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GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY
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Abstract. In this article, we propose a general normal form to prove the per-
sistence and the Gevrey-smoothness of lower dimensional elliptic invariant tori

of nearly integrable symplectic mappings under the Rüssmann non-degeneracy

condition. Our results generalize the ones presented in the literature.

1. Introduction

The KAM theory for nearly integrable Hamiltonian systems has been developed
extensively in the past decades (KAM theory was named after Andrey Kolmogorov,
Vladimir Arnold and Jrgen Moser). Studies under different non-degeneracy condi-
tions [1, 2, 6] generate various KAM theorems, among which the non-degeneracy
condition proposed by Rüssmann [22, 23] sounds very useful and weaker. In the
KAM theory, the regularity of KAM invariant tori is an important issue to con-
sider, since small divisor may usually cause the loss of smoothness. Pöschel [18]
proved that the persisting invariant tori are C∞-smooth in the frequency param-
eter. Later Popov [20] obtained the Gevrey-smoothness of invariant tori in their
frequencies under the Kolmogorov non-degeneracy condition. Xu and You [29] ex-
tended this result to the case of the Rüssmann non-degeneracy condition. Zhang
and Xu [30, 31] investigated the elliptic lower dimensional tori for Gevrey-smooth
Hamiltonian systems under Rüssmann’s non-degeneracy condition.

In addition to Hamiltonian systems, KAM theorems for mappings [4, 5, 8, 9,
10, 22, 27, 3, 7] have been proven ever since Moser’s well known work [14, 15] on
area-preserving mappings. As we have seen, many profound results for Hamilton-
ian systems can be generalized to symplectic mappings since the latter are dis-
crete Hamiltonian systems. This is one of main motivations of our studies on the
Gevrey-smoothness of elliptic lower dimensional KAM invariant tori for symplectic
mappings.

Despite the fact that some results in symplectic mappings can be extended to
Hamiltonian systems, there are still critical differences between symplectic map-
pings and Hamiltonian systems. Normal form is crucial for the study of the reso-
nance relation between tangential frequencies and normal frequencies. Unlike the
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normal form in Hamiltonian systems which is unique, for symplectic mappings there
is not a unique standard normal form and in some cases is not easy to be discov-
ered. Even if the normal form can be discovered, it can cause much difficulty in
the KAM iteration. Moreover, symplectic mappings are determined implicitly by
the generating functions, which makes the KAM estimates more complicated.

Recently, Lu et al [7] found a normal form for the elliptic lower dimensional tori
to prove the persistence of the invariant tori. In this article, we provide a more
generic normal form to study the persistence and Gevrey-smoothness of KAM tori,
which is parameter-dependent under the Rüssmann non-degeneracy condition

Consider a family of parameterized symplectic mappings

Φ : (x, u, y, v) ∈ Tn ×W ×O ×W → (x̂, û, ŷ, v̂) ∈ Tn × Rm × Rn × Rm,

which is implicitly defined by a generating function

H(x, u, ŷ, v̂; ξ) = N + P, (1.1)

with
x̂ = ∂ŷH(x, u, ŷ, v̂; ξ), y = ∂xH(x, u, ŷ, v̂; ξ),

û = ∂v̂H(x, u, ŷ, v̂; ξ), v = ∂uH(x, u, ŷ, v̂; ξ),
(1.2)

where

N(x, u, ŷ, v̂; ξ) = 〈x+ ω(ξ), ŷ〉+ 〈Au, v̂〉+
1
2
〈Bu, u〉+

1
2
〈Cv̂, v̂〉, (1.3)

and A,B,C are constant matrices. We suppose that ξ ∈ Π is parameter and Π ⊂ Rn
is a bounded closed connected domain.

If P = 0, Φ is expressed explicitly as

x̂ = x+ ω(y), ŷ = y,

û = (A− C(AT )−1B)u+ C(AT )−1v, v̂ = −(AT )−1Bu+ (AT )−1v.
(1.4)

Let

Ω(A,B,C) =
(
A− C(AT )−1B C(AT )−1

−(AT )−1B (AT )−1

)
2m×2m

.

Then (û, v̂)T = Ω(A,B,C)(u, v)T . It is easy to see that Tn × {0, 0, 0} is a lower
dimensional invariant torus with the rotational frequency ω(ξ).

We call the lower dimensional invariant torus to be elliptic if 1 is not an eigen-
value of Ω(A,B,C) and each eigenvalue has unit modulus; while hyperbolic if no
eigenvalue has unit modulus. For simplicity, let

A = diag(a1, a2, . . . , am), B = diag(b1, b2, . . . , bm), C = diag(c1, c2, . . . , cm).

The rest of this article is organized as follows. In Section 2, we present the
related preliminary results on the Gevery-class Gµ(O) of index µ (µ ≥ 1) and state
our main result. Section 3 is dedicated to the proof of our main result. Section 4
is an appendix.

2. Preliminaries

Before stating our main results, we introduce some preliminary results on as-
sumptions, definitions and norm forms.

(H1) (Ellipticity condition) Suppose that ∆2
l − 4 < 0, where ∆l = a2

l−blcl+1
al

,
l = 1, 2, . . . ,m
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Remark 2.1. Direct calculations show that the eigenvalues of Ω(A,B,C) are
∆l±
√

∆2
l−4

2 , l = 1, 2, . . . ,m. If ∆2
l − 4 < 0, we have∣∣∆l ±

√
∆2
l − 4

2

∣∣ = 1.

Let θ = (θ1, θ2, . . . , θm) such that e±iθl = ∆l±
√

∆2
l−4

2 and 0 < |θl| 6 π
2 , l =

1, 2, . . . ,m, where i =
√
−1 In this case, the lower dimensional invariant torus is

elliptic. We call θ the normal frequency. If ∆2
l − 4 > 0, we have∣∣∆l ±

√
∆2
l − 4

2

∣∣ 6= 1, l = 1, 2, . . . ,m.

This means that the lower dimensional invariant torus is hyperbolic.

Remark 2.2. If we choose A,B,C such that ai = sec θi, bi = ci = tan θi, and
0 < |θ| 6 π

2 , the generated function (1.1) reduces to the case described in [7]. Note
that the normal form in [7] is unstable, which means that the normal form cannot
remain after one KAM step, thus the normalization is necessary at every KAM step
in [7] . In this study, we use the above normal form, which can persist under the
KAM iteration.

(H2) (Rüssmann’s non-degeneracy condition) There exists an integer n̄ > 1 such
that

rank{∂βξ ω(ξ) : 1 6 |β| ≤ n̄} = n, ∀ξ ∈ Π. (2.1)

Remark 2.3. The non-degeneracy condition (2.1) is slightly different from that in
Hamiltonian systems:

rank
{
∂βξ ω(ξ) : |β| ≤ n̄

}
= n, ∀ξ ∈ Π.

(H3) (Non-resonance conditions) Suppose that for k ∈ Zn with |k| 6= 0, i, j, w ∈
Z and 1 ≤ i, j ≤ m, ω(ξ) satisfies

|〈k, ω(ξ)〉 − 2πw| ≥ 2α
(2 + |k|)τ

, (2.2)

|〈k, ω(ξ)〉 − θi(ξ)− 2πw| ≥ 2α
(2 + |k|)τ

, (2.3)

|〈k, ω(ξ)〉+ θi(ξ)± θj(ξ)− 2πw| ≥ 2α
(2 + |k|)τ

, |k|+ |i− j| 6= 0. (2.4)

Definition 2.4. Let O ⊂ Rn be a bounded, closed, and connected domain. A
function F : O → R is said to belong to the Gevery-class Gµ(O) of index µ (µ ≥ 1),
provided that F is C∞(O)-smooth and there exists a constant M such that for all
p ∈ O, it holds

|∂βpF (p)| ≤ cM |β|+1β!µ,

where |β| = β1 +β2 + · · ·+βn and β!µ = β1!β2! . . . βn! for β = (β1, β2, . . . , βn) ∈ Zn+
Remark 2.5. From the definition, it is easy to see that the class G1 of Gevery-
smooth functions coincides with the class of analytic functions, and it also satisfies

G1 ⊂ Gµ1 ⊂ Gµ2 ⊂ C∞,

for 1 < µ1 < µ2 <∞.
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Set

Ts = {x ∈ Cn/2πZn : | Imx|∞ ≤ s}, Br = {y ∈ Cn : |y|1 ≤ r2},
Wr = {w ∈ Cm : |w|2 ≤ r}.

Denote

D(s, r) = Ts ×Wr × Br ×Wr,

|x|∞ = max
1≤j≤n

|xj |, |y|1 =
∑

1≤j≤n

|yj |, |w|2 =
( ∑

1≤j≤m

|wj |2
)1/2

.

Let
Π = {ξ ∈ O : dist(ξ, ∂O) > h}, Πh = {ξ ∈ Cn : dist(ξ,Π) 6 h}.

Remark 2.6. By definition, f ∈ G1,µ(D(s, r)× Π) which implies f(x, y, u, v; ξ) ∈
C∞(D(s, r)×Π) and f(x, y, u, v; ξ) is analytic with respect to (x, y, u, v) on D(s, r)
and Gµ-smooth in ξ on Πh

If P (x; ξ) is analytic on Ts ×Π, we can expand P (x; ξ) as the Fourier series

P (x; ξ) =
∑
k∈Zn

Pk(ξ)ei〈k,x〉.

We define
‖P‖s =

∑
k∈Zn

|Pk|Πes|k|, |Pk|Π = max
ξ∈Π
|Pk(ξ)|.

When P (x, u, ŷ, v̂; ξ) is analytic on D(s, r)×Π, we let

P (x, u, ŷ, v̂; ξ) =
∑
k∈Zn

Pk(u, ŷ, v̂; ξ)ei〈k,x〉, Pk(u, ŷ, v̂; ξ) =
∑
l,i,j

Pklij(ξ)ŷluiv̂j .

We define
‖P‖D(s,r)×Π =

∑
k∈Zn

|Pk|res|k|,

where
|Pk|r = sup

(u,ŷ,v̂)∈Wr×Br×Wr

∑
i,j,l

‖Pklij‖sŷluiv̂j .

This norm is obviously stronger than the sup-norm. Moreover, the Cauchy esti-
mates of analytic functions are also valid under this norm. Let

XP = (−∂ŷP,−∂v̂P, ∂xP, ∂uP ),

endowed with the corresponding weighed norm

‖XP ‖r;D(s,r)×Π

= ‖∂ŷP‖D(s,r)×Π +
1
r
‖∂v̂P‖D(s,r)×Π +

1
r2
‖∂xP‖D(s,r)×Π +

1
r
‖∂uP‖D(s,r)×Π,

where

‖∂x̂P‖D(s,r)×Π =
∑
j

‖∂x̂jP‖D(s,r)×Π, ‖∂ŷP‖D(s,r)×Π = max
j
‖∂ŷjP‖D(s,r)×Π,

‖∂uP‖D(s,r)×Π =
(∑

j

(‖∂ujP‖s,r)2
)1/2

.

Now, we state our main result.
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Theorem 2.7. Consider the symplectic mapping Φ(·; ξ) defined by (1.1). Suppose
that

τ > nn̄− 1, max
ξ∈Πh

{
|∂ω(ξ)
∂ξ
|, |∂θ(ξ)

∂ξ
|
}
6 T,

and conditions (H1)–(H3) hold. There exists a γ > 0 such that for any 0 < α < 1,
if

‖XP ‖r;D(s,r)×Πh = ε 6 γ3α2ν̄ρ2ν ,

where ν̄ = 4(n̄ + 1) and ν = 4τ(n̄ + 1) + n + n̄, then the following two statements
are true.

(i) There exist a non-empty Cantor-like subset Π∗ ⊂ Π, parameterized symplectic
mappings Ψ∗(·; ξ) ∈ G1,µ(D(s/2, r/2) × Π∗), and parameterized functions H∗ ∈
G1,µ(D(s/2, r/2)×Π∗) such that

‖∂βξ (Ψ∗ − id)‖r;D( s2 ,
r
2 )×Π∗ ≤ cρ

νM |β|β!µγ
9

4(n+1) , ∀β ∈ Z+
n , ∀ξ ∈ Π∗, (2.5)

where M = 2T+1
α [ 4(µ−1)(n+1)

3 ]µ−1, and H∗(·; ξ) = N∗ + P∗ satisfies

N∗(x, u, ŷ, v̂; ξ) = 〈x+ ω∗, ŷ〉+ 〈A∗u, v̂〉+
1
2
〈B∗u, u〉+

1
2
〈C∗v̂, v̂〉,

P∗(x, u, ŷ, v̂; ξ) =
∑

|i|+|j|+2|l|≥3

Plij(x; ξ)ŷluiv̂j .

Moreover, Φ∗(·; ξ) = Ψ−1
∗ ◦ Φ ◦Ψ∗ is generated by H∗(·; ξ) = N∗ + P∗.

(ii) For ξ ∈ Π∗, the symplectic mapping Φ(·; ξ) admits an invariant torus

{Tξ = Ψ∗(Tn, 0, 0, 0; ξ) : ξ ∈ Π∗}
whose tangential frequency ω∗ and normal frequency θ∗ satisfy

|∂βξ (ω∗(ξ)− ω(ξ))|Π∗ ≤ cρ2νM |β|β!µγ
9

4(n+1) , (2.6)

|∂βξ (θ∗(ξ)− θ(ξ))|Π∗ ≤ cρ2νM |β|β!µγ
9

4(n+1) . (2.7)

Moreover, for i, j ∈ Z and 1 ≤ i, j ≤ m, we have

|〈ω∗(ξ), k〉 − s1θ∗i(ξ)− s2θ∗j(ξ)− 2πw| ≥ α

(2 + |k|)τ
, (2.8)

where ξ ∈ Π∗, 0 6= k ∈ Zn, 0 6 |s1|+ |s2| 6 2, and sd ∈ Z (d = 1, 2). In addition,
we have

meas(Π \Π∗)→ 0, as α→ 0.

3. Proof of main result

3.1. KAM-steps. To prove our main result, we apply the idea for Hamiltonian
systems [19, 29] as well as some technical lemmas.

KAM iteration lemma: For the symplectic mapping Φ(·; ξ) defined by (1.1),
when δ ∈ (0, 1), let µ = τ + δ + 2, σ = (3

4 )
δ

τ+1+δ , 0 < E < 1, 0 < η < 1
8 and

0 < ρ = (1− σ)s/10 < s
5 . Let

max
ξ∈Πh

{
|∂ω(ξ)
∂ξ
|, |∂θ(ξ)

∂ξ
|
}
6 T, h =

α

(2 +K)τ+1T
,

where K > 0 satisfies η2e−Kρ = E. Suppose that conditions (H1)–(H3) hold and
P satisfies

‖XP ‖r;D(s,r)×Πd 6 ε = η2α2ν̄ρ2νE



6 S. J. JIANG EJDE-2017/159

with 0 < α < 1, ν̄ = 4(n̄+ 1) and ν = 4τ(n̄+ 1) + n+ n̄. Then the following three
statements are true.

(i) For ξ ∈ Πh, there exists a symplectic diffeomorphism Ψ(·; ξ) with

‖Ψ− id‖r;D(s−3ρ, r4 )×Πh ≤
cε

αν̄ρν
, ‖DΨ− id‖r;D(s−3ρ, r4 )×Πh ≤

cε

αν̄ρν+1
,

such that the conjugate mapping Φ+(·; ξ) = Ψ−1 ◦Φ ◦Ψ is generated by H+(·; ξ) =
N+ + P+, where

N+ = 〈x+ ω+(ξ), ŷ〉+ 〈A+u, v̂〉+
1
2
〈B+u, u〉+

1
2
〈C+v̂, v̂〉

and P+ satisfies
‖XP ‖r+;D(s+,r+)×Πd 6 η

2
+α

2ν̄
+ ρν+E+ = ε+

with

s+ = s− 5ρ, ρ+ = σρ, η = E, r+ = ηr, E+ = E
4
3 ,

α

2
6 α+ 6 α.

Let e±iθ+l be the eigenvalues of Ω(A+, B+, C+), where θ+ = (θ+1, θ+2, . . . , θ+m)
and l = 1, 2, . . . ,m. We have

|ω+(ξ)− ω(ξ)| ≤ ε, |θ+(ξ)− θ(ξ)| ≤ cε, ∀ξ ∈ Πh. (3.1)

(ii) Let α+ = α− (K + 2)τ+1ε,

Π̄ =
{
ξ ∈ Π : |〈ω+(ξ), k〉 − s1θ+i(ξ)− s2θ+j(ξ)− 2πw| < 2α+

(2 + |k|)τ
, k ∈ Zn,

K < |k| ≤ K+, 0 6 |s1|+ |s2| 6 2, sd ∈ Z (d = 1, 2)
}
,

and Π+ = Π \ Π̄. Then for ξ ∈ Π+, ∀k ∈ Zn and 0 < |k| ≤ K+, we have

|〈ω+(ξ), k〉 − s1θ+i − s2θ+j − 2πw| > 2α+

(2 + |k|)τ
, (3.2)

where K+ > 0 satisfies e−K+ρ+

η2
+

= E+.

(iii) Let T+ = T + 6ε
h and h+ = α+

2(K++2)τ+1T+
. If h+ ≤ 5

6h, we have

max
ξ∈Πh+

{
|∂ω+(ξ)

∂ξ
|, |∂θ+(ξ)

∂ξ
|
}
≤ T+,

where Πh+ is the complex h+-neighborhood of Π+

A. Generating functions of conjugate mappings: Let p = (x, u) and q =
(y, v). The symplectic structure becomes dp ∧ dq on Rn+m × Rn+m. Consider a
symplectic mapping Φ : (p, q)→ (p̂, q̂) generated by

p̂ = ∂q̂H(p, q̂) = H2(p, q̂) and q = ∂pH(p, )̂ = H1(p, q̂). (3.3)

The generating function is H(p, q̂) = N(p, q̂) + P (p, q̂), where N represents the
main term and P is a small perturbation. Define a symplectic transformation
Ψ : (p+, q+)→ (p, q) by

q = q+ + F1(p, q+) and p+ = p+ F2(p, q+). (3.4)

The generating function is 〈p, q+〉+ F (p, q+) with F being a small function. So Ψ
approaches to the identity. Then, we get a conjugate mapping

Φ+ = Ψ−1 ◦ Φ ◦Ψ : (p+, q+)→ (p̂+, q̂+)
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implicitly by

p̂+ = H2(p, q̂) + F2(p̂, q̂+) and q+ = H1(p, q̂)− F1(p, q+). (3.5)

From the following Lemma, Φ+ is generated by a function H+(p+, q̂+).

Lemma 3.1 ([7]). The conjugate symplectic mapping Φ+ can be determined by
H+(p+, q̂+) through

p̂+ = ∂q̂+H+(p+, q̂+), q+ = ∂p+H+(p+, q̂+), (3.6)

where
H+(p+, q̂+) = H(p, q̂) +H1(p, q̂)F2(p, q+)−H2(p, q̂)F1(p̂, q̂+)

+ F (p̂, q̂+)− F (p, q+)− F1(p, q+)F2(p, q+),
(3.7)

with p, p̂, q̂, q+ depending on (p+, q̂+) as explained above. Moreover, if we set z =
(p+, q̂+), then we have

H+(z) = H(z) + F (N2(z), q̂+)− F (p+, N1(z)) +Q(z). (3.8)

The small term Q(z) has the estimate

‖XQ‖r;D(s−5ρ,r/16)×Π ≤
cε2

α2ν̄ρ2ν
, (3.9)

with ν̄ = 4(n̄+ 1) and ν = n̄+ n+ 4τ(n̄+ 1).

B. Truncation: Let
P = R+ (P −R), (3.10)

where
R(p, q̂) = P000(x) + 〈P100(x), ŷ〉+ 〈P010(x), u〉+ 〈P001(x), v̂〉

+ 〈P011(x)u, v̂〉+
1
2
〈P020(x)u, u〉+

1
2
〈P002(x)v̂, v̂〉,

(3.11)

with

Plij =
∂l+i+jP

∂ŷl∂ui∂v̂j
|u=0,ŷ=0,v̂=0, 2|l|+ |i|+ |j| ≤ 2.

So we have

P −R =
∑

2|l|+|i|+|j|62,k>K

Plij ŷ
luiv̂j +

∑
2|l|+|i|+|j|>3

Plij ŷ
luiv̂j .

C. Extension of small divisor estimate: For ξ ∈ Πh, there exists a ξ0 ∈ Π such
that |ξ − ξ0| < h For |k| ≤ K, we have

|〈ω(ξ)− ω(ξ0), k〉+ s1(θi(ξ)− θi(ξ0)) + s2(θj(ξ)− θj(ξ0))|
6 |〈ω(ξ)− ω(ξ0), k〉|+ |s1‖(θi(ξ)− θi(ξ0))|+ |s2‖(θj(ξ)− θj(ξ0))|
6 (k + |s1|+ |s2|)Th
6 (k + 2)Th

6
α

(K + 2)τ
.

(3.12)

It follows from (2.2)–(2.4) and (3.12) that

|〈ω(ξ), k〉+ s1θi(ξ) + s2θj(ξ)− 2πw| > α

(2 + |k|)τ
, (3.13)

where h = α
(2+K)τ+1T , 0 6 |s1|+ |s2| 6 2 and sd ∈ Z (d = 1, 2) .
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D. Homological equations:
Following the idea described in [19], we consider the homological equation:

N(p+, q̂+) +R(p+, q̂+)− F (p+, Np(p+, q̂+)) + F (Nq(p+, q̂+), q̂+) = N̄(p+, q̂+),

where F (p, q̂) possess the same form as (3.11). Just for simplicity, here and below
we drop the subscripts ‘+’ in p+ and q̂+.

Let x+ ω = x̃. Denoting

p̂ = Nq̂(p, p̂) = (x̃, Au+ Cv), q = Np(p, p̂) = (ŷ, Av̂ +Bu),

we have
F (Nq(p, q̂), q̂)− F (p,Np(p, q̂)) = L0 + L1 + L2,

where L0, L1, L2 indicate the ith (i = 0, 1, 2) order terms of u and v̂ respectively:

L0 = (F000(x̃)− F000(x)) + 〈F100(x̃)− F100(x), ŷ〉,
L1 = 〈ATF010(x̃)− F010(x)−BF001(x), u〉+ 〈CF010(x̃) + F001(x̃)−AF001(x), v〉,
L2 = 〈{F011(x̃)A−AF011(x) + CF020(x̃)A−AF002(x)B}u, v̂〉

+
1
2
〈{ATF020(x̃)A− F020(x)−BF002(x)B −BF011(x)− FT011(x)B}u, u〉

+
1
2
〈{CF020(x̃)C + F002(x̃)−AF002(x)AT + F011(x̃)C + CFT011(x̃)}v̂, v̂〉.

We consider the equations

L0 = (R000(x)− [R000]) + 〈R100(x)− [R100], ŷ〉,
L1 = 〈R010(x), u〉+ 〈R001(x), v̂〉,

L2 = 〈(R011(x)− Â)u, v̂〉+
1
2
〈(R020(x)− B̂)u, u〉+

1
2
〈(R002(x)− Ĉ)v̂, v̂〉,

(3.14)

where Â, B̂ and Ĉ are to be determined.
We start with the equation

Fj00(x+ ω)− Fj00(x) = Rj00(x)− [Rj00], j = 0, 1,

by expanding Fj00(x) and Rj00(x) as the Fourier series:

Fj00(x) =
∑
k∈Zn

Fkj00e
i〈k,x〉, Rj00(x) =

∑
k∈Zn

Rkj00e
i〈k,x〉.

It follows that

Fkj00 =
1

ek − 1
Rkj00, (3.15)

with ek = ei〈k (ω〉, k 6= 0) By (3.13), we have the estimate

‖Fj00‖(s−ρ)×Π ≤
c‖Rj00‖s

αn̄+1ρn̄+n+τ(n̄+1)
. (3.16)

Next we solve the second equation of (3.14). Let F010 = (F 1
010, . . . , F

m
010) and

F001 = (F 1
001, . . . , F

m
001) and expand F l0i′j′(x) and Rl0i′j′(x) as the Fourier series:

F l0i′j′(x) =
∑
k∈Zn

F lk0i′j′e
i〈k,x〉, Rl0i′j′(x) =

∑
k∈Zn

Rlk0i′j′e
i〈k,x〉

with l = 1, 2, . . . ,m and (i′, j′) = (0, 1) or (1, 0)
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By the definition of L1 and the second equation of (3.14), one can see the relation
between F l0i′j′(x) and Rl0i′j′(x):

Ml ·
(
F lk010(x)
F lk001(x)

)
=
(
Rlk010

Rlk001

)
,

where

Ml =
(
alek − 1 −bl
clek ek − al

)
with ek = ei〈k,ω〉. By a straightforward calculation, we have

det(Ml) =
(
ek −

∆l +
√

∆2
l − 4

2

)(
ek −

∆l −
√

∆2
l − 4

2

)
= −2

(
sin
〈k, ω〉+ θl

2
− i cos

〈k, ω〉+ θl
2

)
sin
〈k, ω〉 − θl

2
,

where θl, ∆l (l = i, j), are defined in Remark 2.1. By (3.13) we know |det(Ml)| >
α2

(2+|k|)2τ . Note that

F lk0i′j′ =
R̃li′j′

|det(Ml)|
with R̃li′j′ = c1R

l
k010(x) + c2R

l
k001(x) Then

‖F0i′j′‖D(s−ρ,r)×Π ≤
c‖R0i′j′‖s

α2n̄+2ρ2τ(n̄+1)+n̄+n
(3.17)

with (i′, j′) = (0, 1) or (1, 0).
Before solving the third equation of (3.14), let us consider the equation

L2 = 〈R011(x)u, v̂〉+
1
2
〈R020u, u〉+

1
2
〈R002v̂, v̂〉. (3.18)

Let F0 i′j′ = (F ij0 i′j′)1≤i,j≤m with (i′, j′) = (1, 1), (2, 0) or (0, 2) We expand F ij0 i′j′

and Rij0 i′j′ as

F ij0 i′j′ =
∑
k∈Zn

Fk0 i′j′e
i〈k,x〉, Rij0 i′j′ =

∑
k∈Zn

Rk0 i′j′e
i〈k,x〉.

From the definition of L2 and (3.18), we have

Nij


F jik011

F ijk011

F ijk020

F ijk002

 =


Rjik011

Rijk011

Rijk020

Rijk002

 ,

where

Nij =


0 ekaj − ai ekciaj −aibj

ekai − aj 0 ekaicj −biaj
−bj −bi ekaiaj − 1 −bibj
ekci ekcj ekcicj ek − aiaj

 .

A direct calculation gives det(Nij) = S4e
4
k + S3e

3
k + S2e

2
k + S1ek + S0, where

S4 = a2
i a

2
j , S0 = a2

i a
2
j ,

S3 = S1 = a3
i a

3
j − a3

i ajbjcj − a3
jaibici + ajaibjbicjci,

+ aja
3
i + a3

jai − ajaibici − ajaibjcj + ajai,
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S2 = a4
i a

2
j − a2

i a
4
j + 2a2

ja
2
i bici + 2a2

ja
2
i bjcj − a2

i b
2
jc

2
j

− a2
jb

2
i c

2
i − 2a2

i a
2
j + 2a2

i bjcj + 2a2
jbici − a2

i − a2
j .

For i, j = 1, 2, . . . ,m, we find

det(Nij) =
(
ek − eiθieiθj

) (
ek − e−iθie−iθj

) (
ek − eiθie−iθj

) (
ek − e−iθieiθj

)
,

with θl (l = i, j) given as in Remark 2.1. By (3.13), we have

|det(Nij)| >
α4

(2 + |k|)4τ
,

with |k|+|i−j| 6= 0. Thus we can solve the equation (3.18) in the case of |k|+|i−j| 6=
0 and get

F ijk0i′j′ =
R̃ij

|det(Nij)|
, (3.19)

with R̃ij = c1R
ji
k011 + c2R

ij
k011 + c3R

ij
k020 + c4R

ij
k002.

From (3.18) and (3.19), we consider the third equation of (3.14) by setting

ω̂ = diag(ω̂1, . . . , ω̂n), Â = diag(Â1, . . . , Âm),

B̂ = diag(B̂1, . . . , B̂m), Ĉ = diag(Ĉ1, . . . , Ĉm),
(3.20)

with
ω̂j = [Rjj100], Âj = [Rjj011], B̂j = [Rjj020], Ĉj = [Rjj002].

By a similar discussion as the above, one can deduce that

‖F0i′j′‖D(s−ρ,r)×Π ≤
c‖R0i′j′‖s

α4n̄+4ρ4τ(n̄+1)+n̄+n
(3.21)

with (i′, j′) = (1, 1), (2, 0) or (0, 2)
It follows from (3.16), (3.17) and (3.21) that

‖XF ‖r;D(s−ρ,r)×Π ≤
cε

αν̄ρν
(3.22)

with ν̄ = 4(n̄+ 1) and ν = 4τ(n̄+ 1) + n+ n̄.
Let χ : (p, q) → (−Fy+ , Fx) Since Ψ = id + χ, we combine the estimate of F in

(3.22) and the Cauchy estimate to obtain

‖Ψ− id‖r;D(s−3ρ, r4 )×Π ≤
cε

αν̄ρν
,

‖DΨ− id‖r;D(s−3ρ, r4 )×Π ≤
cε

αν̄ρν+1
.

E. Choices of parameters in KAM iteration: Set

0 < E < 1, η = E, ε = η2α2νρ2νE,
e−Kρ

η2
= E, h =

α

2(K + 2)τ+1T
.

Let σ ∈ (0, 1) We denote

ρ+ = σρ, s+ = s− 5ρ, r+ = ηr,

α+ = α− (K + 2)τ+1ε, ε+ = cηε, E+ = cE
4
3 .

From the equality

P −R =
∑

|2l|+|i|+|j|62,k>K

Plij ŷ
luiv̂j +

∑
2|l|+|i|+|j|>3

Plij ŷ
luiv̂j ,
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we get

‖XP−R‖ηr;D(s−5ρ,ηr)×Π 6 c · ε
(
η +

e−Kρ

η2

)
. (3.23)

By (3.9) and (3.23), we have

‖XP+‖ηr;D(s−5ρ,ηr)×Π+ ≤ c · ε
(
η +

e−Kρ

η2

)
+

cε2

η2α2ν̄ρ2ν

≤ cηε = cα2νρ2νE4

≤ α2ν̄
+ ρ2ν

+ E3
+.

Setting ε+ = α2ν̄
+ ρ2ν

+ E3
+, so we arrive at

‖XP+‖r+;D(s+,r+)×Π+ ≤ ε+,
Given the choice of α+, for ξ ∈ Π+ and 0 6= k ≤ K, we have

|〈k, ω+(ξ)〉 − 2πw|
> |〈k, ω(ξ)〉+ 2πw| − |〈k, ω+(ξ)− ω(ξ)〉|

≥ 2
(2 + |k|)τ

[α− (2 +K)τ+1ε].

Similarly, for sufficiently large K we have

|〈k, ω+(ξ)〉+ s1θ+i(ξ) + s1θ+j(ξ)− 2πw| > 2
(2 + |k|)τ

[α− (2 +K)τ+1ε],

with 0 < |s1| + |s2| 6 2, sd ∈ Z, (d = 1, 2), ξ ∈ Π+ and 0 6= k ≤ K In view of
α+ = α− (2 +K)τ+1ε, we have

|〈ω+(ξ), k〉 − s1θ+i(ξ)− s2θ+j(ξ)− 2πw| > 2α+

(2 + |k|)τ
,

where ξ ∈ Π+ for all k ∈ Zn (0 < |k| ≤ K+), 0 6 |s1| + |s2| 6 2, and sd ∈ Z
(d = 1, 2).

Given the choice of T+, we suppose that h+ ≤ 5
6h For ξ ∈ Π+

h+
, it follows the

Cauchy estimate that

|∂(ω+(ξ)− ω(ξ))/∂ξ|h+ ≤
|ω+(ξ)− ω(ξ)|h

h− h+
≤ 6ε

h
.

Letting T+ = T + 6ε
h and h+ = α+

T+(2+K+)τ+1 , we obtain

max
ξ∈Πh+

|∂ω+/∂ξ| 6 max
ξ∈Πh+

|∂(ω+ − ω(ξ))/∂ξ|+ max
ξ∈Πh+

|∂ω/∂ξ| ≤ T+,

and
max
ξ∈Πh+

|∂θ+/∂ξ| ≤ T+.

3.2. Iteration. Set

s0 = s, ρ0 = (1− σ)s/10, r0 = r, α0 = α,

η0 = E0, ε0 = α2ν̄
0 ρ2ν

0 E0η
2
0 ,

e−K0ρ0

η2
0

= E0.

Let

ω0(ξ) = ω(ξ), θ0(ξ) =
(
θ01(ξ), θ02(ξ), . . . , θ0m(ξ)

)
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Π0 =
{
ξ ∈ Π : |〈ω0(ξ), k〉 − s1θ0i(ξ)− s2θ0j(ξ)− 2πw| > 2α

(1 + |k|)τ
,

k ∈ Zn, 0 < |k| ≤ K0, 0 6 |s1|+ |s2| 6 2, sd ∈ Z, d = 1, 2
}
.

Let

T0 = T = max
ξ∈Πh

{
|∂ω(ξ)
∂ξ
|, |∂θ(ξ)

∂ξ
|
}
, h0 =

α0

(2 +K0)τ+1T0
.

Assume that ρj , sj , rj , Ej , αj , Tj are well-defined for the j-th step. Then we define
ηj ,Kj , εj , hj as follows:

ηj = Ej , εj = α2ν̄
j ρ

2ν
j Ejη

2
j , (3.24)

e−Kjρj

η2
j

= Ej , hj =
αj

(1 +K)τ+1
j Tj

. (3.25)

Define the inductive sequences:

ρj+1 = σρj , sj+1 = sj − 5ρ, rj+1 = ηjrj , (3.26)

αj+1 = αj − (1 +Kj)τ+1εj , Ej+1 = cE
4
3
j , Tj+1 = Tj +

6εj
dj
. (3.27)

Let

Πj+1 =
{
ξ ∈ Πj : |〈ωj+1(ξ), k〉 − s1θj+1i(ξ)− s2θj+1z(ξ)− 2πw| > 2αj+1

(|k|+ 2)τ
,

Kj < |k| ≤ Kj+1, 0 6 |s1|+ |s2| 6 2, sd ∈ Z, d = 1, 2
}

and
Πj+1hj+1

=
{
ξ ∈ Cn : dist(ξ,Πj+1) 6 hj+1

}
.

The proofs of the following two Lemmas are similar to the idea described in
[20, 29]. To make the paper self-contained, we present our proofs in the Appendix.

Lemma 3.2. In view of definitions of parameters in (3.24)-(3.27), we have

hj+1 ≤
5
6
hj , max

ξ∈Πhj+1

{∣∣∂ωj+1(ξ)
∂ξ

∣∣, ∣∣∂θj+1(ξ)
∂ξ

∣∣} ≤ Tj+1, (3.28)

T0 ≤ Tj ≤ T0 + 1,
1
2
αj ≤ αj+1 ≤ αj . (3.29)

Remark 3.3. By the KAM iteration theory and Lemma 3.2, the KAM step can
iterate infinitely times.

We now provide some useful estimates on the Gevrey-smoothness and conver-
gence of the iteration. Let

Dβ
j =

cαν̄j−1ρ
ν
j−1E

3
j−1β!

h
|β!|
j

and Jβj =
cεj−1β!

h
|β!|
j

. (3.30)

Then a straightforward calculation can lead to the following result.

Lemma 3.4. If Dβ
j and Jβj are defined by (3.30), then

Dβ
j ≤ cρ

ν
jM
|β|β!µE

9
4(n+1)
j ,

Jβj ≤ cρ
2ν
j M

|β|β!µE
9

4(n+1)
j ,

where M = 2T+1
α [ 4(µ−1)(n+1)

3 ]µ−1, µ = τ + δ and c only depends on n, α and µ.
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Using the generating functions 〈p, q+〉+Fj(p, q+) to define {Ψj(·; ξ)}, the Cauchy
estimate gives

‖Ψj − id‖rj ;D(sj−3ρj ,rj)×Πhj
≤ cεj
αν̄j ρ

ν
j

, ‖DΨj − Id‖rj ;D(sj−3ρj ,rj)×Πhj
≤ cεj

αν̄j ρ
ν+1
j

.

Let Ψj = Ψ1◦Ψ2◦· · ·◦Ψj . Then we have {Φj+1(·; ξ) = (Ψj)−1◦Φj ◦Ψj}, generated
by Hj+1(·; ξ) = Nj+1 + Pj+1, where

Nj+1 = 〈x+ ωj+1(ξ), ŷ〉+ 〈Aj+1u, v̂〉+
1
2
〈Bj+1u, u〉+

1
2
〈Cj+1v̂, v̂〉

with

|ωj+1 − ωj | ≤ εj , |θj+1 − θj | ≤ cεj , ∀j > 1,

‖XPj+1‖rj+1;D(sj+1,rj+1)×Πhj+1
≤ εj+1.

3.3. Convergence of the KAM iteration. Following [29, 30, 31], we have

‖Ψj −Ψj−1‖rj ;D(sj−3ρj ,rj)×Πhj
≤ cαν̄j−1ρ

ν
j−1E

3
j−1,

‖D(Ψj −Ψj−1)‖rj ;D(sj−3ρj ,rj)×Πhj
≤ αν̄j−1ρ

ν+1
j−1E

3
j−1.

By the Cauchy estimate and Lemma 3.4, we have

‖∂βξ (Ψj −Ψj−1)‖rj ;D(sj−3ρj ,rj)×Πj ≤ ρ
ν
jM
|β|β!µE

9
4(n+1)
j ,

‖∂βξD(Ψj −Ψj−1)‖rj ;D(sj−3ρj ,rj)×Πj ≤ ρ
ν
jM
|β|β!µE

9
4(n+1)
j ,

‖∂βξ (ωj − ωj−1)‖Πj ≤ ρ2ν
j M

|β|β!µE
9

4(n+1)
j ,

‖∂βξ (θj − θj−1)‖Πj ≤ ρ2ν
j M

|β|β!µE
9

4(n+1)
j .

Since sj → s/2, rj → 0, and hj → 0 as j →∞, we define

D∗ = D(
s

2
, 0), Π∗ = ∩j≥0Πj and Ψ∗ = lim

j→∞
Ψj .

So we have ∂βξ Ψj → ∂βξ Ψ∗ on D( s2 ,
r
2 ) and

‖∂βξ (Ψ∗ − id)‖ r
2 ;D( s2 ,

r
2 )×Π∗ ≤ cρ

ν
0M
|β|β!µE

9
4(n+1)
0

for β ∈ Z+
n . Thus, we arrive at (2.5).

Let ω∗ = limj→∞ ωj and θ∗ = limj→∞ θj We then have

|∂βξ (ω∗(ξ)− ω(ξ))|Π∗ ≤ cρ2ν
0 M |β|β!µE

9
4(n+1)
0 ,

|∂βξ (θ∗(ξ)− θ(ξ))|Π∗ ≤ cρ2ν
0 M |β|β!µE

9
4(n+1)
0

for all β ∈ Z+
n . Thus, we arrive at the desired result (2.6) and (2.7) Moreover, we

have
|〈ω∗(ξ), k〉 − s1θ∗i(ξ)− s2θ∗j(ξ)− 2πw| ≥ α∗

(2 + |k|)τ
,

where ξ ∈ Π∗, 0 6= k ∈ Zn, 0 6 |s1| + |s2| 6 2, sd ∈ Z (d = 1, 2), α∗ = limj→∞ αj
with α0

2 < α∗ < α0 This implies that (2.8) holds.
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3.4. Estimate of measure. We consider the measure of the subset Π∗ such that
the small divisor conditions (2.2)-(2.4) hold for all ωj , θj , αj and j ≥ 1

Recalling (2.1), we know that the frequency ωj(ξ) satisfies (2.1). Thus, we can
follow the same approach as in [28, 29] to obtain the estimate for Π∗. Here we omit
the details.

4. Appendix

Proof of Lemma 3.2. From the definitions of Ej and ρj , we have Ej ≤ (cE0)(4/3)j

Letting xj = Kjρj = − lnE3
j , we have

Kj+1

Kj
=

1
2

ln c
lnEj

+
4

3σ
.

Let E0 be small enough such that

− ln c
lnEj

≤ (1− σ)
4
3
.

Then we get
4
3
≤ Kj+1

Kj
≤ 4

3ρ
.

Moreover, for a sufficiently small E0, we have that 24 < Kj < Kj+1 Then we have

hj+1

hj
=
αj+1

αj
· Tj
Tj+1

· (2 +Kj)τ

(2 +Kj+1)τ
≤ 5

6
.

Clearly, hj+1 ≤ 5
6hj and so the assumption h+ ≤ 5

6h holds. Suppose that

max
ξ∈Πhj

{∣∣∂ωj(ξ)
∂ξ

∣∣, ∣∣∂θj(ξ)
∂ξ

∣∣} ≤ Tj .
From (3.27), we know that Tj+1 = Tj + 6εj

dj
. Since hj+1 ≤ 5

6hj and |ωj+1−ωj | 6 ε,
we have

|∂ωj+1

∂ξ
| = |∂(ωj+1 − ωj + ωj)

∂ξ
|

≤ |∂(ωj+1 − ωj)
∂ξ

|+ |∂ωj
∂ξ
| ≤ Tj+1

and similarly,

|∂θj+1

∂ξ
| 6 Tj+1.

Consequently, by mathematical induction we obtain the desired result (3.28).
From the definitions of Tj , hj and εj , we have

Tj+1 = Tj +
6εj
dj

= T0 +
j∑
i=0

6εi
hi

= T0 + 6
j∑
i=0

(xi)2νe−xiTi.
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Let E0 be sufficiently small such that
j∑
i=0

(xi)2νe−xiTi ≤
1
6
,

then we have T0 ≤ Tj ≤ T0 + 1.
Note that α2ν̄

j 6 αj and (2 +Kj)τ+1 6 (3Kj)2ν . Then we have

α2ν̄
j ρ

2ν
j (2 +Kj)2νE3

j 6 αj(3ρjKj)2νE3
j 6 αj(3xj)

2νe−xj ,

αj+1 = αj − (2 +Kj)τ+1εj > αj
(
1− (3xj)2νe−xj

)
.

If E0 is sufficiently small, then it gives
∞∏
j=1

(1− (3xj)2νe−xj ) = 1−O(x−1
0 ) >

1
2
.

Thus, we obtain
1
2
αj ≤ αj+1 ≤ αj .

�

Proof of Lemma 3.4. By the choices of parameters, we have

ρj+1x
δ
τ+1
j+1 = ρj+1K

δ
τ+1
j+1 ρ

δ
τ+1
j+1

>
(4

3

) δ
τ+1

σ
δ+τ+1
τ+1 ρjρ

δ
τ+1
j K

δ
τ+1
j

=
(4

3

) δ
τ+1

σ
δ+τ+1
τ+1 ρjx

δ
τ+1
j .

Choosing σ = ( 3
4 )

δ
δ+σ+1 , we get

(
4
3

) δ
τ+1 σ

δ+τ+1
τ+1 > 1 Since ρ0x

δ
τ+1
0 ≥ 1, we have

ρjx
δ
τ+1
j ≥ 1 for all j > 1, and hence 1

ρj
≤ x

δ
τ+1
j So we have

Kj =
xj
ρj
≤ x1+ δ

τ+1
j ,

which implies that Kτ+1
j ≤ xτ+1+δ

j In view of hj = αj

(K+2)τ+1
j Tj

, Tj < T+1, 1
2α ≤ αj

and Ej−1 = E
3
4
j = e−

xj
4 , we have

Dβ
j ≤ cα

ν̄ρνjβ!
(T + 1

α
2

)|β| (
xτ+1+δ
j

)|β|
e−3xj/4

≤ cρνj
(2(T + 1)

α

)|β|
β!e−

3xj
4

1
n+1

[
xβ1
j e
−

3xj
4

1
(τ+δ)(n+1) . . . xβnj e−

3xj
4

1
(τ+δ)(n+1)

]τ+δ

≤ cρνjM |β|β!µE
9

4(n+1)
j ,

where M = 2T+1
α [ 4(µ−1)(n+1)

3 ]µ−1, µ = τ + δ and c only depends on n, α and µ.
In an analogous manner, we can derive

Jβj ≤ cρ
2ν
j M

|β|β!µE
9

4(n+1)
j .

�
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[18] J. Pöschel; Integrability of Hamiltonian systems on Cantor sets, Communications on Pure
and Applied Mathematics, 35(1982), 653-696.
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