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Abstract. This article concerns the Klein-Gordon-Maxwell type system when

the nonlinearity has a quasicritical growth at infinity, involving zero mass

potential, that is, V (x) → 0, as |x| → ∞. The interaction of the behavior of
the potential and nonlinearity recover the lack of the compactness of Sobolev

embedding in whole space. The positive ground state solution is obtained by

proving that the solution satisfies Mountain Pass level.

1. Introduction

This article concerns the existence of nontrivial solution to the Klein-Gordon-
Maxwell system

−∆u+ V (x)u− (2ω + φ)φu = K(x)f(u), in R3,

∆φ = (ω + φ)u2, in R3,
(1.1)

where u ∈ H1(R3) := H, ω > 0 is a parameter, and we assume that V,K :
R3 → R and f : R → R are continuous functions, with V,K nonnegative and f
having a quasicritical growth at infinity. We will treat problem (1.1) with zero mass
potential, that is, V (x)→ 0, as |x| → ∞. Problems involving zero mass potential,
with φ = 0, have been studied by several researchers, and extended or improved in
several ways; see for instance [1, 2, 3, 6, 9, 14, 15, 16, 23, 26] and reference therein.
In all these papers above, there are restrictions on V and K to get some compact
embedding into a weighted Lp space.

In a remarkable work, Benci and Fortunato in [11] considered problem (1.1),
with V (x) = m2

0 − ω2, as a model describing nonlinear Klein-Gordon fields in R3

interacting with the electromagnetic field. Thus the solution represents a solitary
wave of the type Φ(x, t) = u(x)eiωt in equilibrium with a purely electrostatic field
E = −∇φ(x). There are a lot of works devoted to system (1.1), and we would like to
cite some of them. Benci and Fortunato [12] proved the existence of infinitely many
radially symmetric solutions when m0 > ω and K(x)f(u) = |u|p−2u, 4 < p < 6.
D’Aprile and Mugnai [21, 22] covered the case 2 < p ≤ 4 and established some
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non-existence results for p > 6. For the critical nonlinearity K(x)f(u) = |u|p−2u,
with p = 6, Cassani [19] obtained a non-existence result for the above system, and
he showed the existence of radially symmetric solution when 4 < p < 6 or p = 4.
In the critical case, radially symmetric solutions for this system were studied in
[17, 18, 21, 28] and references therein. With respect to the existence of a ground
state solution, that is, a couple (u, φ) which solves (1.1) and minimize the action
functional associated to (1.1) among all possible nontrivial solutions, we mention
[7, 8, 18, 27] and theirs references. In [24, 25] were considered (1.1) systems imposing
a coercivity condition, as that in [10], to recover the lack of compactness of the
Sobolev space embedding.

The interest in this kind of problem is twofold: on the one hand the vast range
of applications, and on the other hand the mathematical challenge of solving a
nonlocal problem and zero mass potential.

First of all, we would like to study the case in which V is bounded and then, in
Section 5, we treat problem (1.1) with zero mass potential, that is, when V (x)→ 0,
as |x| → ∞.

We will work with the following assumptions:
(A1) V,K : R3 → R are smooth functions, K ∈ L∞(R3) and there are constants

ξ0, a1, a2, V0 > 0 such that

0 < V0 ≤ V (x) ≤ a1, ∀x ∈ R3 (1.2)

and if 2 < θ < 4, then

0 <
2(4− θ)
θ − 2

≤ V0, ∀x ∈ R3 ; (1.3)

also
0 < K(x) ≤ a2

1 + |x|ξ0
, ∀x ∈ R3. (1.4)

(A2) If {An} ⊂ R3 is a sequence of Borel sets such that the Lebesgue measure
of An is bounded uniformly, that is, µ(An) ≤ R, for all n and some R > 0,
then

lim
r→+∞

∫
An

T
Bc

r(0)

K(x) dx = 0, uniformly for n ∈ N. (1.5)

(A3) (behavior at zero) lim sups→0+ f(s)/s = 0,
(A3’) (behavior at zero) there is a constant p ∈ (2, 6) such that lim sups→0+

f(s)
sp−1 <

+∞,
(A4) (quasicritical growth) lim sups→+∞ f(s)/s5 = 0,
(A5) (Ambrosetti-Rabinowitz) there exists θ > 4, such that 0 < θF (u) ≤ f(u)u

for all u > 0, where F (u) =
∫ u

0
f(s) ds.

Remark 1.1. From (1.2), (1.4) and p ∈ (2, 6), we have
K(x)

[V (x)](6−p/4
→ 0, as |x| → +∞. (1.6)

Our main results are as follows.

Theorem 1.2. Suppose that (A1)–(A5) hold. Then problem (1.1) possess a positive
ground state solution.

Theorem 1.3. Suppose that (A1), (A2), (A3’), (A4), (A5) hold. Then problem
(1.1) possess a positive ground state solution.
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Let us briefly sketch the contents of this article. In the next section we present
some preliminaries. In Section 3, we prove the boundedness of the Cerami sequence
and in the Section 4, we prove of the main results. In the Section 5, we analyze the
case when V (x)→ 0, as |x| → ∞.

2. Preliminary results

By the reduction method described in [13], the Euler-Lagrange functional asso-
ciated with the system (1.1), J : H ≡ H1(R3)→ R, is

J(u) =
1
2
‖u‖2 − 1

2

∫
R3
ωφuu

2 dx−
∫

R3
K(x)F (u) dx,

where F (u) =
∫ u

0
f(s) ds. From the conditions on f and by standard arguments,

the functional J ∈ C1(H,R) has Frechet derivative

J ′(u)v =
∫

R3
(∇u∇v + V (x)uv) dx−

∫
R3

(2ω + φu)φuuv dx−
∫

R3
K(x)f(u)v dx,

for all v ∈ H. The norm in H given by

‖u‖2 =
∫

R3
(|∇u|2 + V (x)u2)dx

is equivalent to the usual norm in H. The induced inner product is

〈u, v〉 :=
∫

R3
(∇u∇v + V (x)uv) dx,

We recall that the critical points of functional J are precisely the weak solutions of
(1.1). We also assume that f(s) = 0 for all s ∈ (−∞, 0].

A fundamental tool in our analysis will be the following Lemma.

Lemma 2.1. For every u ∈ H, there exists a unique φu ∈ D1,2(R3) which solves

∆φ = (ω + φ)u2. (2.1)

Furthermore, in the set {x : u(x) 6= 0} we have −ω ≤ φu ≤ 0 if ω > 0.

For a proof of the above lemma, see [22, Proposition 2.1]. From assumption
(A3) and (A4) [or (A3’) and (A4)] and combining with Lemma 2.1 follows that the
functional J satisfies the geometric conditions of the Mountain Pass Theorem of
Ambrosetti and Rabinowitz in [5]. So, there is a sequence (un) ⊂ H such that

J(un)→ c and (1 + ‖un‖)‖J ′(un)‖ → 0, n→∞, (2.2)

where
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t))

is the Mountain Pass level, with

Γ = {γ ∈ C([0, 1], H1(R3)); γ(0) = 0, J(γ(1)) ≤ 0}.
The second result in this section is the following Hardy-type inequality.

Lemma 2.2. Suppose that (A1)–(A4) or (A1), (A3), (A4) hold. Then, H is com-
pactly embedded into

Γq(R3) := {ϕ : R3 → R;ϕ is measurable and
∫

R3
K(x)|ϕ|q dx <∞},

for all q ∈ (2, 6).
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Proof. Consider (A1), (A3) and (A4); thus fixed q ∈ (2, 6) and given ε > 0, there
are 0 < s0 < s1 and C > 0 such that

K(x)|s|q ≤ εC(V (x)|s|2 + |s|6) + CK(x)X[s0,s1](|s|)|s|6, ∀s ∈ R. (2.3)

Hence, ∫
Bc

r(0)

K(x)|u|q dx ≤ εCQ(u) + C

∫
A∩Bc

r(0)

K(x) dx, ∀u ∈ H (2.4)

where

Q(u) =
∫

R3
V (x)|u|2 dx+

∫
R3
|u|6 dx,

A = {x ∈ R3 : s0 ≤ |u(x)| ≤ s1}.

If (vn) is a sequence such that vn ⇀ v weakly in H, as n → ∞, there is some
constant M1 > 0 such that

‖vn‖2 =
∫

R3
(|∇vn|2 + V (x)|vn|2) dx ≤M1,

∫
R3
|vn|6 dx ≤M1, ∀n ∈ N,

implying that (Q(vn)) is bounded. On the other hand, setting

An = {x ∈ R3 : s0 ≤ |vn(x)| ≤ s1},
the above inequality implies

s6
0µ(An) ≤

∫
An

|vn|6 dx ≤M1, ∀n ∈ N,

showing that supn∈N µ(An) < +∞. Therefore, from (II), there is a r > 0 such that∫
An∩Bc

r(0)

K(x) dx <
ε

s6
1

, ∀n ∈ N. (2.5)

Now, (2.4) and (2.5) lead to∫
Bc

r(0)

K(x)|vn|q dx ≤ εCM1 + s6
1

∫
An∩Bc

r(0)

K(x) dx < (CM1 + 1)ε, ∀n ∈ N.

(2.6)
Since q ∈ (2, 6) and K is a continuous function, from the Sobolev embeddings it

follows that
lim

n→+∞

∫
Br(0)

K(x)|vn|q dx =
∫
Br(0)

K(x)|v|q dx. (2.7)

In light of (2.6)and(2.7), we have

lim
n→+∞

∫
R3
K(x)|vn|q dx =

∫
R3
K(x)|v|q dx. (2.8)

This means that

vn → v, in Γq(R3), n→∞, ∀q ∈ (2, 6).

Now, we fix x ∈ R3 and ∀s > 0 there is a constant C = C(p) such that

CV (x)
6−p
4 ≤ V (x)s2−p + s6−p;

it follows from the fact that the function

h(s) = V (x)s2−p + s6−p, s > 0,

has the minimum value CV (x)
6−p
4 .
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Using (A1), (A3’) and (A4),and choosing ε ∈ (0, C) for some C > 0 we infer that

K(x)|s|p ≤ ε(V (x)|s|2 + |s|6), ∀s ∈ R, |x| ≥ r.
Consequently, for all u ∈ H we have∫

Bc
r(0)

K(x)|s|p dx ≤
∫
Bc

r(0)

ε(V (x)|s|2 + |s|6) dx.

If (vn) is a sequence such that vn ⇀ v weakly in H, as n → ∞, there is M2 > 0
such that ∫

Bc
r(0)

K(x)|vn|q dx ≤ 2εM2. (2.9)

Since q ∈ (2, 6) and K is a continuous function, it follows from the Sobolev embed-
dings

lim
n→+∞

∫
Br(0)

K(x)|vn|q dx =
∫
Br(0)

K(x)|v|q dx. (2.10)

From (2.9) and (2.10), we obtain

lim
n→+∞

∫
R3
K(x)|vn|q dx =

∫
R3
K(x)|v|q dx.

implying that
vn → v in Γq(R3), n→∞, ∀q ∈ (2, 6).

�

Lemma 2.3. Suppose that (A1)–(A4) are satisfied, and consider a sequence (vn)
in H such that vn ⇀ v weakly in H, as n→∞. Then

lim
n→+∞

∫
R3
K(x)f(vn)vn dx =

∫
R3
K(x)f(v)v dx.

Proof. Assuming (A1), (A3) and (A4), for a fixed q ∈ (2, 6) and ε > 0, there is
C > 0 such that

|K(x)f(s)s| ≤ εC(V (x)|s|2 + |s|6) +K(x)|s|q, ∀s ∈ R. (2.11)

From Lemma 2.2, we have∫
R3
K(x)|vn|q dx→

∫
R3
K(x)|v|q dx,

then there exists r > 0 such that∫
Bc

r(0)

K(x)|vn|q dx < ε, ∀n ∈ N. (2.12)

Since (vn) is bounded in H, there exists M3 > 0 such that∫
R3
V (x)|vn|2 dx ≤M3 and

∫
R3
V (x)|vn|6 dx ≤M3.

Combining the last two inequalities with (2.11) and (2.12), we obtain∣∣ ∫
Bc

r(0)

K(x)f(vn)vn dx
∣∣ < (2CM3 + 1)ε, ∀n ∈ N.

To complete the proof we need to show that

lim
n→+∞

∫
Br(0)

K(x)f(vn)vn dx =
∫
Br(0)

K(x)f(v)v dx.
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However, this limit is obtained by using hypothesis (A4) and arguing as in [20],
setting

P (x, s) = K(x)f(s)s, Q(x, un(x)) = |un(x)|6.
�

Lemma 2.4. Suppose that f satisfies (A1), (A3’), (A4), and consider a sequence
(vn) in H such that vn ⇀ v weakly in H, as n→∞. Then

lim
n→+∞

∫
R3
K(x)f(vn)vn dx =

∫
R3
K(x)f(v)v dx.

Proof. Using the Lemma 2.2, for r > 0 sufficiently small, arguing as in (2.11) we
infer that

K(x) ≤ ε(V (x)|s|2−p + |s|6−p), ∀|x| ≥ r.
The rest of the proof follows similarly to the proof of Lemma 2.3. �

3. Boundedness of Cerami sequence

Lemma 3.1. The Cerami sequence (un) ⊂ H given in (2.2) is bounded.

Proof. We have a positive constant M such that

M + on(1)‖un‖ ≥ θJ(un)− J ′(un)un (3.1)

for 2 < q < 6. From (A1), (A5) and Lemma 2.1 the Cerami sequence (un) is such
that

θJ(un)− J ′(un)un =
(θ − 2

2
)
‖un‖2 +

(−θ + 4
2

) ∫
R3
ωφun

u2
n dx+

∫
R3
φ2
un
u2
n dx

+
∫

R3
K(x)(f(un)un − θF (un)) dx

≥
(θ − 2

2
)
‖un‖2, if θ > 4.

Similarly, if 2 < θ < 4 we use the hypothesis

0 <
2(4− θ)
θ − 2

≤ V0 ≤ V (x),

and Lemma 2.1 to obtain
θJ(un)− J ′(un)un

≥
(θ − 2

2
) ∫

R3
|∇un|2 dx+

(θ − 2
2
) ∫

R3
V (x)u2

n dx+ ω
(−θ + 4

2
) ∫

R3
φun

u2
n dx

≥
(θ − 2

2
) ∫

R3
|∇un|2 dx+

(θ − 2
2
) ∫

R3
V0u

2
n dx+ ω

(−θ + 4
2

) ∫
R3
φun

u2
n dx

≥
(θ − 2

2
) ∫

R3
|∇un|2 dx+

(θ − 2
2
) ∫

R3
V0u

2
n dx+ ω2

(θ − 4
2
) ∫

R3
u2
n dx

=
(θ − 2

2
) ∫

R3
|∇un|2 dx+

[ (θ − 2)V0 + (θ − 4)ω2

2
] ∫

R3
u2
n dx

≥ C‖un‖2.
(3.2)

In light of (3.1) and (3.2) we conclude that (un) is bounded. �
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Lemma 3.2. If un ⇀ u weakly in H, as n→∞, then passing to a subsequence if
necessary, φun ⇀ φu weakly in D1,2(R3), as n→∞.

Proof. Consider (un), u ∈ H such that un ⇀ u weakly in H, as n→∞. It follows
that

un ⇀ u weakly in Lp(R3), as n→∞, 2 ≤ p ≤ 6,

un → u in Lploc(R3), as n→∞, 2 ≤ p < 6.

From Lemma 2.1, note that for all n ≥ 1 we have

‖φun‖2D1,2(R3) = −
∫

R3
ωφunu

2
n dx−

∫
R3
φ2
un
u2
n dx

≤ −
∫

R3
ωφunu

2
n dx ≤ C‖φun‖D1,2(R3)‖un‖212

5
.

It means that (φun
) is bounded in D1,2(R3). Since D1,2(R3) is a Hilbert space,

there is a ξ ∈ D1,2(R3) such that

φun
⇀ ξ weakly in Lp(R3), as n→∞, 2 ≤ p ≤ 6,

φun
→ ξ in Lploc(R3), as n→∞, 2 ≤ p < 6.

We desire to prove the following equality φu = ξ. For this, it is necessary to show,
in the sense of distributions,

∆ξ = (ω + ξ)u2

and use the uniqueness of the solution given in Lemma 2.1.
Consider a test function ψ ∈ C∞0 (R3). We know by Lemma 2.1 we have

∆φun
= (ω + φun

)u2
n.

Then we just need to see how each term of the equality above converges. To verify
that ∫

R3
∇φun

∇ψ dx→
∫

R3
∇ξ∇ψ dx, as n→∞,∫

R3
φun

u2
nψ dx→

∫
R3
ξu2ψ dx, as n→∞,

it is sufficient to note that it is a consequence of the definition the weak convergence.
By the strong convergence in Lploc(R3), 2 ≤ p < 6, we obtain∫

R3
u2
nψ dx→

∫
R3
u2ψ dx, as n→∞.

We consider a test function ϕ ∈ C∞0 (R3). Using boundedness of (φun), the
strong convergences in Lploc(R3), 2 ≤ p < 6 and the Sobolev embeddings follows
that as n→ +∞, we have∫

R3
(φunun − ξu)ϕdx =

∫
R3
φun(un − u)ϕdx+

∫
R3
u(φun − ξ)ϕdx

≤ C‖φun
‖D1,2(R3)

(∫
R3
|un − u|6/5|ϕ|6/5 dx

)5/6

+
∫

R3
(φun

− ξ)uϕdx→ 0, as n→∞→ +∞.
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For the same reasons, it follows that∫
R3

(φ2
un
un − ξ2u)ϕdx =

∫
R3
φ2
un

(un − u)ϕdx+
∫

R3
u(φ2

un
− ξ2)ϕdx

≤ C‖φun
‖D1,2(R3)

(∫
R3
|un − u|3/2|ϕ|3/2 dx

)2/3

+
∫

R3
(φ2
un
− ξ2)uϕdx→ 0, as n→ +∞.

From density, for all ϕ ∈ H we infer that∫
R3

(∇un∇ϕ+ V (x)unϕ) dx→
∫

RN

(∇u∇ϕ+ V (x)uϕ) dx,∫
R3

(2ω + φun
)φun

unϕdx→
∫

R3
(2ω + ξ)ξuϕ dx,

as n→ +∞, thus we prove the lemma. �

4. Proof of the main results

Proof of Theorem 1.2. Let (un) be a Cerami sequence as given in (2.2). From
Lemma 3.1 follows that (un) is bounded and, up to subsequence, we can assume
that there is u ∈ H, such that

un ⇀ u, weakly in H, as n→∞.
We will show that un → u, as n→ +∞. From Lemma 2.3, we have

lim
n→+∞

∫
R3
K(x)f(un)un dx =

∫
R3
K(x)f(u)u dx.

On the other hand, we know that

J ′(u)v =
∫

R3
(∇u.∇v + V (x)uv) dx−

∫
R3

(2ω + φu)φuuv dx−
∫

R3
K(x)f(u)v dx.

Since J ′(un)un = on(1), we get

lim
n→+∞

‖un‖2 = lim
n→+∞

[ ∫
R3

(2ω + φun)φunu
2
n dx+

∫
R3
K(x)f(un)un dx

]
. (4.1)

By Lemma 2.3, we have

lim
n→+∞

∫
R3
K(x)f(un)u dx =

∫
R3
K(x)f(u)u dx

and from Lemma 3.2, we obtain that

lim
n→∞

∫
R3

(2ω + φun)φunu
2
n dx =

∫
R3

(2ω + ξ)ξu2 dx.

Then
lim

n→+∞
‖un‖2 =

∫
R3

(2ω + ξ)ξu2 dx+
∫

R3
K(x)f(u)u dx. (4.2)

Moreover, since J ′(un)u = on(1), we have

‖u‖2 =
∫

R3
(2ω + ξ)ξu2 dx+

∫
R3
K(x)f(u)u dx. (4.3)

Therefore, from (4.2) and (4.3), we obtain limn→+∞ ‖un‖2 = ‖u‖2, showing that

un → u, in H, as n→∞.



EJDE-2017/154 POSITIVE GROUND STATE SOLUTIONS FOR KGM SYSTEMS 9

Consequently,
J(u) = c and J ′(u) = 0,

implying that u is a ground state solution for J . Since un ≥ 0, we have that u ≥ 0.
The positivity of u follows by using the maximum principle. �

Proof of Theorem 1.3. It is similar to that of Theorem 1.2. However using the
Lemma 2.4 instead of Lemma 2.3. We omit the proof here. �

5. Case V (x)→ 0, as |x| → ∞

In this section, we study the problem (1.1), inspired by [4], replacing the hy-
pothesis (A1) by

(A1’) V,K : R3 → R are smooth functions, K ∈ L∞(R3) and there are constant
τ, ξ1, a1, a2, a3 > 0, such that

a1

1 + |x|τ
≤ V (x) ≤ a2 and 0 < K(x) ≤ a3

1 + |x|ξ1
, ∀x ∈ R3. (5.1)

with τ, ξ1 satisfying

5− 4ξ1
τ

< p, if 0 < ξ1 < τ, or 1 < p, if ξ1 ≥ τ .

Also we assume that K
V ∈ L

∞(R3).
In this case, the norm for H is

‖u‖2V =
∫

R3
(|∇u|2 + V (x)u2) dx

whose induced inner product is

〈u, v〉V =
∫

R3
(∇u∇v + V (x)uv) dx.

Remark 5.1. At this moment, it is important to observe that (1.5) is weaker than
any one of the following conditions:

(a) there are r ≥ 1 and ρ ≥ 0 such that K ∈ Lr(R3 \Bρ(0));
(b) K(x)→ 0 as |x| → ∞;
(c) K = H1 +H2, with H1 and H2 verifying (a) and (b) respectively.

In this section, all the past results achieved follow naturally by using the hypoth-
esis (A1’) instead of (A1), except of Lemma 3.1. We would like to show another
statement for the boundedness Cerami sequence.

Lemma 5.2. The Cerami sequence (un) ⊂ H given in (2.2) is bounded.

Proof. Once that (J(un)) is bounded and |J ′(un)un| ≤ ‖un‖V for n large enough,
so there are some constant M > 0 and n0 ∈ N such that

J(un)− 1
θ
J ′(un)un ≤M + ‖un‖V , ∀n ≥ n0.

On the other hand, it is certain that un > 0 for each x ∈ R3 and using the
assumption (f2) for θ > 4 combined with Lemma 2.1, we have

J(un)− 1
θ
J ′(un)un ≥

(1
2
− 1
θ

)
‖un‖2V −

1
2

∫
R3
ωφun

u2
n dx+

2ω
θ

∫
R3
φun

u2
n dx

+
1
θ

∫
R3
φ2
un
u2
n dx
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≥
(1

2
− 1
θ

)
‖un‖2V + ω

(4− θ
2θ

) ∫
R3
φun

u2
n dx

≥
(1

2
− 1
θ

)
‖un‖2V ,

which shows that (un) is bounded. �

In this way, we obtained the same results as those presented of Theorems 1.2
and 1.3, using (A1’) instead of (A1).
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