −1, Λ0 > 0 are
two constants and H is analytic in the strip −Λ0 ≤ ReΛ < 0, then

lim
ξ→+∞

u(ξ)
ξke−Λ0ξ

=
H(−Λ0)

Γ(Λ0 + 1)
.

Applying Lemma 2.4, we can prove Theorem 1.3.

Proof of Theorem 1.3. We only prove the assertion (i), since the assertion (ii) can
be discussed similarly. First, we show that (1.4) and (1.6) hold. From (1.2) and
(1.3), it is easy to verify that

cφ′c(ξ) = dφ′′c (ξ)−αφc(ξ) +
1
c

∫ ∞
0

∫ ∞
−∞

J(ξ− y)e−
β
c sg(φc(y− s− cτ)) dy ds. (2.6)

The proofs of (1.4) and (1.6) are similar to those of [19, Theorem 4.8] and [20,
Theorem 3.5], we only sketch the outline. The proof is divided into three steps.
Step 1. We show that φc(ξ) is integrable on (−∞, ξ′] for some ξ′ ∈ R.
Step 2. We prove that φc(ξ) = O(eγξ) as ξ → −∞ for some γ > 0. To get
the assertion, we first show that W (ξ) = O(eγξ) as ξ → −∞, where W (ξ) :=∫ ξ
−∞ φc(s)ds.

Step 3. For 0 < Reλ < γ, define a two-sided Laplace transform of φc by

L(λ) =
∫ +∞

−∞
φc(ξ)e−λξdξ.
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Using Lemma 2.4, one can show that limξ→−∞ φc(ξ)e−λ1(c)ξ = a0(c) for c > c∗,
and limξ→−∞ φc(ξ)ξ−1e−λ1(c)ξ = −a0(c) for c = c∗.

Integrating the two sides of (2.6) from −∞ to ξ, we obtain

dφ′c(ξ) = cφc(ξ) + α

∫ ξ

−∞
φc(z)dz

− 1
c

∫ ξ

−∞

∫ ∞
0

∫ ∞
−∞

J(z − y)e−
β
c sg(φc(y − s− cτ)) dy ds dz.

Since g ∈ C2([0,K1],R) and g(u) ≤ g′(0)u for u ∈ [0,K1], one can easily show that
limξ→−∞ g(φc(ξ))e−λ1(c)ξ = g′(0)a0(c) for c > c∗. Moreover, we have

lim
ξ→−∞

e−λ1(c)ξ

∫ ∞
0

∫ ∞
−∞

J(y)e−
β
c sg(φc(ξ − y − s− cτ)) dy ds

= lim
ξ→−∞

∫ ∞
0

∫ ∞
−∞

J(y)

× e−
β
c se−λ1(c)(y+s+cτ)g(φc(ξ − y − s− cτ))e−λ1(c)(ξ−y−s−cτ) dy ds

= g′(0)a0(c)
∫ ∞

0

∫ ∞
−∞

J(y)e−
β
c se−λ1(c)(y+s+cτ) dy ds

= cg′(0)a0(c)e−λ1(c)cτ

∫ ∞
−∞

J(y)e−λ1(c)ydy/(cλ1(c) + β).

It then follows from the L’Hospital’s rule that for c > c∗,

d lim
ξ→−∞

φ′c(ξ)e
−λ1(c)ξ

= c lim
ξ→−∞

φc(ξ)e−λ1(c)ξ + α lim
ξ→−∞

∫ ξ
−∞ φc(z)dz

eλ1(c)ξ

− 1
c

lim
ξ→−∞

∫ ξ
−∞

∫∞
0

∫∞
−∞ J(z − y)e−

β
c sg(φc(y − s− cτ)) dy dsdz

eλ1(c)ξ

= ca0(c) + α
a0(c)
λ1(c)

− 1
c

lim
ξ→−∞

∫∞
0

∫∞
−∞ J(y)e−

β
c sg(φc(ξ − y − s− cτ)) dy ds

λ1(c)eλ1(c)ξ

= a0(c)[c+
α

λ1(c)
−
g′(0)

∫∞
−∞ J(y)e−λ1(c)(y+cτ)dy

λ1(c)(cλ1(c) + β)
] = da0(c)λ1(c).

Similarly, we can prove that for c = c∗, limξ→−∞ φ′c(ξ)ξ
−1e−λ1(c)ξ = −a0(c)λ1(c).

Therefore, (1.4) and (1.6) hold.
Next, we prove (1.5) and (1.7). Note that

ψc(ξ) =
1
c

∫ ξ

−∞
e−

β
c (ξ−s)g(φc(s− cτ))ds.

Hence, for c > c∗,

lim
ξ→−∞

ψc(ξ)e−λ1(c)ξ = lim
ξ→−∞

∫ ξ
−∞ e

β
c sg(φc(s− cτ))ds

ce

(
λ1(c)+ β

c

)
ξ

=
g′(0)e−cλ1(c)τ

cλ1(c) + β
a0(c) = A(c)a0(c).



EJDE-2017/160 ASYMPTOTIC BEHAVIOR OF TRAVELING WAVES 9

From the second equation of (1.2) it follows that

lim
ξ→−∞

ψ′c(ξ)e
−λ1(c)ξ = A(c)a0(c)λ1(c)

for c > c∗. Therefore, (1.5) holds. Similarly, one can show that (1.7) holds. This
completes the proof. �

Corollary 2.5. Let the assumptions of Theorem 1.3 be satisfied. Then, for all
c ≥ c∗,

lim
ξ→−∞

φ′c(ξ)
φc(ξ)

= lim
ξ→−∞

ψ′c(ξ)
ψc(ξ)

= λ1(c),

lim
ξ→+∞

φ′c(ξ)
φc(ξ)−K1

= lim
ξ→+∞

ψ′c(ξ)
ψc(ξ)−K2

= λ3(c).

3. Existence and qualitative properties of entire solutions

This section is devoted to the study of entire solutions of (1.1). We first give
some preliminaries. Then, we establish the existence of the spatially independent
solution by transforming the system into a differential equation with an integral
term. Further, we prove the existence of entire solutions. Finally, some qualitative
properties of the solution are investigated.

3.1. Preliminaries. In this subsection, we first give the well-posedness of initial
value problem of (1.1), and establish some comparison theorems for supersolutions
and subsolutions. Then, we establish two important lemmas which play important
roles in investigating the existence and qualitative features of entire solutions.

Let X = BUC(R,R2) be the Banach space of all bounded and uniformly continu-
ous functions from R into R2 with the supremum norm ‖·‖X and C = C([−τ, 0], X)
be the Banach space of continuous functions from [−τ, 0] into X with the supre-
mum norm. Similarly, we define the space BUC(R,R). As usual, we identify an
element φ ∈ C as a function from R× [−τ, 0] into R2 defined by φ(x, s) = φ(s)(x).
We further denote the following spaces:

X+ := {ϕ ∈ X : ϕ(x) ≥ 0, x ∈ R},
X[0,K] := {ϕ ∈ X : ϕ(x) ∈ [0,K], x ∈ R},

C[0,K] := {ϕ ∈ C : ϕ(x, s) ∈ [0,K], x ∈ R, s ∈ [−τ, 0]}.

It is easy to see that X+ is a closed cone of X.
For any continuous function w : [−τ, b) → X, b > 0, we define wt ∈ C, t ∈ [0, b)

by wt(s) = w(t + s), s ∈ [−τ, 0]. Then t → wt is a continuous function from [0, b)
to C. For ϕ ∈ C, we define B(ϕ) = (B1(ϕ), B2(ϕ)) by

B1(ϕ) =
∫

R
J(x− y)ϕ2(y, 0)dy, B2(ϕ) = g(ϕ1(x,−τ)).

Let T1(t) be the analytic semigroup on BUC(R,R) generated by ut = duxx−αu
and T2(t) = e−βt. Clearly, T (t) = diag(T1(t), T2(t)) is a linear semigroup on X.

Definition 3.1. A continuous function w = (u, v) : [s, T )→ X, s < T , is called a
supersolution (or a subsolution) of (1.1) on [s, T ) if

w(t) ≥ (or ≤)T (t− τ)w(τ) +
∫ t

τ

T (t− r)B(wr)dr
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for any s ≤ τ < t < T .
A function w : (−∞, T )→ X is called a supersolution (or a subsolution) of (1.1)

on (−∞, T ), if for any s < T , w is a supersolution (or a subsolution) of (1.1) on
[s, T ).

Using the theory of abstract functional differential equations [13, Corollary 5],
it is easy to prove that the following result holds, see e.g., [25].

Lemma 3.2. (1) For any ϕ ∈ C[0,K], (1.1) has a unique solution w(x, t;ϕ) on
(x, t) ∈ R× [0,∞) with w(x, 0;ϕ) = ϕ(x) and 0 ≤ w(x, t;ϕ) ≤ K for x ∈ R,
t ≥ 0. Moreover, w(x, t;ϕ) is classical on (τ,+∞).

(2) For any pair of supersolution w+(x, t) and subsolution w−(x, t) of (1.1)
on [0,∞) with 0 ≤ w−(x, t), w+(x, t) ≤ K for (x, t) ∈ R × [0,∞), and
w+(x, s) ≥ w−(x, s) for x ∈ R and s ∈ [−τ, 0], there holds 0 ≤ w−(x, t) ≤
w+(x, t) ≤ K for (x, t) ∈ R× [0,∞).

Next, we give the following two lemmas which play important roles in investi-
gating the existence and qualitative features of entire solutions.

Lemma 3.3. Suppose that w(x, t) = (u(x, t), v(x, t)) is a solution of (1.1) with
initial value φ = (φ1, φ2) ∈ C[0,K]. Then there exists a positive constant M > 0,
independent of φ, such that for any η > 0, x ∈ R and t > 2(τ + 1),∣∣ut(x, t)∣∣, ∣∣utx(x, t)

∣∣, ∣∣utt(x, t)∣∣, ∣∣ux(x, t)
∣∣, ∣∣uxt(x, t)∣∣ ≤M,∣∣uxx(x, t)

∣∣, ∣∣uxxt(x, t)∣∣, ∣∣vt(x, t)∣∣, ∣∣vtt(x, t)∣∣ ≤M.

If, in addition, there exists a constant L > 0 such that for any η > 0,

sup
x∈R
|φ2(x+ η, 0)− φ2(x, 0)| ≤ Lη,

then for any η > 0, x ∈ R and t > 2(τ + 1), we have∣∣v(x+ η, t)− v(x, t)
∣∣, |vt(x+ η, t)− vt(x, t)| ≤ M̄η,

|uxx(x+ η, t)− uxx(x, t)| ≤ M̄η,
(3.1)

where M̄ > 0 is a constant which is independent of φ and η.

Proof. By Lemma 3.2, we see that 0 ≤ (u(x, t), v(x, t)) ≤ K for all x ∈ R and t ≥ 0.
From the v-equation of (1.1), we have

|vt(x, t)| ≤ βK2 + max
u∈[0,K1]

g(u) := M1 for x ∈ R and t ≥ 0.

Note that for any s ≥ 0 and t > s,

u(x, t) =
∫

R
J1(x−y, t−s)u(y, s)dy+

∫ t

s

∫
R
J1(x−y, t−r)

∫
R
J(y−z)v(z, r) dz dy dr,

where J1(x, t) = e−αt√
4dπt

exp
{
− x2

4dt

}
. Consequently, for any s ≥ 0 and t ∈ [s+1, s+

4],

ux(x, t) =
∫

R

−(x− y)
2d(t− s)

J1(x− y, t− s)u(y, s)dy

+
∫ t

s

∫
R

−(x− y)
2d(t− r)

J1(x− y, t− r)
∫

R
J(y − z)v(z, r) dz dy dr.

(3.2)
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Direct computations show that

|ux(x, t)| ≤ K1√
πd(t− s)

+
2
√
t− s√
πd

K2 ≤
K1√
πd

+
4K2√
πd

:= M2,

for any x ∈ R and t ∈ [s+ 1, s+ 4]. Since s ≥ 0 is arbitrary, we have

|ux(x, t)| ≤M2, for any x ∈ R and t > 1.

Moreover, for any s ≥ 0 and t ∈ [s+ 1, s+ 4], we have

|ut(x, t)| ≤
∣∣∣ ∫

R
J1(y, t− s)

[
− α+

|y|2

4d(t− s)2
− 1

2(t− s)

]
u(x− y, s)dy

∣∣∣
+
∣∣∣ ∫ t−s

0

∫
R
J1(y, r)

∫
R
J(z)vt(x− y − z, t− r) dz dy dr

∣∣∣
+
∣∣∣ ∫

R
J1(y, t− s)

∫
R
J(z)v(x− y − z, s)dz dy

∣∣∣
≤ K1

∫
R
J0(y)

[
α+
|y|2

4d
+

1
2

]
dy

+M1

∫ 4

0

∫
R
J1(y, r) dy dr +K2

∫
R
J0(y)dy := M3,

where

J0(x) :=
1

(4dπt)1/2
exp

{
− |x|

2

16d

}
.

Hence, |ut(x, t)| ≤ M3 for any x ∈ R and t > 1. Similarly, using (3.2) and the
estimate for vt, we can show that a positive constant M4, which is independent
of φ, such that

∣∣uxt(x, t)∣∣ ≤ M4, for any x ∈ R and t > 1. Then, for x ∈ R and
t > τ + 1,

∣∣uxx(x, t)
∣∣ ≤ (M3 + αK1 +K2)/d and∣∣vtt(x, t)∣∣ = | − βvt(x, t) + g′(u(x, t− τ))ut(x, t− τ)|

≤ βM1 +M3 max
u∈[0,K1]

g′(u) := M5.

Note that ut(x, t) satisfies the equation

zt = dzxx − αz(x, t) +
∫

R
J(x− y)vt(y, t)dy, t > τ + 1

with initial value z(x, τ + 1) = ut(x, τ + 1). Using the estimate for vt and applying
a similar argument as in the previous part, we can find a positive constant M6,
which is independent of φ, such that for any x ∈ R and t > 2(τ + 1),

|utx(x, t)|, |utt(x, t)|, |uxxt(x, t)| ≤M6.

The first statement of this assertion follows by taking M := max{M1, · · · ,M6}.
Next, we prove the estimates of (3.1). Note that

v(x, t) = φ2(x, 0)e−βt +
∫ t

0

g
(
u(x, s− τ)

)
e−β(t−s)ds, ∀x ∈ R, t > 0.

By our assumption, we have for any η > 0, x ∈ R and t > τ + 1,

|v(x+ η, t)− v(x, t)|

≤ |φ2(x+ η, 0)− φ2(x, 0)|+
∫ t

0

∣∣g(u(x+ η, s− τ)− g
(
u(x, s− τ)

)∣∣e−β(t−s)ds
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≤ Lη +
M

β
max

u∈[0,K1]
g′(u)η := M ′1η.

Moreover, one can easily verify that

|vt(x+ η, t)− vt(x, t)| ≤
[
βM ′1 +M max

u∈[0,K1]
g′(u)

]
η := M ′2η,

|uxx(x+ η, t)− uxx(x, t)| ≤ 1
d

[M + αM +K2M
′
1]η := M ′3η,

for any η > 0, x ∈ R and t > 2(τ + 1). Let M̄ := max{M ′1,M ′2,M ′3}, then (3.1)
holds obviously. The proof is complete. �

Lemma 3.4. Assume that w+ = (u+, v+) ∈ C
(
R× [−τ,+∞), [0,+∞)2

)
and w− =

(u−, v−) ∈ C
(
R× [−τ,+∞), (−∞,K1]× (−∞,K2]

)
satisfy w+(x, s) ≥ w−(x, s) for

(x, s) ∈ R× [−τ, 0], and

u+
t (x, t) ≥ du+

xx(x, t)− αu+(x, t) +
∫ +∞

−∞
J(x− y)v+(y, t)dy,

v+
t (x, t) ≥ −βv+(x, t) + g′(0)u+(x, t− τ),

and

u−t (x, t) ≤ du−xx(x, t)− αu−(x, t) +
∫ +∞

−∞
J(x− y)v−(y, t)dy,

v−t (x, t) ≤ −βv−(x, t) + g′(0)u−(x, t− τ),

for x ∈ R and t > 0. Then w+(x, t) ≥ w−(x, t) for all x ∈ R and t ≥ 0.

Proof. Set w(x, t) =
(
w1(x, t), w2(x, t)

)
:= w+(x, t)−w−(x, t) for x ∈ R and t ≥ 0,

then w(x, t) satisfies w(x, 0) ≥ 0 and

w1,t(x, t) ≥ dw1,xx(x, t)− αw1(x, t) +
∫ +∞

−∞
J(x− y)w2(y, t)dy, (3.3)

w2,t(x, t) ≥ −βw2(x, t) + g′(0)w1(x, t− τ) (3.4)

for x ∈ R and t > 0. Note that w(x, s) ≥ 0 for x ∈ R and s ∈ [−τ, 0]. Then, we
have

w2,t(x, t) ≥ −βw2(x, t), for x ∈ R and t ∈ [0, τ ],
which implies that

w2(x, t) ≥ e−βtw2(x, 0) ≥ 0 for x ∈ R and t ∈ [0, τ ].

Hence, for x ∈ R and t ∈ [0, τ ], it follows from (3.3) that

w1,t(x, t) ≥ dw1,xx(x, t)− αw1(x, t) +
∫ +∞

−∞
J(x− y)w2(y, t)dy

≥ dw1,xx(x, t)− αw1(x, t),

which yields

w1(x, t) ≥
∫ +∞

−∞
Jd(x− y, t)e−αtw1(y, 0)dy ≥ 0,

where Jd(x, t) = 1√
4dπt

exp
{
− x2

4dt

}
. Therefore, w(x, t) ≥ 0 for x ∈ R and t ∈ [0, τ ].

Inductively, we obtain that w(x, t) ≥ 0 for all x ∈ R and t ≥ 0. Therefore,
w+(x, t) ≥ w−(x, t) for x ∈ R and t ≥ 0. This completes the proof. �
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3.2. Existence of spatially independent solutions. In this subsection, we
prove the existence of the spatially independent solution Γ = (Γ1,Γ2) of (1.1)
connecting 0 and K, i.e. solutions of the system

Γ′1(t) = −αΓ1(t) + Γ2(t),

Γ′2(t) = −βΓ2(t) + g
(
Γ1(t− τ)

) (3.5)

with
Γ(−∞) = 0 and Γ(+∞) = K. (3.6)

We first transform the system (3.5) into a scalar differential equation with an inte-
gral term. In fact, from the second equation of (3.5) and Γ2(−∞) = 0, we obtain

Γ2(t) =
∫ t

−∞
e−β(t−s)g(Γ1(s− τ))ds. (3.7)

Then, Γ1 satisfies

Γ′1(t) = −αΓ1(t) +
∫ t

−∞
e−β(t−s)g(Γ1(s− τ))ds. (3.8)

Conversely, if Γ1(t) is a non-decreasing solution of (3.8) with Γ1(−∞) = 0, and
Γ1(+∞) = K1, and Γ2(t) is defined by (3.7), then (Γ1(t),Γ2(t)) is a non-decreasing
solution of (3.5), and satisfies (3.6).

By above discussions, to prove the existence of the spatially independent solution
Γ = (Γ1,Γ2) of (1.1) connecting 0 and K, we only need to prove the existence of
solutions of (3.8) satisfying Γ1(−∞) = 0, and Γ1(+∞) = K1.

It is clear that the characteristic function of (3.8) at (0, 0) has the form

∆2(λ) = (λ+ α)(λ+ β)− g′(0)e−λτ . (3.9)

Proposition 3.5. The equation ∆2(λ) = 0 has two real roots λ∗1 < 0 and λ∗ > 0.
In particular, for any c ≥ c∗, cλ1(c) > λ∗, where λ1(c) is given as in Proposition
2.3.

Proof. Since g′(0) > αβ, it is easy to see that the first part of the assertion holds.
Now, we show that c ≥ c∗, cλ1(c) > λ∗. Suppose for the contrary that there exists
c1 ≥ c∗ such that c1λ1(c1) ≤ λ∗. It follows from (2.2) and (3.9) that

c1λ1(c1) = dλ2
1(c1)− α+

g′(0)e−c1λ1(c1)τ
∫∞
−∞ J(y)e−λ1(c1)ydy

c1λ1(c1) + β

> −α+
g′(0)e−λ

∗τ

λ∗ + β
= λ∗.

This contradiction implies that cλ1(c) > λ∗ for any c ≥ c∗. This completes the
proof. �

We now consider the space C(R,R) of continuous real functions on R, and the
operator T : C(R, [0,K1])→ C(R,R) defined by

T (φ)(t) =
∫ t

−∞
e−α(t−s)h(φ)(s)ds,

where h(φ)(t) =
∫ t
−∞ e−β(t−s)g(φ(s− τ))ds. Since g is non-decreasing on [0,K1], it

is easy to verify the following statements.

Lemma 3.6. (i) T : C(R, [0,K1])→ C(R, [0,K1]);
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(ii) T (φ)(t) ≥ T (ψ)(t) for φ, ψ ∈ C(R, [0,K1]) with φ(t) ≥ ψ(t);
(iii) T (φ)(t) is increasing in R for φ ∈ C(R, [0,K1]) with φ(t) is increasing in

R.

For any fixed ε ∈
(
0,min{1,K1}

)
and sufficiently large q > 1, define the following

two functions:

φ(t) = min
{
K1, e

λ∗t
}
, φ(t) = max

{
0,
(
1− qeελ

∗t
)
eλ

∗t
}
, t ∈ R.

By direct computations, one can easily verify that the following result holds.

Lemma 3.7. (i) 0 ≤ φ(t) ≤ φ(t) ≤ K1 for all t ∈ R;
(ii) T (φ)(t) ≤ φ(t) and T (φ)(t) ≥ φ(t) for all t ∈ R.

Using the monotone iteration technique, the existence of the spatially indepen-
dent solution follows from Lemmas 3.6-3.7. Moreover, using the similar method as
in the proof of Theorem 1.2, we can show that Γ(t) � 0 for any t ∈ R. We omit
the details here.

3.3. Existence of entire solutions. In this section, we will use the results of
previous sections to obtain an appropriate upper estimate for solutions of (1.1) and
then prove the existence result of Theorem 1.5. For any n ∈ Z+, h1, h2, h3 ∈ R,
c1, c2 > c∗ and χ1, χ2, χ3 ∈ {0, 1} with χ1 + χ2 + χ3 ≥ 2, we denote

ϕn(x, s) := max
{
χ1Φc1(x+ c1s+ h1), χ2Φc2(−x+ c2s+ h2), χ3Γ(s+ h3)

}
,

w(x, t) := max
{
χ1Φc1(x+ c1t+ h1), χ2Φc2(−x+ c2t+ h2), χ3Γ(t+ h3)

}
,

where s ∈ [−n−τ,−n] and t > −n. Let wn(x, t) = (un(x, t), vn(x, t)) be the unique
solution of the initial value problem of (1.1) with the initial value

wn(x, s) = ϕn(x, s), x ∈ R, s ∈ [−n− τ,−n]. (3.10)

Then, by Lemma 3.2, we have

w(x, t) ≤ wn(x, t) ≤ K for all x ∈ R and t ≥ −n.

The following result provides the appropriate upper estimate of wn(x, t).

Lemma 3.8. The unique solution wn(x, t) of (3.10) satisfies

w(x, t) ≤ wn(x, t) ≤ min
{
K,Π1(x, t),Π2(x, t),Π3(x, t)

}
for any x ∈ R and t ≥ −n− τ , where Π1(x, t), Π2(x, t) and Π3(x, t) are defined in
Theorem 1.5.

Proof. We only prove wn(x, t) ≤ Π1(x, t) for all x ∈ R and t ≥ −n− τ . The other
cases can be proved in the same way. Assume χ1 = 1 and set

Zn(x, t) := (Zn1 (x, t), Zn2 (x, t)) = wn(x, t)−Φc1(x+ c1t+ h1), x ∈ R, t ≥ −n− τ.

Clearly, Zn(x, t) ≥ 0 for all x ∈ R and t ≥ −n−τ . By the assumption g′(u) ≤ g′(0)
for u ∈ [0,K1], we obtain

(Zn1 )t(x, t) = d(Zn1 )xx − αZn1 (x, t) +
∫

R
J(x− y)Zn2 (y, t)dy,

(Zn2 )t(x, t) ≤ −βZn2 (x, t) + g′(0)Zn1 (x, t− τ),

Zn(x, s) = ϕn(x, s)− Φc1(x+ c1s+ h1),

(3.11)
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where x ∈ R, t > −n, s ∈ [−n− τ,−n]. Taking

V (x, t) := (V1(x, t), V2(x, t)) = χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + χ3(1, b∗)eλ
∗(t+h3),

it is easy to verify that

(V1)t(x, t) = d(V1)xx − αV1(x, t) +
∫

R
J(x− y)V2(y, t)dy,

(V2)t(x, t) = −βV2(x, t) + g′(0)V1(x, t− τ),

where x ∈ R, t > −n. By Theorems 1.3 and 1.4, we have

Φc2(z) ≤ (1, Ac2)eλ1(c2)z and Γ(z) ≤ (1, b∗)eλ
∗z for all z ∈ R,

which implies that

V (x, s) = χ2(1, Ac2)eλ1(c2)(−x+c2s+h2) + χ3(1, b∗)eλ
∗(s+h3)

≥ ϕn(x, s)− Φc1(x+ c1s+ h1)

= Zn(x, s) for s ∈ [−n− τ,−n].

It then follows from Lemma 3.4 that

Zn(x, t) ≤ V (x, t) for all x ∈ R and t > −n− τ ,
that is,

wn(x, t) ≤ Φc1(x+ c1t+ h1) + χ2(1, Ac2)eλ1(c2)(−x+c2t+h2)

+ χ3(1, b∗)eλ
∗(t+h3) = Π1(x, t).

If χ1 = 0, then the assertion wn(x, t) ≤ Π1(x, t) reduces to

wn(x, t) ≤ χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + χ3(1, b∗)eλ
∗(t+h3)

which holds obviously. The proof is complete. �

Definition 3.9. Let k ∈ N and p, p0 ∈ Rk. We say that the functions Wp(x, t) =(
Up(x, t), Vp(x, t)

)
converge to Wp0(x, t) =

(
Up0(x, t), Vp0(x, t)

)
as p → p0 in the

sense of topology T if the functions Wp, ∂tWp and ∂xxWp converge uniformly in
any compact set S ⊂ R2 to Wp0 , ∂tWp0 and ∂xxWp0 , as p→ p0.

Proof of Theorem 1.5. By Lemmas 3.2 and 3.8, we have

w(x, t) ≤ wn(x, t) ≤ wn+1(x, t) ≤ min
{
K,Π1(x, t),Π2(x, t),Π3(x, t)

}
for any x ∈ R and t ≥ −n − τ . It is easy to see that there exists L′ > 0, which is
independent of n, such that

sup
x∈R
|ϕn2 (x+ η, 0)− ϕn2 (x, 0)| ≤ L′η, ∀η > 0. (3.12)

Thus, using Lemma 3.3 and the diagonal extraction process, there exists a subse-
quence wnl(x, t) of wn(x, t) such that wnl(x, t) converges to a function Wp(x, t) in
the sense of topology T . Since wn(x, t) ≤ wn+1(x, t) for any t > −n, we have

lim
n→+∞

wn(x, t) = Wp(x, t) for any (x, t) ∈ R2.

The limit function is unique, whence all of the functions wn(x, t) converge to the
function Wp(x, t) in the sense of topology T as n → +∞. Clearly, Wp(x, t) is an
entire solution of (1.1) satisfying (1.10).

Using (1.10) and the facts Φc(−∞) = 0 and Φc(+∞) = K, it is easy to show
that assertions (1)-(4) hold. This completes the proof. �
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3.4. Qualitative properties of the entire solutions. In addition to the exis-
tence result of Theorem 1.5, in this section we further investigate some qualitative
properties of the entire solution Wp(x, t), such as the monotonicity and limit of
Wp(x, t) with respect to the variables x and t, and the shift parameters hi.

For any A, γ ∈ R, denote the regions T iA,γ , i = 1, . . . , 6 by

T 1
A,γ := [A,∞)× [γ,∞), T 2

A,γ := (−∞, A]× [γ,∞),

T 3
A,γ := R× [γ,∞), T 4

A,γ := (−∞, A]× (−∞, γ],

T 5
A,γ := [A,∞)× (−∞, γ], T 6

A,γ := R× (−∞, γ].

Various qualitative properties of the entire solutions are stated in the sequel.

Theorem 3.10. Let Wp(x, t) be the entire solution of (1.1) as stated in Theorem
1.5, then the following properties hold.

(1) Wp(x, t)� 0 and ∂tWp(x, t)� 0 for all (x, t) ∈ R2.
(2) limt→+∞ supx∈R

∥∥Wp(x, t)−K
∥∥ = 0 and limt→−∞ sup|x|≤A ‖Wp(x, t)‖ = 0

for any A ∈ R+.
(3) If χ1 = 1 then limx→+∞ supt≥T

∥∥Wp(x, t)−K
∥∥ = 0 for any T ∈ R. If, in

addition χ2 = 0, then ∂xWp(x, t)� 0 for all (x, t) ∈ R2.
(4) If χ2 = 1 then limx→−∞ supt≥T

∥∥Wp(x, t)−K
∥∥ = 0 for any T ∈ R. If, in

addition χ1 = 0, then ∂xWp(x, t)� 0 for all (x, t) ∈ R2.
(5) If χ3 = 1, then for every x ∈ R, Wp(x, t) ∼ Γ(t+ h3) ∼ (1, b∗)eλ

∗(t+h3) as
t→ −∞.

(6) If χ3 = 0 then for any x ∈ R, there exist constants D(x) > C(x)� 0 such
that

C(x)eϑ(c1,c2)t ≤Wp(x, t) ≤ D(x)eϑ(c1,c2)t

for t� −1, here ϑ(c1, c2) := min{c1λ1(c1), c2λ1(c2)}.
(7) For any x ∈ R, Wp(x, t) is increasing with respect to hi, i = 1, 2, 3.
(8) For any x ∈ R and γ ∈ R, Wp(x, t) converges to K in the sense of topology
T as hi → +∞ and uniformly on (x, t) ∈ T iA,γ for i = 1, 2, 3.

Proof. The assertions for parts (2)-(4) and (6)-(8) are direct consequences of (1.10).
Therefore, we only prove the results of parts (1) and (5).

(1) From (1.10), one can see that Wp(x, t)� 0 for all x ∈ R and t ∈ R. Since

wn(x, t) ≥ w(x, t) ≥ w(x, s) = ϕn(x, s)

for all (x, t) ∈ R × [−n,+∞) and s ∈ [−n − τ,−n], by Lemma 3.2, we have
∂
∂tWp(x, t) ≥ 0 for (x, t) ∈ R × (−n,+∞), which yields to ∂

∂tWp(x, t) ≥ 0 for
all (x, t) ∈ R2. Note that

∂ttUp(x, t) = d(∂tUp)xx − α∂tUp(x, t) +
∫

R
J(x− y)∂tVp(y, t)dy

≥ d(∂tUp)xx − α∂tUp(x, t),
∂ttVp(x, t) = −β∂tVp(x, t) + g′(Up(x, t− τ))∂tUp(x, t− τ)

≥ −β∂tVp(x, t),
where x ∈ R and t ∈ R. Hence, for any r < t, we have

∂tUp(x, t) ≥
∫ +∞

−∞
Jd(x− y, t)e−α(t−r)∂tUp(y, r)dy, (3.13)
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∂tVp(x, t) ≥ e−β(t−r)∂tVp(x, r) (3.14)

for x ∈ R and t > 0, where Jd(x, t) = 1√
4dπt

exp
{
− x2

4dt

}
. Suppose for the contrary

that there exist (x0, t0) ∈ R2 such that ∂tUp(x0, t0) = 0, then it follows from
(3.13) that ∂tUp(x0, r) = 0 for all r ≤ t0. Hence, limt→−∞ Up(x0, t) = Up(x0, t0).
However, from (1.10),

lim
t→−∞

Up(x0, t) = 0 and Up(x0, t0) > 0.

This contradiction yields that ∂tUp(x, t) > 0 for (x, t) ∈ R2. Similarly, we can show
that ∂tVp(x, t) > 0 for (x, t) ∈ R2. Therefore, ∂tWp(x, t)� 0 for all (x, t) ∈ R2.

(5) By Proposition 3.5, we know that

min
{
c1λ1(c1), c2λ1(c2)

}
> λ∗ for any c1, c2 > c∗.

Then (1.10) implies

Γ(t+ h3) ≤Wp(x, t)

≤ χ1(1, Ac1)eλ1(c1)(x+c1t+h1) + χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + Γ(t+ h3)

≤ χ1(1, Ac1)eλ1(c1)(x+c1t+h1) + χ2(1, Ac2)eλ1(c2)(−x+c2t+h2) + (1, b∗)eλ
∗t.

Since limt→−∞ Γ(t)e−λ
∗t = (1, b∗), the statement of (5) holds obviously. This

completes the proof. �

Moreover, according to the assumption χ1, χ2, χ3 ∈ {0, 1} with χ1 +χ2 +χ3 ≥ 2
in Theorem 1.5, we further denote the entire solution Wp(x, t) of (1.1) by

Wp(x, t) :=


Wp0(x, t), if (χ1, χ2, χ3) = (1, 1, 1),
Wp1(x, t), if (χ1, χ2, χ3) = (0, 1, 1),
Wp2(x, t), if (χ1, χ2, χ3) = (1, 0, 1),
Wp3(x, t), if (χ1, χ2, χ3) = (1, 1, 0),

(3.15)

where p = pχ1,χ2,χ3 = (χ1c1, χ2c2, χ1h1, χ2h2, χ3h3), p0 = (c1, c2, h1, h2, h3), and

p1 = (0, c2, 0, h2, h3), p2 = (c1, 0, h1, 0, h3) and p3 = (c1, c2, h1, h2, 0).

Then we have the following convergence results.

Theorem 3.11. From (3.15), we have the following properties.

(1) For any x ∈ R and γ ∈ R, Wp0(x, t) converges (in the sense of topology T )
to Wpi(x, t) as hi → −∞, and uniformly on (x, t) ∈ T 3+i

A,γ , i = 1, 2, 3.
(2) For any x ∈ R and γ ∈ R, Wp1(x, t) converges (in the sense of topology T )

to Γ(t + h3) as h2 → −∞, and uniformly on (x, t) ∈ T 5
A,γ ; to Φc2(−x +

c2t+ h2) as h3 → −∞, and uniformly on (x, t) ∈ T 6
A,γ .

(3) For any x ∈ R and γ ∈ R, Wp2(x, t) converges (in the sense of topology T )
to Γ(t+h3) as h1 → −∞, and uniformly on (x, t) ∈ T 4

A,γ ; to Φc1(x+c1t+h1)
as h3 → −∞, and uniformly on (x, t) ∈ T 6

A,γ .
(4) For any x ∈ R and γ ∈ R, Wp3(x, t) converges (in the sense of topology
T ) to Φc2(−x+ c2t+ h2) as h1 → −∞, and uniformly on (x, t) ∈ T 4

A,γ ; to
Φc1(x+ c1t+ h1) as h2 → −∞, and uniformly on (x, t) ∈ T 5

A,γ .
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Proof. (1) We only prove the case that Wp0(x, t) converges to Wp3(x, t) in the sense
of topology T and uniformly on (x, t) ∈ T 6

A,γ , as h3 → −∞. The proofs for the
other cases are similar.

For (χ1, χ2, χ3) = (1, 1, 1), we denote ϕn(x, s) by ϕnp0(x, s) and wn(x, t) by
wnp0(x, t), respectively. Similarly, when (χ1, χ2, χ3) = (1, 1, 0), we denote ϕn(x, s)
by ϕnp3(x, s) and wn(x, t) by wnp3(x, t), respectively. Let

Zn(x, t) := (Zn1 (x, t), Zn2 (x, t)) = wnp0(x, t)− wnp3(x, t),

then 0 ≤ Zn(x, t) ≤ K for all (x, t) ∈ R× (−n,+∞) and

(Zn1 )t(x, t) = d(Zn1 )xx − αZn1 (x, t) +
∫

R
J(x− y)Zn2 (y, t)dy,

(Zn2 )t(x, t) ≤ −βZn2 (x, t) + g′(0)Zn1 (x, t− τ),

for x ∈ R and t > −n. Note that

Zn(x, s) = ϕnp0(x, s)−ϕnp3(x, s) ≤ Γ(s+h3) ≤ (1, b∗)eλ
∗(s+h3) for s ∈ [−n−τ,−n]

and the function V (x, t) := (V1(x, t), V2(x, t)) = (1, b∗)eλ
∗(t+h3) satisfies

(V1)t(x, t) = d(V1)xx − αV1(x, t) +
∫

R
J(x− y)V2(y, t)dy,

(V2)t(x, t) = −βV2(x, t) + g′(0)V1(x, t− τ),

It then follows from Lemma 3.4 that

0 ≤ Zn(x, t) ≤ (1, b∗)eλ
∗(t+h3) for all (x, t) ∈ R× [−n,+∞).

Since limn→+∞ wnp0(x, t) = Wp0(x, t) and limn→+∞ wnp3(x, t) = Wp3(x, t), we obtain

0 ≤Wp0(x, t)−Wp3(x, t) ≤ (1, b∗)eλ
∗(t+h3) for all (x, t) ∈ R2,

which implies that Wp0(x, t) converges to Wp3(x, t) as h3 → −∞ uniformly on
(x, t) ∈ T 6

A,γ for any γ ∈ R. For any sequence h`3 with h`3 → −∞ as ` → +∞, the
functions Wp`(x, t) (here p` := (c1, c2, h1, h2, h

`
3)) converge to a solution of (1.1)

(up to extraction of some subsequence) in the sense of topology T , which turns out
to be Wp3(x, t). The limit does not depend on the sequence h`3, whence all of the
functions Wp0(x, t) converge to Wp3(x, t) in the sense of topology T as h3 → −∞.
Hence the assertion of this part follows.

The proofs of parts (2)-(4) are similar to that of part (1), and omitted. This
completes the proof. �
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