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Abstract. Let X be a real reflexive Banach space and X∗ its dual space.

Let L : X ⊃ D(L) → X∗ be a densely defined linear maximal monotone

operator, and T : X ⊃ D(T ) → 2X∗
, 0 ∈ D(T ) and 0 ∈ T (0), be strongly

quasibounded maximal monotone and positively homogeneous of degree 1.

Also, let C : X ⊃ D(C)→ X∗ be bounded, demicontinuous and of type (S+)

w.r.t. to D(L). The existence of nonzero solutions of Lx + Tx + Cx 3 0 is

established in the set G1 \ G2, where G2 ⊂ G1 with G2 ⊂ G1, G1, G2 are

open sets in X, 0 ∈ G2, and G1 is bounded. In the special case when L = 0, a
mapping G : G1 → X∗ of class (P ) introduced by Hu and Papageorgiou is also

incorporated and the existence of nonzero solutions of Tx+Cx+Gx 3 0, where
T is only maximal monotone and positively homogeneous of degree α ∈ (0, 1],

is obtained. Applications to elliptic partial differential equations involving

p-Laplacian with p ∈ (1, 2] and time-dependent parabolic partial differential
equations on cylindrical domains are presented.

1. Introduction and preliminaries

Let X be a real reflexive Banach space with its dual space X∗. The norms of
X,X∗ will be denoted by ‖ · ‖X and ‖ · ‖X∗ , respectively. We denote by 〈x∗, x〉
the value of the functional x∗ ∈ X∗ at x ∈ X. The symbols ∂D,

◦
D,D, denote

the strong boundary, interior and closure of the set D, respectively. The symbol
BY (0, R) denotes the open ball of radius R with center at 0 in a Banach space Y .

If {xn} is a sequence in X, we denote its strong convergence to x0 in X by
xn → x0 and its weak convergence to x0 in X by xn ⇀ x0. An operator T :
X ⊃ D(T )→ Y is said to be “bounded” if it maps bounded subsets of the domain
D(T ) onto bounded subsets of Y . The operator T is said to be “compact” if it
maps bounded subsets of D(T ) onto relatively compact subsets in Y . It is said
to be “demicontinuous” if it is strong-weak continuous on D(T ). The symbols R
and R+ denote (−∞,∞) and [0,∞), respectively. The normalized duality mapping
J : X ⊃ D(J)→ 2X

∗
is defined by

Jx = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}, x ∈ X.
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The Hahn-Banach theorem ensures that D(J) = X, and therefore J : X → 2X
∗

is
a multivalued mapping defined on the whole space X.

By a well-known renorming theorem due to Trojanski [27], one can always renorm
the reflexive Banach space X with an equivalent norm with respect to which both
X and X∗ become locally uniformly convex (therefore strictly convex). Henceforth,
we assume that X is a locally uniformly convex reflexive Banach space. With this
setting, the normalized duality mapping J is single-valued homeomorphism from
X onto X∗ and satisfies

J(αx) = αJ(x), (α, x) ∈ R+ ×X.

For a multivalued operator T from X to X∗, we write T : X ⊃ D(T )→ 2X
∗
, where

D(T ) = {x ∈ X : Tx 6= ∅} is the effective domain of T . We denote by Gr(T ) the
graph of T , i.e., Gr(T ) = {(x, y) : x ∈ D(T ), y ∈ Tx}.

An operator T : X ⊃ D(T ) → 2X
∗

is said to be “monotone” if for every x, y ∈
D(T ) and every u ∈ Tx, v ∈ Ty we have

〈u− v, x− y〉 ≥ 0.

A monotone operator T is said to be “maximal monotone” if Gr(T ) is maximal in
X ×X∗, when X ×X∗ is partially ordered by the set inclusion. In our setting, a
monotone operator T is maximal if and only if R(T + λJ) = X∗ for all λ ∈ (0,∞).
If T is maximal monotone, then the operator Tt ≡ (T−1 +tJ−1)−1 : X → X∗ called
the Yosida approximant is bounded, demicontinuous, maximal monotone and such
that Ttx ⇀ T {0}x as t→ 0+ for every x ∈ D(T ), where T {0}x denotes the element
y∗ ∈ Tx of minimum norm, i.e., ‖T {0}x‖ = inf{‖y∗‖ : y∗ ∈ Tx}. In our setting,
this infimum is always attained and D(T {0}) = D(T ). Also, Ttx ∈ TJtx, where
Jt ≡ I − tJ−1Tt : X → X and satisfies limt→0 Jtx = x for all x ∈ coD(T ), where
coA denotes the convex hull of the set A. In addition, x ∈ D(T ) and t0 > 0 imply
limt→t0 Ttx = Tt0x. The operators Tt, Jt were introduced by Brézis, Crandall and
Pazy in [9]. For their basic properties, we refer the reader to [9] as well as Pascali
and Sburlan [23, pp. 128-130].

We need the following lemmas about maximal monotone operators.

Lemma 1.1 ([28, p. 915]). Let T : X ⊃ D(T )→ 2X
∗

be maximal monotone. Then
the following are true:

(i) {xn} ⊂ D(T ), xn → x0 and Txn 3 yn ⇀ y0 imply x0 ∈ D(T ) and y0 ∈
Tx0.

(ii) {xn} ⊂ D(T ), xn ⇀ x0 and Txn 3 yn → y0 imply x0 ∈ D(T ) and y0 ∈
Tx0.

The next lemma is essentially due to Brézis, Crandall and Pazy [9], and its proof
can be found in [3].

Lemma 1.2. Assume that the operators T : X ⊃ D(T ) → 2X
∗

and S : X ⊃
D(S) → 2X

∗
are maximal monotone, with 0 ∈ D(T ) ∩D(S) and 0 ∈ S(0) ∩ T (0).

Assume, further, that T + S is maximal monotone and that there is a sequence
{tn} ⊂ (0,∞) such that tn ↓ 0, and a sequence {xn} ⊂ D(S) such that xn ⇀ x0 ∈ X
and Ttnxn + w∗n ⇀ y∗0 ∈ X∗, where w∗n ∈ Sxn. Then the following are true.

(i) The inequality

lim
n→∞

〈Ttnxn + w∗n, xn − x0〉 < 0 (1.1)
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is impossible.
(ii) If

lim
n→∞

〈Ttnxn + w∗n, xn − x0〉 = 0, (1.2)

then x0 ∈ D(T + S) and y∗0 ∈ (T + S)x0.

Definition 1.3. An operator T : X ⊃ D(T ) → 2X
∗

is said to be “strongly quasi-
bounded” if for every S > 0 there exists K(S) > 0 such that

‖x‖ ≤ S, and 〈x∗, x〉 ≤ S, for some x∗ ∈ Tx,
imply ‖x∗‖ ≤ K(S).

Browder and Hess have shown in [13] that a monotone operator T with 0 ∈
D̊(T ) is strongly quasibounded. The proof of the following lemma, which is due to
Browder and Hess [13], can also be found in [17, Lemma D].

Lemma 1.4. Let T : X ⊃ D(T ) → 2X
∗

be a strongly quasibounded maximal
monotone operator such that 0 ∈ T (0). Let {tn} ⊂ (0,∞) and {un} ⊂ X be such
that

‖un‖ ≤ S, 〈Ttnun, un〉 ≤ S, for all n,
where S is a positive constant. Then there exists a number K = K(S) > 0 such
that ‖Ttnun‖ ≤ K for all n.

Definition 1.5. An operator G : X ⊃ D(G)→ 2X
∗

is said to belong to class (P )
if it maps bounded sets to relatively compact sets, for every x ∈ D(G), G(x) is
closed and convex subsets of X∗ and G(·) is upper-semicontinuous (usc), i.e., for
every closed set F ⊂ X∗, the set G−(F ) = {x ∈ D(G) : G(x) ∩ F 6= ∅} is closed in
X.

An important fact about a compact-set valued upper-semicontinuous operator
G is that it is closed. Furthermore, for every sequence {[xn, yn]} ⊂ Gr(G) such
that xn → x ∈ D(G), the sequence {yn} has a cluster point in G(x).

Definition 1.6. Let L : X ⊃ D(L) → X∗ be a densely defined linear maximal
monotone operator and C : X ⊃ D(C)→ X∗ be bounded and demicontinuous. We
say that C : X ⊃ D(C)→ X∗ is of type (S+) w.r.t. to D(L) if for every sequence
{xn} ⊂ D(L) ∩D(C) with xn ⇀ x0 in X, Lxn ⇀ Lx0 in X∗ and

lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0,

we have xn → x0 in X. In this case, if L = 0, then C is of class (S+).

Definition 1.7. The family C(t) : X ⊃ D → X∗, t ∈ [0, 1], of operators is said to
be a “homotopy of type (S+) w.r.t. D(L)” if for any sequences {xn} ⊂ D(L) ∩D
with xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗, {tn} ⊂ [0, 1] with tn → t0 and

lim sup
n→∞

〈C(tn)xn, xn − x0〉 ≤ 0,

we have xn → x0 in X,x0 ∈ D and C(tn)xn ⇀ C(t0)x0 in X∗. In this case, if
L = 0, then C(t) is a homotopy of type (S+). A homotopy of type (S+) w.r.t.
D(L) is “bounded” if the set

{C(t)x : t ∈ [0, 1], x ∈ D}
is bounded.
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Let G be an open and bounded subset of X. Let L : X ⊃ D(L)→ X∗ be densely
defined linear maximal monotone, T : X ⊃ D(T ) → 2X

∗
maximal monotone, and

C(s) : X ⊃ G → X∗, s ∈ [0, 1], a bounded homotopy of type (S+) w.r.t. D(L).
Since the graph Gr(L) of L is closed in X × X∗, the space Y = D(L) associated
with the graph norm

‖x‖Y = ‖x‖X + ‖Lx‖X∗ , x ∈ Y,

becomes a real reflexive Banach space. We may now assume that Y and its dual
Y ∗ are locally uniformly convex.

Let j : Y → X be the natural embedding and j∗ : X∗ → Y ∗ its adjoint. Note
that since j : Y → X is continuous, we have D(j∗) = X∗, which implies that
j∗ is also continuous. Since j−1 is not necessarily bounded, we have, in general,
j∗(X∗) 6= Y ∗. Moreover, j−1(G) = G ∩D(L) is closed and j−1(G) = G ∩D(L) is
open, and

j−1(G) ⊂ j−1(G), ∂(j−1(G)) ⊂ j−1(∂G).

We define M : Y → Y ∗ by

(Mx, y) = 〈Ly, J−1(Lx)〉, x, y ∈ D(L).

Here, the duality pair (·, ·) is in Y ∗ × Y and J−1 is the inverse of the duality map
J : X → X∗ and is identified with the duality map from X∗ to X∗∗ = X. Also, for
every x ∈ Y such that Mx ∈ j∗(X∗), we have J−1(Lx) ∈ D(L∗) and

Mx = j∗ ◦ L∗ ◦ J−1(Lx), (1.3)

(Mx−My, x− y) = 〈Lx− Ly, J−1(Lx)− J−1(Ly)〉 ≥ 0 (1.4)

for all y ∈ Y such that My ∈ j∗(X∗).
We now define L̂ : Y → Y ∗ and Ĉ(s) : j−1(G)→ Y ∗ by

L̂ = j∗ ◦ L ◦ j and Ĉ(s) = j∗ ◦ C(s) ◦ j

respectively, and for every t > 0, we also define T̂t : Y → Y ∗ by

T̂t = j∗ ◦ Tt ◦ j,

where Tt is the Yosida approximant of T .
Kartsatos and the author developed a new degree theory in [2] for the triplet L+

T+C, where L is densely defined linear maximal monotone, T is (possibly nonlinear)
maximal monotone and strongly quasibounded, and C is bounded, demicontinuous
and of type (S+) w.r.t. the set D(L). This degree theory extends the degree
theory of Berkovits and Mustonen [8] who considered the case T = 0. As in [8],
the construction of the degree mapping in [2] uses the graph norm topology of the
space Y = D(L) and is based on the Skrypnik degree and its invariance under
homotopies of type (S+). In fact, it is shown that the mapping

H(t, x) := L̂+ T̂t + Ĉ + tMx, (t, x) ∈ (0,∞)× j−1(G), (1.5)

has the Skrypnik degree, dS(H(t, ·), G̃, 0), under the usual boundary condition on
the boundary of an open and bounded set G̃ ⊂ Y , which remains fixed for all
sufficiently small t ∈ (0,∞). Then the degree is defined by

d(L+ T + C,G, 0) = lim
t↓0

dS(L̂+ T̂t + Ĉ + tM, G̃, 0), (1.6)
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where G is an open bounded subset of X related to G̃. The operator C above
satisfies the (S+)-condition w.r.t. Y = D(L) and T is strongly quasibounded and
maximal monotone with 0 ∈ T (0). In order to show that the degree dS is fixed
as above, it can be shown, in addition, that the family of mappings f t := H(t, ·)
is a homotopy of class (S+) in the sense of Browder [10, Definition 3, p. 69] on
every interval [t1, t2] ⊂ (0, t0], where t0 is an appropriate fixed positive number.
The approach discussed here is that of Berkovits and Mustonen in [8] and Addou
and Memri in [1].

In Section 2, we establish the existence of nonzero solutions of the inclusion
Lx + Tx + Cx 3 0, where L, C are as above and T is a strongly quasibounded
maximal monotone operator and positively homogeneous of degree 1. This result
is in the spirit of similar results in [3] for operators of the form T + C, where T is
single-valued maximal monotone, 0 = T (0), and C bounded demicontinuous and
of type (S+). Mild and natural boundary conditions are considered in order to
establish the result by utilizing the graph norm topology on D(L) and relevant
topological degree theory. The theory is applicable to parabolic partial differential
equations in divergence form on cylindrical domains.

In Section 3, the existence of nonzero solutions of Tx+Cx+Gx 3 0 is established
by utilizing the topological degree theories developed by Browder [13] and Skrypnik
[26]. In this case, T is only maximal monotone with 0 ∈ T (0) and positively
homogeneous of degree α ∈ (0, 1], and C is bounded demicontinuous of type of
(S+). This result extends and generalizes a similar result in [3] for α = 1 and G = 0
and has applications to elliptic boundary value problems involving p-Laplacian.

For additional facts and various topological degree theories related to the subject
of this paper, the reader is referred to Kartsatos and the author [4], Kartsatos and
Lin [16], and Kartsatos and Skrypnik [20, 18]. For information on various concepts
and ideas of Nonlinear Analysis used herein, the reader is referred to Barbu [7],
Browder [11], Pascali and Sburlan [23], Simons [24], Skrypnik [25, 26], and Zeidler
[28].

The following lemma from [5] about the boundedness of the solutions of a ho-
motopy equation will be needed in the sequel.

Lemma 1.8. Let G ⊂ X be open and bounded. Assume the following:

(A1) L : X ⊃ D(L)→ X∗ is linear, maximal monotone with D(L) dense in X;
(A2) T : X ⊃ D(T ) → 2X

∗
is strongly quasibounded, maximal monotone with

0 ∈ T (0);
(A3) C(t) : X ⊃ G→ X∗ is a bounded homotopy of type (S+) w.r.t. D(L).

Then, for a continuous curve f(s), 0 ≤ s ≤ 1, in X∗, the set

K =
{
x ∈ j−1(G) : L̂+ T̂t + Ĉ(s) + tMx = j∗f(s), for some t > 0, s ∈ [0, 1]

}
is bounded in Y . Thus, there exists R > 0 such that K ⊂ BY (R), where BY (R)) is
the open ball of Y of radius R.

Lemma 1.9 below taken from Kartsatos and Skrypnik [19] will be used in the
proof of Theorem 2.2.

Lemma 1.9. Let T : X ⊃ D(T ) → 2X
∗

be maximal monotone and such that
0 ∈ D(T ) and 0 ∈ T (0). Then the mapping (t, x) → Ttx is continuous on the set
(0,∞)×X.
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Definition 1.10. An operator T : X ⊃ D(T ) → 2X
∗

is said to be positively
homogeneous of degree α > 0 if, for a fixed α > 0, x ∈ D(T ) implies tx ∈ D(T ) for
all t ∈ R+ and T (tx) = tαTx.

The following lemma, which plays an important role in the existence theorems
of Section 2 and Section 3, shows in particular that the Yosida approximants of a
positively homogeneous maximal monotone operator of degree α are also positively
homogeneous only when α = 1.

Lemma 1.11. Let T : X ⊃ D(T ) → 2X
∗

is maximal monotone and positively
homogeneous of degree α > 0. Then, for each t > 0, the Yosida approximant Tt
satisfies

Tt(sx) = sαTtsα−1(x) for all (s, x) ∈ (0,+∞)×X. (1.7)

Proof. Let
y = Tt(sx) = (T−1 + tJ−1)−1(sx),

for t, s > 0, x ∈ X. The homogeneity of the duality mapping J implies

y ∈ T (−tJ−1y + sx) = T
(
s
(
− t

s
J−1y + x

))
= sαT

(
− t

s
J−1y + x

)
= sαT

(
− t

s1−α J
−1
( y
sα
)

+ x
)
.

This is equivalent to
x ∈ T−1

( y
sα

)
+ tsα−1J−1

( y
sα

)
and

y = sα(T−1 + tsα−1J−1)−1x = sαTtsα−1(x).
�

2. Nonzero solutions of Lx+ Tx+ Cx 3 0

Guo and Lakshmikantham have shown in [14] the following result for compact
operators defined on a cone in a Banach space. The operator T satisfies non-
contractive and non-expansive type of conditions only on the boundary of the sub-
sets G1, G2 of X for the existence of a nonzero fixed of T .

Theorem 2.1. Let X be a Banach space and K a positive cone in X which induces
a partial ordering “ ≤ ” in X. Let G1, G2 ⊂ X be open, 0 ∈ G2, G2 ⊂ G1, G1

bounded, and T : K ∩ G1 → K compact with T (0) = 0. Suppose that one of the
following two conditions holds.

(1) Tx 6≥ x for x ∈ K ∩ ∂G1, and Tx 6≤ x for x ∈ K ∩ ∂G2;
(2) Tx 6≤ x for x ∈ K ∩ ∂G1, and Tx 6≥ x for x ∈ K ∩ ∂G2.

Then there exists a fixed point of T in K ∩ (G1 \G2).

By imposing certain conditions only on the boundary of sets G1, G2, the author
and Kartsatos [3] established the existence of nonzero solutions of Tx + Cx = 0,
where T is positively homogeneous of degree 1 and single-valued maximal monotone,
and C is a bounded demicontinuous of type (S+). The following result is obtained
in the spirit of [3, Theorem 6, p.1246] in the context of the Berkovits-Mustonen
theory in [8].
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Theorem 2.2. Assume that G1, G2 ⊂ X are open, bounded with 0 ∈ G2 and
G2 ⊂ G1. Let L : X ⊃ D(L) → X∗ be linear maximal monotone with D(L) = X,
and T : X ⊃ D(T )→ 2X

∗
strongly quasibounded, maximal monotone and positively

homogeneous of degree 1. Also, let C : G1 → X∗ be bounded, demicontinuous and
of type (S+) w.r.t. to D(L). Moreover, assume the following:

(H1) there exists v∗ ∈ X∗ \ {0} such that Lx + Tx + Cx 63 λv∗ for all (λ, x) ∈
R+ × (D(L) ∩D(T ) ∩ ∂G1), and

(H2) Lx+ Tx+ Cx+ λJx 63 0 for all (λ, x) ∈ R+ × (D(L) ∩D(T ) ∩ ∂G2).
Then the inclusion Lx+ Tx+Cx 3 0 has a solution x ∈ D(L)∩D(T )∩ (G1 \G2).

Proof. To solve the inclusion

Lx+ Tx+ Cx 3 0, x ∈ G1, (2.1)

let us consider the associated equation

L̂x+ T̂tx+ Ĉx+ tMx = 0, t ∈ (0,+∞), x ∈ j−1(G1). (2.2)

One can show as in [2] that there exists R > 0 such that the open ball BY (0, R) =
{y ∈ Y : ‖y‖Y < R} contains all solutions of (2.2). We shall prove that (2.2) has
a solution xt ∈ j−1(G1 \ G2) for all sufficiently small t. We first claim that there
exist τ0 > 0 , t0 > 0 such that

L̂x+ T̂tx+ Ĉx+ tMx = τj∗v∗ (2.3)

has no solution in G1
R(Y ) := j−1(G1)∩BY (0, R) for all t ∈ (0, t0] and all τ ∈ [τ0,∞).

Assume the contrary and let {τn} ⊂ (0,∞), {tn} ⊂ (0, 1) and {xn} ⊂ G1
R(Y ) such

that τn →∞, tn ↓ 0 and

L̂xn + T̂tnxn + Ĉxn + tnMxn = τnj
∗v∗. (2.4)

We note that j∗ is one-to-one because j(Y ) = Y which is dense in X. This implies
that j∗v∗ is nonzero, and therefore ‖τnj∗v∗‖Y ∗ → +∞. Also, the sequence {xn}
is bounded in Y and so we may assume that xn ⇀ x0 in X and Lxn ⇀ Lx0

in X∗. In particular, {Lxn} is bounded in X∗. Since Mxn ∈ j∗(X∗), we have
J−1(Lu) ∈ D(L∗) and

Mxn = j∗L∗J−1(Lxn).
Since j∗, L∗, J−1 are bounded, we obtain the boundedness of {M(xn)}. It is clear
that Ĉxn is bounded in Y ∗, and therefore (2.4) implies that ‖L̂xn+T̂tnxn‖Y ∗ →∞.
Define

αn =
1

‖L̂xn + T̂tnxn‖Y ∗
and un = αnxn.

It is obvious that un → 0 in Y .
Since T is positively homogeneous of degree 1, Tt is also positively homogeneous

of degree 1 by Lemma 1.11. From (2.4), we obtain

(L̂+ T̂tn)(αnxn) + αnĈxn + tnαnMxn = τnαnj
∗v∗. (2.5)

Since ‖(L̂+ T̂tn)(αnxn)‖Y ∗ = 1, (2.5) implies

τnαn →
1

‖j∗v∗‖Y ∗
,

and therefore
(L̂+ T̂tn)(un) = (L̂+ T̂tn)(αnxn)→ y0,
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where

y0 =
j∗v∗

‖j∗v∗‖Y ∗
.

Since un → 0, we have

lim
n→∞

〈(L̂+ T̂tn)un, un〉 = 〈y0, 0〉 = 0.

Since L̂, T̂tn , and L̂+ T̂tn are maximal monotone, by Lemma 1.2, (ii), we have

y0 = (L̂+ T̂ )(0) = 0,

which is a contradiction to ‖y0‖Y ∗ = 1.
We now consider the homotopy H : [0, 1]× Y → Y ∗ defined by

H(s, x) = L̂x+ T̂tx+ Ĉx+ tMx− sτ0j∗v∗, s ∈ [0, 1], x ∈ j−1(G1), (2.6)

where t ∈ (0, t0] is fixed. It can be easily seen that C − sτ0v∗ is bounded demicon-
tinuous on G1 and of type (S+) w.r.t. D(L).

We now show that the equation H(s, x) = 0 has no solution on the boundary
∂G1

R(Y ). Here, the number R > 0 is increased if necessary so that the ball BY (0, R)
now also contains all solutions x of H(s, x) = 0. To this end, assume the contrary
so that there exist {tn} ⊂ (0, t0], {sn} ⊂ [0, 1], and {xn} ⊂ ∂G1

R(Y ) such that
tn → 0, sn → s0, xn ⇀ x0 in Y , Ttnxn ⇀ w∗ in X∗ and Cxn ⇀ c∗ and

L̂xn + T̂tnxn + Ĉxn + tnMxn = snτ0j
∗v∗. (2.7)

Here, the boundedness of {Ttn} follows as in Step I of [5, Prop. 1]. Since xn ⇀ x0

in Y , we have xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗. Also, since xn ∈ BY (0, R)
and

∂(j−1(G1) ∩BY (0, R)) ⊂ ∂(j−1(G1)) ∪ ∂BY (0, R) ⊂ j−1(∂G1) ∪ ∂BY (0, R),

we have xn ∈ j−1(∂G1) = ∂G1 ∩ Y ⊂ ∂G1. From (2.7) we obtain

〈Lxn + Ttnxn + Cxn + tnL
∗J−1(Lxn), xn − x0〉 = snτ0〈v∗, xn − x0〉. (2.8)

If we assume
lim sup
n→∞

〈Cxn, xn − x0〉 > 0, (2.9)

we easily get a contradiction using a standard argument in relation to Lemma 1.2,
(i). This is because L+T is maximal monotone because T is strongly quasibounded
(cf. Pascali and Sburlan [23, Proposition, p. 142]). Consequently,

lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0. (2.10)

Since C is demicontinuous and of type (S+) w.r.t. D(L), we obtain xn → x0 and
Cxn ⇀ c∗ = Cx0. From (2.8), we obtain

lim
n→∞

〈Lxn + Ttnxn, xn − x0〉 = 0.

Using Lemma 1.2, (ii), we obtain x0 ∈ D(T ) and w∗ ∈ Tx0. Then, in view of (2.8),
it follows that

〈Lx0 + w∗ + Cx0 − s0τ0v
∗, u〉 = 0

for all u ∈ Y . Since Y is dense in X, we have

Lx0 + Tx0 + Cx0 3 s0τ0v
∗,

which contradicts the hypothesis (H1) because x0 ∈ D(L) ∩D(T ) ∩ ∂G1.
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We shrink t0 if necessary so that

H(s, x) = 0, s ∈ [0, 1], x ∈ G1
R(Y )

has no solution on the boundary ∂G1
R(Y ) for all t ∈ (0, t0] and all s ∈ [0, 1].

The mapping H(s, x) is an admissible homotopy for the Skrypnik’s degree. The
Skyrpnik’s degree, dS(H(s, ·), G1

R(Y ), 0), is well-defined and remains constant for
all s ∈ [0, 1]. Also, the degree, d(L+ T + C,G1, 0), developed in [2] is defined as

d(L+ T + C − τ0v∗, G1, 0) = lim
t→0+

dS(H(1, ·), G1
R(Y ), 0).

By shrinking t0 further if necessary, we have

d(L+ T + C − τ0v∗, G1, 0) = dS(H(1, ·), G1
R(Y ), 0), for all t ∈ (0, t0].

Suppose, if possible, that

dS(H(1, ·), G1
R(Y ), 0) 6= 0

for some t1 ∈ (0, t0]. Then there exists x0 ∈ G1
R(Y ) such that

L̂x+ T̂t1x+ Ĉx+ t1Mx = τ0j
∗v∗.

This contradicts the choice of τ0 as stated in (2.3). Since

dS(H(0, ·), G1
R(Y ), 0) = dS(H(1, ·), G1

R(Y ), 0),

we have

dS(L̂+ T̂t + Ĉ + tM,G1
R(Y ), 0) = dS(H(0, ·), G1

R(Y ), 0) = 0 (2.11)

for all t ∈ (0, t0].
Next, we consider the homotopy H̃ : [0, 1]× Y → Y ∗ defined by

H̃(s, x) = s(L̂x+ T̂tx+ Ĉx) + tMx+ (1− s)Ĵx, s ∈ [0, 1], x ∈ j−1(G2).

As in [5, Step III, p.29], it can be shown that there exists t0 > 0 (choose it even
smaller than the one used previously if necessary) such that all the solutions

H̃(s, x) = 0, t ∈ (0, t0], s ∈ [0, 1]

are bounded in Y . We enlarge the previous number R > 0 if necessary so that all
solutions of H̃(s, x) = 0 as above are contained in BY (0, R) in Y .

We first show that there exists t1 ∈ (0, t0] such that the equation H̃(s, x) = 0
has no solutions on ∂G2

R(Y ) for any t ∈ (0, t1] and any s ∈ [0, 1]. Here, G2
R(Y ) :=

j−1(G2) ∩ BY (0, R). Suppose that the contrary is true. Then there must exist
sequences {tn} ⊂ (0, t0], {sn} ⊂ [0, 1], {xn} ⊂ ∂G2

R(Y ) such that

sn(L̂xn + T̂tnxn + Ĉxn) + tnMxn + (1− sn)Ĵxn = 0. (2.12)

We may assume that tn ↓ 0, sn → s0, xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗.
As in the previous part, we can show that xn ∈ ∂G2 ∩ Y ⊂ ∂G2. If sn = 0 for
some n, then we obtain tnMxn + Ĵxn = 0. Since M is monotone for such xn’s by
(1.3), (1.4), and Ĵ is strictly monotone, we obtain xn = 0 which is a contradiction
to 0 ∈ G2. We may now assume that sn ∈ (0, 1]. Suppose s0 = 0. Dividing both
sides of (2.12), we obtain

L̂xn + T̂tnxn + Ĉxn +
tn
sn
Mxn = −1− sn

sn
Ĵxn, (2.13)
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which implies

〈Cxn, xn〉 ≤ −
(1− sn)
sn

‖xn‖2X .

Since xn ∈ ∂G2, the sequence {‖xn‖X} is bounded away from zero. This leads to
a contradiction to the boundedness of {〈Cxn, xn〉} because (1− sn)/sn →∞.

Assume that s0 = 1. Now, by Lemma 1.4, the strong quasiboundedness of
T implies that the sequence {Ttnxn} is bounded, and so we may assume that
Ttnxn ⇀ w∗ for some w∗ ∈ X∗. From (2.12), we obtain

lim
n→∞

〈Lxn + Ttnxn + Cxn, xn − x0〉 = 0. (2.14)

If (2.9) is true, we obtain a contradiction to (i) of Lemma 1.2. Therefore (2.10)
must hold true. With (2.14), this implies xn → x0 ∈ ∂G2, and therefore x0 ∈ D(T )
and Lx0 + Tx0 + Cx0 3 0. This is a contradiction to hypothesis (H2) for λ = 0.
For the remaining case s0 ∈ (0, 1), one can see that (2.13) is replaced with

lim sup
n→∞

〈Lxn + Ttnxn + Cxn, xn − x0〉 ≤ 0. (2.15)

We may assume that Ttnxn ⇀ w∗(some) ∈ X∗. By using the monotonicity of L,
Ttn , the continuity of Tt from Lemma 1.9 and a standard argument, we obtain
xn → x0 ∈ ∂G2, and hence (2.13) implies

〈Lx0 + w∗ + Cx0 +
1− s0

s0
Jx0, u〉 = 0

for all u ∈ Y . By the density of Y in X, we obtain

Lx0 + Tx0 + Cx0 +
1− s0

s0
Jx0 3 0,

which contradicts hypothesis (H2).
At this time, we replace the number t0 chosen previously with t1 and call it t0

again. Let us fix t ∈ (0, t0] and consider the homotopy equation

H̃(s, x) = s(L̂x+ T̂tx+Ĉx)+tMx+(1−s)Ĵx = 0, s ∈ [0, 1], x ∈ G2
R(Y ). (2.16)

It is already shown that (2.16) has no solution on ∂G2
R(Y ). We note that H̃ is

an affine homotopy of bounded demicontinuous operators of type (S+) on G2
R(Y );

namely, L̂ + T̂t + Ĉ + tM and tM + Ĵ . We also note here that tM + Ĵ is strictly
monotone. Therefore H̃(s, x) is an admissible homotopy for the Skrypnik’s degree,
dS , which satisfies

dS(H̃(1, ·), G2
R(Y ), 0) = dS(H̃(0, ·), G2

R(Y ), 0). (2.17)

This implies

dS(L̂+ T̂t + Ĉ + tM,G2
R(Y ), 0) = dS(tM + Ĵ , G2

R(Y ), 0) = 1 (2.18)

for all t ∈ (0, t0]. The last equality follows from [10, Theorem 3, (iv)]. From (2.11)
and (2.18), we obtain

dS(L̂+ T̂t + Ĉ + tM,G1
R(Y ), 0) 6= dS(L̂+ T̂t + Ĉ + tM,G2

R(Y ), 0)

for all t ∈ (0, t0]. By the excision property of the Skrypnik’s degree, for each
t ∈ (0, t0], there exists a solution xt ∈ G1

R(Y ) \G2
R(Y ) of the equation

L̂x+ T̂tx+ Ĉx+ tMx = 0.
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We now pick a sequence {tn} ⊂ (0, t0] such that tn ↓ 0, and denote the correspond-
ing solution xt by xn, i.e.

L̂xn + T̂tnxn + Ĉxn + tnMxn = 0.

Since Y is reflexive, we have xn ⇀ x0 ∈ Y by passing to a subsequence. This
implies xn → x0 in X and Lxn ⇀ Lx0 in X∗. By the strong quasiboundedness
of T , we may assume that Ttnxn ⇀ w∗ ∈ X∗. If (2.9) holds, then we obtain a
contradiction by Lemma 1.2, (i). Then (2.10) must be valid. Since C is of type
(S+) w.r.t. D(L), we obtain xn → x0 ∈ G1

R(Y ) \G2
R(Y ), and by Lemma 1.1, we

have x0 ∈ D(T ) and Lx0 + w∗ + Cx0 = 0, and therefore Lx0 + Tx0 + Cx0 3 0.
It remains to show that x0 ∈ G1 \G2. Since

G1
R(Y ) \G2

R(Y ) = (G1 \G2) ∩ Y ∩BY (0, R) ⊂ G1 \G2,

we have xn ∈ G1 \G2 for all n, and so

x0 ∈ G1 \G2 ⊂ (G1 \G2) ∪ ∂(G1 \G2) ⊂ (G1 \G2) ∪ ∂G1 ∪ ∂G2

By hypotheses (H1) and (H2), x0 6∈ ∂G1 ∪ ∂G2. Thus, x0 ∈ D(L) ∩D(T ) ∩ (G1 \
G2). �

3. Nonzero solutions of Tx+ Cx+Gx 3 0

Hu and Papageorgiou [15] generalized the degree theory of Browder [12] to the
mappings of the form T + C + G, where T is maximal monotone with 0 ∈ T (0),
C bounded demicontinuous of type (S+) and G belongs to class (P ). In this sec-
tion, with an application of Browder and Skrypnik degree theories, the existence of
nonzero solutions of the inclusion Tx+Cx+Gx 3 0 is established with an additional
condition of positive homogeneity of degree α ∈ (0, 1] on T . The result extends and
generalizes a similar result by Kartsatos and the author in [3, Theorem 6, p.1246,
for α = 1 and G = 0] to a multivalued T with α ∈ (0, 1] and G 6= 0. This result is
new for α ∈ (0, 1) and applies to partial differential equations involving p-Laplacian
with p ∈ (1, 2].

In what follows, the norms in X and X∗ are both denoted by ‖ · ‖ and will be
understood from the context of their use.

Theorem 3.1. Assume that G1, G2 ⊂ X are open, bounded with 0 ∈ G2 and G2 ⊂
G1. Let T : X ⊃ D(T ) → 2X

∗
be maximal monotone, and positively homogeneous

of degree α ∈ (0, 1], C : G1 → X∗ bounded, demicontinuous and of type (S+), and
G : G1 → 2X

∗
of class (P ). Moreover, assume the following:

(H3) There exists v∗0 ∈ X∗ \ {0} such that Tx + Cx + Gx 63 λv∗0 for every
(λ, x) ∈ R+ × (D(T ) ∩ ∂G1);

(H4) Tx+ Cx+Gx+ λJx 63 0 for every (λ, x) ∈ R+ × (D(T ) ∩ ∂G2).
Then the inclusion Tx+Cx+Gx 3 0 has a nonzero solution x ∈ D(T )∩ (G1 \G2).

Proof. We consider the inclusion

Tx+ Cx+Gx 3 0

and then the associated approximate equation

Ttx+ Cx+ gεx = 0. (3.1)
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Here, ε > 0 and gε : G1 → X∗ is an approximate continuous Cellina-selection (cf.
[15], [6, Lemma 6, p. 236]) satisfying

gεx ∈ G(Bε(x) ∩G1) +Bε(0)

for all x ∈ G1 and gε(G1) ⊂ convG(G1).
We show that equation (3.1) has a solution xt,ε in G1 \ G2 for all sufficiently

small t and ε. To this end, we first show that there exist τ0 > 0, t0 > 0 and ε0 > 0
such that the equation

Ttx+ Cx+ gεx = τv∗0 (3.2)

has no solution in G1 for every τ ≥ τ0, t ∈ (0, t0] and ε ∈ (0, ε0].
Assuming the contrary, let {τn} ⊂ (0,∞), {tn} ⊂ (0,∞), {εn} ⊂ (0,∞) and

{xn} ⊂ G1 be such that τn →∞, tn ↓ 0, εn ↓ 0 and

Ttnxn + Cxn + gεnxn = τnv
∗
0 . (3.3)

We may assume that gεnxn → g∗ ∈ X∗ in view of the properties of G. Then
‖Ttnxn‖ → ∞ as ‖τnv∗0‖ → ∞ and {Cxn} is bounded.

Thus, from (3.3), we obtain

Ttnxn
‖Ttnxn‖

+
Cxn
‖Ttnxn‖

+
gεnxn
‖Ttnxn‖

=
τn

‖Ttnxn‖
v∗0 , (3.4)

In view of (1.7), we obtain

Ttnxn
‖Ttnxn‖

= Ttnλn

( xn
‖Ttnxn‖1/α

)
, (3.5)

where
λn = ‖Ttnxn‖(α−1)/α.

It clear that λn → 0 for α ∈ (0, 1) and λn = 1 for α = 1. Then (3.4) implies

1−
∥∥ Cxn
‖Ttnxn‖

+
gεnxn
‖Ttnxn‖

∥∥ ≤ τn‖v∗0‖
‖Ttnxn‖

≤ 1 +
∥∥ Cxn
‖Ttnxn‖

+
gεnxn
‖Ttnxn‖

∥∥.
Thus,

τn‖v∗0‖
‖Ttnxn‖

→ 1 and
τn

‖Ttnxn‖
→ 1
‖v∗0‖

as n→∞. (3.6)

Let
un =

xn
‖Ttnxn‖1/α

.

We have un → 0. By (3.4), (3.5) and (3.6), we obtain Ttnλnun → h with

h =
v∗0
‖v∗0‖

.

Therefore
lim
n→∞

〈Ttnλnun, un〉 = 〈h, 0〉 = 0.

Since tnλn → 0, by (ii) of Lemma 1.2 with S = 0 we obtain, 0 ∈ D(T ) and h = T (0).
Since T (0) = 0, this is a contradiction to ‖h‖ = 1.

We now consider the homotopy mapping

H1(s, x, t, ε) = Ttx+ Cx+ gεx− sτ0v∗0 , s ∈ [0, 1], x ∈ G1, (3.7)
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where t ∈ (0, t0] and ε ∈ (0, ε0] are fixed. For every s ∈ [0, 1] the operator x 7→
Cx− sτ0v∗0 is demicontinuous and bounded on G1. In order to see that it is of type
(S+), assume that {xn} ⊂ G1 satisfies xn ⇀ x0 ∈ X and

lim sup
n→∞

〈Cxn − sτ0v∗0 , xn − x0〉 ≤ 0.

Then
lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0,

which by the (S+)-property of C, implies xn → x0 ∈ G1. Before we consider
the Skrypnik degree of this homotopy on the set G1, we show that the equation
H1(s, x, t, ε) = 0 has no solution on the boundary of G1 for all sufficiently small
t ∈ (0, t0], ε ∈ (0, ε0] and all s ∈ [0, 1]. To this end, assume the contrary and
let {xn} ⊂ ∂G1, {tn} ⊂ (0, t0], {sn} ⊂ [0, 1] and {εn} ⊂ (0, ε0] such that tn ↓ 0,
sn → s0 for some s0 ∈ [0, 1], εn ↓ 0 and

Ttnxn + Cxn + gεnxn = snτ0v
∗
0 .

We may assume that xn ⇀ x0 ∈ X. Since {Cxn} is bounded, we may assume that
Cxn ⇀ y∗0 ∈ X∗ and gεnxn → g∗. Then we have Ttnxn ⇀ −y∗0 − g∗+ s0τ0v

∗
0 . From

〈Ttnxn, xn − x0〉+ 〈Cxn, xn − x0〉 = 〈gεnxn + snτ0v
∗
0 , xn − x0〉,

we obtain
lim
n→∞

[〈Ttnxn, xn − x0〉+ 〈Cxn, xn − x0〉] = 0. (3.8)

Let us assume that
lim sup
n→∞

〈Cxn, xn − x0〉 > 0. (3.9)

Then there exists a subsequence of {xn}, which we still denote by {xn}, such that

lim
n→∞

〈Cxn, xn − x0〉 = q, (3.10)

for some constant q > 0. By (3.8) and (3.10), we obtain

lim
n→∞

〈Ttnxn, xn − x0〉 = −q < 0.

Applying (i) of Lemma 1.2 with S = 0, we obtain a contradiction. Therefore (3.9)
is false and we now only have

lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

Since C is of type (S+), we have xn → x0 ∈ ∂G1. Since C is also demicontinuous,
Cxn ⇀ Cx0. This implies

Ttnxn ⇀ −Cx0 − g∗ + s0τ0v
∗
0 .

Applying (ii) of Lemma 1.2 with S = 0, we obtain x0 ∈ D(T ) ∩ ∂G1 and

Tx0 + Cx0 +Gx0 3 s0τ0v
∗
0 ,

which is a contradiction to our hypothesis (H3). Thus, we may now choose t0
and ε0 further so that we also have that H1(s, x, t, ε) = 0 has no solution x ∈
∂G1 for all t ∈ (0, t0], ε ∈ (0, ε0] and all s ∈ [0, 1]. It is clear that the mapping
H1(s, x, t, ε) is an admissible homotopy for Skrypnik’s degree and the Skrypnik
degree dS(H1(s, ·, t, ε), G1, 0) is well-defined and is constant for all s ∈ [0, 1] and for
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all t ∈ (0, t0], ε ∈ (0, ε0]. Consequently, the Browder’s degree generalized by Hu
and Papageorgiou [15], dHP , is well-defined and satisfies

dHP(T + C +G− τ0v∗0 , G1, 0) = dS(Tt + C + gε − τ0v∗0 , G1, 0) (3.11)

for t ∈ (0, t0], ε ∈ (0, ε0].
Assume that

dS(H1(1, ·, t1, ε1), G1, 0) 6= 0,
for some sufficiently small t1 ∈ (0, t0] and ε1 ∈ (0, ε0]. Then, the equation

Tt1x+ Cx+ gε1x = τ0v
∗
0

has a solution in the set G1. However, this contradicts our choice of the number τ0
in (3.2). Consequently,

dS(Tt + C + gε, G1, 0) = dS(H1(0, ·, t1, ε1), G1, 0) = 0, t ∈ (0, t0], ε ∈ (0, ε0].

We next consider the homotopy mapping

H2(s, x, t, ε) = s(Ttx+ Cx+ gεx) + (1− s)Jx, (s, x) ∈ [0, 1]×G2. (3.12)

We first show that there exist t1 ∈ (0, t0], ε1 ∈ (0, ε0] such that the equation
H2(s, x, t, ε) = 0 has no solution on ∂G2 for any s ∈ [0, 1], any t ∈ (0, t1] and any
ε ∈ (0, ε1].

Let us assume the contrary. Then there exist sequences tn ∈ (0, t0], εn ∈ (0, ε1],
sn ∈ [0, 1], and xn ∈ ∂G2 such that tn ↓ 0, εn ↓ 0, sn → s0 ∈ [0, 1], xn ⇀ x0 ∈ X,
Cxn ⇀ y∗0 ∈ X∗, gεnxn → g∗ ∈ X∗, Jxn ⇀ z∗0 ∈ X∗, and

sn(Ttnxn + Cxn + gεnxn) + (1− sn)Jxn = 0. (3.13)

sn = 0 is impossible because J(0) = 0 and J is injective, we may assume that
sn > 0, for all n. If sn → 0,

〈Ttnxn + Cxn, xn〉 = −
( 1
sn
− 1
)
〈Jxn, xn〉 − 〈gεnxn, xn〉 → −∞ (3.14)

because {‖xn‖} is bounded below away from zero. Since 〈Ttnxn, xn〉 ≥ 0 and
{〈Cxn, xn〉} is bounded, we see that (3.14) is impossible. Thus s0 ∈ (0, 1] and
(3.13) implies that

Ttnxn ⇀ −y∗0 − g∗ −
( 1
s0
− 1
)
z∗0 .

Also, from (3.13),

〈Ttnxn + Cxn, xn − x0〉

= −
( 1
sn
− 1
)
〈gεnxn + Jxn, xn − x0〉

= −
( 1
sn
− 1
)[
〈Jxn − Jx0, xn − x0〉+ 〈gεnxn + Jx0, xn − x0〉

]
≤ −

( 1
sn
− 1
)
〈gεnxn + Jx0, xn − x0〉,

(3.15)

by the monotonicity of the duality mapping J . Since s0 ∈ (0, 1] and xn ⇀ x0, we
see from (3.15) that

lim sup
n→∞

{qn := 〈Ttnxn + Cxn, xn − x0〉} ≤ 0.

Let
lim sup
n→∞

〈Cxn, xn − x0〉 > 0. (3.16)
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Then, for some subsequence of {n} denoted by {n} again, we have

lim
n→∞

〈Cxn, xn − x0〉 = q > 0. (3.17)

From
〈Ttnxn, xn − x0〉 = qn − 〈Cxn, xn − x0〉,

we see that

lim sup
n→∞

〈Ttnxn, xn − x0〉 ≤ lim sup
n→∞

qn + lim
n→∞

[−〈Cxn, xn − x0〉] ≤ −q < 0.

This implies
lim sup
n→∞

〈Ttnxn, xn − x0〉 < 0.

Using (i) of Lemma 1.2, we conclude that (3.16) is impossible, and therefore (3.16)
holds with “≤” in place of “>”. Since C is of type (S+), we have xn → x0 ∈ ∂G2.
This implies Cxn ⇀ Cx0, Jxn → Jx0 and

Ttnxn ⇀ −Cx0 − g∗ −
( 1
s0
− 1
)
Jx0.

Since xn → x0, we have

lim
n→∞

〈Ttnxn, xn − x0〉 = 0.

Using ii of Lemma 1.2, we have x0 ∈ D(T ) and

−Cx0 − g∗ −
( 1
s0
− 1
)
Jx0 ∈ Tx0.

By a property of the selection gεnxn (cf. [15, p. 238]), we have g∗ ∈ G(x0). This
implies

Tx0 + Cx0 +Gx0 +
( 1
s0
− 1
)
Jx0 3 0.

We arrived at a contradiction to our hypothesis (H4) because x0 ∈ D(T ) ∩ ∂G2.
For the sake of convenience, we assume that t0 and ε0 are sufficiently small so that
we may take t1 = t0 and ε1 = ε0.

It is now clear that the mapping H2(s, x, t, ε) is an admissible homotopy for
Skrypnik’s degree and so the Skrypnik degree dS(H2(s, ·, t, ε), G2, 0) is well-defined
and constant for all s ∈ [0, 1], all t ∈ (0, t0] and all ε ∈ (0, ε0]. By the invariance of
the Skrypnik degree, for all t ∈ (0, t0], ε ∈ (0, ε0], we have

dS(H2(1, ·, t, ε), G2, 0) = dS(Tt + C + gε, G2, 0)

= dS(H2(0, ·, t, ε), G2, 0)

= dS(J,G2, 0) = 1.

Thus, for all t ∈ (0, t0], ε ∈ (0, ε0], we have

dS(Tt + C + gε, G1, 0) 6= dS(Tt + C + gε, G2, 0).

From the excision property of the Skrypnik degree, which is an easy consequence
of its finite-dimensional approximations, we obtain a solution xt,ε ∈ G1 \ G2 of
Ttx+Cx+ gεx = 0 for every t ∈ (0, t0] and every ε ∈ (0, ε0]. We let tn ∈ (0, t0] and
εn ∈ (0, ε0] be such that tn ↓ 0, εn ↓ 0 and let xn ∈ G1 \ G2 be the corresponding
solutions of Ttx+ Cx+ gεx = 0. We have

Ttnxn + Cxn + gεnxn = 0.
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We may assume that xn ⇀ x0 and gεnxn → g∗ ∈ X∗. We have

〈Ttnxn, xn − x0〉 = −〈Cxn + gεnxn, xn − x0〉.
If

lim sup
n→∞

〈Cxn + gεnxn, xn − x0〉 > 0,

then we obtain a contradiction from (i) of Lemma 1.2. Consequently,

lim sup
n→∞

〈Cxn + gεnxn, xn − x0〉 ≤ 0,

and hence
lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

By the (S+)-property of C, we obtain xn → x0 ∈ G1 \G2. Then Cxn ⇀ Cx0 and
Ttnxn ⇀ −Cx0 − g∗. Using this in (ii) of Lemma 1.1, we obtain x0 ∈ D(T ) and
−Cx0 − g∗ ∈ Tx0. By a property of the selection gεnxn (cf. [15, p. 238]), we have
g∗ ∈ G(x0) and therefore Tx0 + Cx0 +Gx0 3 0 by Lemma 1.1. We also have

x0 ∈ G1 \G2 = (G1 \G2) ∪ ∂(G1 \G2) ⊂ (G1 \G2) ∪ ∂G1 ∪ ∂G2.

By conditions (H3) and (H4), we have x0 /∈ ∂G1∪∂G2. Thus, x0 ∈ D(T )∩(G1\G2)
and the proof is complete. �

4. Applications

Application 1. We consider the space X = Wm,p
0 (Ω) with the integer m ≥ 1,

the number p ∈ (1,∞), and the domain Ω ⊂ RN with smooth boundary. We
let N0 denote the number of all multi-indices α = (α1, . . . , αN ) such that |α| =
α1 + · · ·+ αN ≤ m. For ξ = (ξα)|α|≤m ∈ RN0 , we have a representation ξ = (η, ζ),
where η = (ηα)|α|≤m−1 ∈ RN1 , ζ = (ζα)|α|=m ∈ RN2 and N0 = N1 +N2. We let

ξ(u) = (Dαu)|α|≤m, η(u) = (Dαu)|α|≤m−1, ζ(u) = (Dαu)|α|=m,

where

Dαu =
N∏
i=1

( ∂

∂xi

)αi
.

Also, let q = p/(p− 1).
We now consider the partial differential operator in divergence form

(Au)(x) =
∑
|α|≤m

(−1)|α|DαAα(x, u(x), . . . , Dmu(x)), x ∈ Ω.

The coefficients Aα : Ω×RN0 → R are assumed to be Carathéodory functions, i.e.,
each Aα(x, ξ) is measurable in x for fixed ξ ∈ RN0 and continuous in ξ for almost
all x ∈ Ω. We consider the following conditions:

(H5) There exist p ∈ (1,∞), c1 > 0 and κ1 ∈ Lq(Ω) such that

|Aα(x, ξ)| ≤ c1|ξ|p−1 + κ1(x), x ∈ Ω, ξ ∈ RN0 , |α| ≤ m.
(H6) The Leray-Lions Condition∑

|α|=m

[Aα(x, η, ζ1)−Aα(x, η, ζ2)](ζ1α − ζ2α) > 0

is satisfied for every x ∈ Ω, η ∈ RN1 , ζ1, ζ2 ∈ RN2 with ζ1 6= ζ2.
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(H7) ∑
|α|≤m

[Aα(x, ξ1)−Aα(x, ξ2)](ξ1α − ξ2α)) ≥ 0

is satisfied for every x ∈ Ω, ξ1, ξ2 ∈ RN0 .
(H8) There exist c2 > 0, κ2 ∈ L1(Ω) such that∑

|α|≤m

Aα(x, ξ)ξα ≥ c2|ξ|p − κ2(x), x ∈ Ω, ξ ∈ RN0 .

If an operator T : Wm,p
0 (Ω)→W−m,q(Ω) is given by

〈Tu, v〉 =
∫

Ω

∑
|α|≤m

Aα(x, ξ(u))Dαv, u, v ∈Wm,p
0 (Ω), (4.1)

then conditions (H5), (H7) imply that it is bounded, continuous and monotone (cf.
e.g. Kittila [22, pp. 25-26], Pascali and Sburlan [23, pp. 274-275]). Since T is
continuous, it is maximal monotone. Similarly, condition (H5), with A replaced by
B, implies that the operator

〈Cu, v〉 =
∫

Ω

∑
|α|≤m

Bα(x, ξ(u))Dαv, u, v ∈Wm,p
0 (Ω), (4.2)

is a bounded continuous mapping. We also know that conditions (H5), (H6) and
(H8), with B in place of A everywhere, imply that the operator C is of type (S+)
(cf. Kittila [22, p. 27]).

We also consider a multifunction H : Ω× RN1 → 2R such that

(H9) H(x, r) = [ϕ(x, r), ψ(x, r)] is measurable in x and u.s.c. in r, where ϕ,ψ :
Ω× RN1 → R are measurable functions;

(H10) |H(x, r)| = max[|ϕ(x, r)|, |ψ(x, r)|] ≤ a(x) + c2|r| a.e. on Ω × RN1 and
a(·) ∈ Lq(Ω), c2 > 0.

Define G : Wm,p
0 → 2W

−m,q(Ω) by

Gu =
{
h ∈W−m,q(Ω) : ∃w ∈ Lq(Ω) such that w(x) ∈ H(x, u(x))

and 〈h, v〉 =
∫

Ω

w(x)v(x) for all v ∈Wm,p
0 (Ω)

}
.

It is well-known that G is u.s.c and compact with closed and convex values (cf. [15,
p. 254]), and therefore is of class (P ).

We now state the following theorem as an application of Theorem 3.1.

Theorem 4.1. Assume that the operators T , C and G defined as above with T (0) =
0, C(0) = 0. Assume, further, that the rest of the conditions of Theorem 3.1 are
satisfied for two balls G1 = Br(0) and G2 = Bq(0), where 0 < q < r. Then the
Dirichlet boundary value problem

(Au)(x) + (Bu)(x) + (Hu)(x) 3 0, x ∈ Ω,

(Dαu)(x) = 0, x ∈ ∂Ω, |α| ≤ m− 1,

has a “weak” nonzero solution u ∈ Br(0) \ Bq(0) ⊂ Wm,p
0 (Ω), which satisfies the

equation Tu+ Cu+Gu 3 0.
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In light of recent degree theories for more general combinations of operators,
such as the ones in [4], the results of this paper may be generalized. For the triplet
T +C +G in Theorem 2.2, the existence of nonzero solutions for the homogeneity
condition for degree α > 1 (p > 2 for p-Laplacian operator A in Theorem 4.1) needs
further work.
Application 2. Let Ω be a bounded open set in RN with smooth boundary, m ≥ 1
an integer, and T > 0. Set Q = Ω× [0, a]. We consider the differential operator

∂u(x, t)
∂t

+
∑
|α|≤m

(−1)|α|DαAα(x, t, u(x, t), Du(x, t), . . . , Dmu(x, t))

+
∑
|α|≤m

(−1)|α|DαBα(x, t, u(x, t), Du(x, t), . . . , Dmu(x, t))
(4.3)

in Q. The coefficients Aα = Aα(x, t, ξ), are defined for (x, t) ∈ Q, ξ = {ξγ , |γ| ≤
m} = (η, ζ) ∈ RN0 with η = {ηγ , |γ| ≤ m − 1} ∈ RN1 , ζ = {ζγ , |γ| = m} ∈ RN2 ,
and N1 + N2 = N0. We assume that each coefficient Aα(x, t, ξ) satisfies the usual
Carathéodory conditions. We consider the following conditions.
(H11) (Continuity) For some p ≥ 2, c1 > 0, g ∈ Lq(Q) with q = p/(p − 1), we

have
|Aα(x, t, η, ζ)| ≤ c1(|ζ|p−1 + |η|p−1 + g(x, t)),

for (x, t) ∈ Q, ξ = (η, ζ) ∈ RN0 , |a| ≤ m.
(H12) (Monotonicity)∑
|α|≤m

(Aα(x, t, ξ1)−Aα(x, t, ξ2))(ξ1γ − ξ2γ ) ≥ 0, (x, t) ∈ Q, ξ1, ξ2 ∈ RN0 .

(H13) (Leray-Lions)∑
|α|=m

(Aα(x, t, η, ζ)−Aα(x, t, η, ζ∗))(ζγ − ζ∗γ) > 0,

for (x, t) ∈ Q, η ∈ RN1 , ζ, ζ∗ ∈ RN2 .
(H14) (Coercivity) There exist c0 > 0 and h ∈ L1(Q) such that∑

|a|≤m

Aα(x, t, ξ) ≥ c0|ξ|p − h(x, t), (x, t) ∈ Q, ξ ∈ RN0 .

Under the condition (H11), the second term of (4.3) generates a continuous bounded
operator T : X → X∗, where X = Lp(0, a;V ), X∗ = Lq(0, a;V ∗), and V =
Wm,p

0 (Ω). It is defined by

〈Tu, v〉 =
∑
|α|≤m

∫
Q

Aα(x, t, u,Du, . . . ,Dmu)Dαv, u, v ∈ X.

This operator is also maximal monotone under the condition (H12). Under (H11),
(H13) and (H14) (with “A” replaced by “B” and the other necessary changes) the
third term of (4.3) generates a continuous, bounded operator C which satisfies the
condition (S+) w.r.t. D(L), where the operator L is defined below. The operator
C is defined by

〈Cu, v〉 =
∑
|α|≤m

∫
Q

Bα(x, t, u,Du, . . . ,Dmu)Dαv, u, v ∈ X.
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The operator ∂/∂t generates an operator L : X ⊃ D(L)→ X∗, where

D(L) = {v ∈ X : v′ ∈ X∗, v(0) = 0},

via the relation

〈Lu, v〉 =
∫ a

0

〈u′(t), v(t)〉dt, u ∈ D(L), v ∈ X.

The symbol u′(t) above is the generalized derivative of u(t), i.e.∫ a

0

〈u′(t), ϕ(t)〉 dt = −
∫ a

0

〈ϕ′(t), u(t)〉 dt, ϕ ∈ C∞0 (0, a;X).

One can verify, as in Zeidler [28], that L is a linear densely defined maximal mono-
tone operator.

Let K be an unbounded closed convex proper subset of X with 0 ∈
◦
K. Let

ϕK : X → R+ ∪ {∞} be defined by

ϕK(x) =

{
0 if x ∈ K,
∞ otherwise.

The function ϕK is proper convex and lower semicontinuous on X, and x∗ ∈
∂ϕK(x), for x ∈ K, if and only if

〈x∗, y − x〉 ≤ 0, for all y ∈ K.

Also,

D(∂ϕK) = K and 0 ∈ ∂ϕK(x), x ∈ K,

∂ϕK(x) = {0}, x ∈ K̊.

The operator ∂ϕK : X ⊃ K → 2X
∗

is maximal monotone with 0 ∈
◦
D(∂ϕK) and

0 ∈ ∂ϕK(0). It is thus strongly quasibounded. For these facts see, e.g., Kenmochi
[21]. In addition, the sum ∂ϕK+T is a multivalued strongly quasibounded maximal
monotone operator from K to 2X

∗
.

As an application of Theorem 2.2, we state the following theorem.

Theorem 4.2. Assume that the operators L, T,C are as above with Aα satisfying
(H11), (H12) and T (0) = 0, C(0) = 0 , and Bα satisfying (H11), (H13) and
(H14) with the necessary notational changes. Assume, further, that the rest of the
conditions of Theorem 2.2 are satisfied for two balls G1 = Br(0) and G2 = Bq(0),
in X = Lp(0, a, V ), where 0 < q < r and V = Wm

0 (Ω). Then the inclusion

Lu+ ∂ϕK(u) + Tu+ Cu 3 0

has a nonzero solution u ∈ Br(0) \Bq(0).

The mapping ∂ϕK above is essential because the operator T +C is demicontin-
uous, bounded and of type (S+) w.r.t. D(L), and therefore it reduces to another
operator exactly like C (cf. [5, p.41]).
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