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Abstract. In this article, we study the existence of integral solutions for two

classes of fractional order evolution equations with nondensely defined linear
operators. First, we consider the nonhomogeneous fractional order evolution

equation and obtain its integral solution by Laplace transform and probabil-

ity density function. Subsequently, based on the form of integral solution for
nonhomogeneous fractional order evolution equation, we investigate the exis-

tence of integral solution for nonlinear fractional order evolution equation by

noncompact measure method.

1. Introduction

We consider the nonhomogeneous fractional order evolution equation
CDq

0+u(t) = Au(t) + f(t), t ∈ (0, b],

u(0) = u0

(1.1)

and the nonlinear fractional order evolution equation
CDq

0+u(t) = Au(t) + g(t, u(t)), t ∈ (0, b],

u(0) = u0,
(1.2)

where CDq
0+ is the Caputo fractional derivative of order 0 < q < 1, the state

u(·) takes values in a Banach space X with norm | · |, A : D(A) ⊆ X → X is
a nondensely closed linear operator on X, f and g are given functions satisfying
appropriate conditions.

For the integer order evolution equation:{
u′(t) = Au(t) + f(t, u(t)), t ∈ (0, b],

u(0) = u0,

in case A is a Hille-Yosida operator and is densely defined (i.e., D(A) = X), the
problem has been extensively studied (see [15]). When A is a Hille-Yosida operator
but its domain is nondensely defined, there have many results (see [2, 8, 18, 19]
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and the references therein). It is noted that Da Prato and Sinestrari are the first
to work on equations with nondense domains, see [5].

On the other hand, fractional order differential equations have recently been
applied in various areas of engineering, physics and bio-engineering, and other ap-
plied sciences. For some fundamental results in the theory of fractional calculus
and fractional differential equations, we refer the reader to the monographs by
Samko et al. [17], Kilbas et al. [9], Diethelm [4] and Zhou [30], and the papers
[1, 10, 29, 24, 27, 25, 26, 28] and the references cited therein.

For nonlinear fractional evolution equation (1.2) with initial data or nonlocal
condition, when A is densely defined, there have been many results on the existence
of mild solutions (see [11, 16, 20, 23]). In [23], by using similar methods due to
El-Borai [6, 7], Zhou and Jiao proposed a suitable concept on mild solution by
applying probability density function and Laplace transform, which is widely used
now. When A is not densely defined, there have been some investigations (see
[13, 22]). However, in [13], there was an error in transforming integral solution into
an available form. Zhang et al. [22] presented a formula for integral solution by
using the similar method described in [23], but the equivalency of integral equations
was not proved.

Motivated by the above discussion, in this paper, we will firstly give the inte-
gral solution for nonhomogeneous fractional evolution equation (1.1) by Laplace
transform and probability density function, and subsequently investigate the exis-
tence of integral solution for nonlinear fractional order evolution equation (1.2) by
Ascoli-Arzela theorem and the measure of noncompactness. In what follows we do
not require the C0−semigroup (will be given later) to be compact.

The rest of this paper is organized as follows. In Section 2, notation and pre-
liminaries are given. The integral solution of nonhomogeneous fractional evolution
equation (1.1) is given in Section 3. In Section 4, the existence of integral solu-
tion for nonlinear fractional order evolution equation (1.2) is studied. The paper
concludes with a problem proposed for further research.

2. Preliminaries

In this section, we recall some concepts on fractional calculus and present some
lemmas and assumptions which are useful in the sequel.

Let p > 0, n = dpe (the least integer greater than or equal to p) and u ∈
L1([0, b], X). The Riemann-Liouville fractional integral is defined by

Ip0+u(t) = gp(t) ∗ u(t) =
∫ t

0

gp(t− s)u(s)ds, t > 0,

where ∗ denotes convolution and gp(t) = tp−1/Γ(p). In case p = 0, we set
g0(t) = δ(t), the Dirac measure concentrated at the origin. For u ∈ C([0, b], X),
the Riemann-Liouville fractional derivative is defined by

LDp
0+u(t) =

dn

dtn
(gn−p(t) ∗ u(t))

and the Caputo fractional derivative can be defined by

CDp
0+u(t) = gn−p(t) ∗

dnu(t)
dtn

for all t > 0. For more details, see [9].



EJDE-2017/145 FRACTIONAL EVOLUTION EQUATIONS 3

Next, we introduce the Hausdorff measure of noncompactness β(·) defined on
each bounded subset Ω of Banach space X by

β(Ω) = inf{ε > 0,Ω has a finite ε-net in X}.

Some basic properties of β(·) are listed in the following Lemmas.

Lemma 2.1 ([3]). The noncompact measure β(·) satisfies:
(i) for all bounded subsets B1, B2 of X, B1 ⊆ B2 implies β(B1) ≤ β(B2);

(ii) β({x} ∪B) = β(B) for every x ∈ X and every nonempty subset B ⊆ X;
(iii) β(B) = 0 if and only if B is relatively compact in X;
(iv) β(B1 +B2) ≤ β(B1) + β(B2), where B1 +B2 = {x+ y : x ∈ B1, y ∈ B2};
(v) β(B1 ∪B2) ≤ max{β(B1), β(B2)};
(vi) β(λB) ≤ |λ|β(B) for any λ ∈ R.

Lemma 2.2 ([14]). Let J = [0, b] and {un}∞n=1 be a sequence of Bochner integrable
functions from J into X with |un(t)| ≤ m̃(t) for almost all t ∈ J and every n ≥ 1,
where m̃ ∈ L(J,R+). Then the function ψ(t) = β({un(t)}∞n=1) belongs to L(J,R+)
and satisfies

β
({∫ t

0

un(s)ds : n ≥ 1
})
≤ 2

∫ t

0

ψ(s)ds.

Let X0 = D(A) and A0 be the part of A in D(A) defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)}, A0x = Ax.

Proposition 2.3 ([15]). The part A0 of A generates a strongly continuous semi-
group(that is, C0−semigroup) {Q(t)}t≥0 on X0.

In the forthcoming analysis, we need the following hypothesis:
(H1) The linear operator A : D(A) ⊂ X → X satisfies the Hille-Yosida condition,

that is, there exist two constant ω ∈ R and M such that (ω,+∞) ⊆ ρ(A)
and

‖(λI −A)−k‖L(X) ≤
M

(λ− ω)k
, for all λ > ω, k ≥ 1.

(H2) Q(t) is continuous in the uniform operator topology for t > 0, and {Q(t)}t≥0

is uniformly bounded, that is, there existsM > 1 such that supt∈[0,+∞) |Q(t)| <
M .

3. Integral solution to nonhomogeneous Cauchy problem

Here we derive the integral solution for nonhomogeneous fractional order evo-
lution equation (1.1) with the aid of Laplace transform and probability density
function. For Cauchy problem (1.1), it is assumed that u0 ∈ X0 and f : J → X is
continuous.

Definition 3.1. A function u(t) is said to be an integral solution of (1.1) if
(i) u : J → X is continuous;

(ii) Iq0+u(t) ∈ D(A) for t ∈ J and
(iii)

u(t) = u0 +AIq0+u(t) + Iq0+f(t), t ∈ J. (3.1)
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Remark 3.2. If u(t) is an integral solution of (1.1), then u(t) ∈ X0 for t ∈ J . In
fact, by Iq0+u(t) ∈ D(A), we have I1

0+u(t) = I1−q
0+ Iq0+u(t) ∈ D(A) for t ∈ J . Then

u(t) = limh→0+
1
h

∫ t+h
t

u(s)ds ∈ X0 for t ∈ J .

Definition 3.3 ([12]). The Wright function Mq(θ) defined by

Mq(θ) =
∞∑
n=1

(−θ)n−1

(n− 1)!Γ(1− qn)

is such that ∫ ∞
0

θδMq(θ)dθ =
Γ(1 + δ)
Γ(1 + qδ)

, for δ ≥ 0.

Consider the auxiliary problem
CDq

0+u(t) = A0u(t) + f(t), t ∈ (0, b],

u(0) = u0.
(3.2)

By Definition 3.1, the integral solution of (3.2) can be written as

u(t) = u0 +A0I
q
0+u(t) + Iq0+f(t) (3.3)

for u0 ∈ X0 and t ∈ J . The following Lemma gives an equivalent form of (3.3) by
means of Laplace transform.

Lemma 3.4. If f take values in X0, then the integral equation (3.3) can be ex-
pressed as

u(t) =
(
I1−q
0+ Kq(t)

)
u0 +

∫ t

0

Kq(t− s)f(s)ds, t ∈ J, (3.4)

where

Kq(t) = tq−1Pq(t), Pq(t) =
∫ ∞

0

qθMq(θ)Q(tqθ)dθ.

Proof. Let λ > 0. Applying the Laplace transform

χ(λ) =
∫ ∞

0

e−λsu(s)ds and ω(λ) =
∫ ∞

0

e−λsf(s)ds

to (3.3), we obtain

χ(λ) = λ−1u0 +
1
λq
A0χ(λ) +

1
λq
ω(λ)

= λq−1(λqI −A0)−1u0 + (λqI −A0)−1ω(λ)

= λq−1

∫ ∞
0

e−λ
qsQ(s)u0ds+

∫ ∞
0

e−λ
qsQ(s)ω(λ)ds,

(3.5)

provided that the integrals in (3.5) exist, where I is the identity operator defined
on X.

The Laplace transform of

ψq(θ) =
q

θq+1
Mq(θ−q),

is ∫ ∞
0

e−λθψq(θ)dθ = e−λ
q

, (3.6)
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where q ∈ (0, 1). Using (3.6), we have∫ ∞
0

e−λ
qsQ(s)u0ds =

∫ ∞
0

qtq−1e−(λt)q

Q(tq)u0dt

=
∫ ∞

0

∫ ∞
0

qψq(θ)e−(λtθ)Q(tq)tq−1u0dθdt

=
∫ ∞

0

∫ ∞
0

qψq(θ)e−λtQ
( tq
θq

) tq−1

θq
u0dθdt

=
∫ ∞

0

e−λt
[
q

∫ ∞
0

ψq(θ)Q
( tq
θq

) tq−1

θq
u0dθ

]
dt

=
∫ ∞

0

e−λttq−1Pq(t)u0dt

(3.7)

and ∫ ∞
0

e−λ
qsQ(s)ω(λ)ds

=
∫ ∞

0

∫ ∞
0

qtq−1e−(λt)q

Q(tq)e−λsf(s)dsdt

=
∫ ∞

0

∫ ∞
0

∫ ∞
0

qψq(θ)e−(λtθ)Q(tq)e−λstq−1f(s)dθdsdt

=
∫ ∞

0

∫ ∞
0

∫ ∞
0

qψq(θ)e−λ(t+s)Q
( tq
θq

) tq−1

θq
f(s)dθdsdt

=
∫ ∞

0

e−λt
[
q

∫ t

0

∫ ∞
0

ψq(θ)Q
( (t− s)q

θq

) (t− s)q−1

θq
f(s)dθds

]
dt

=
∫ ∞

0

e−λt
[ ∫ t

0

(t− s)q−1Pq(t− s)f(s)ds
]
dt.

(3.8)

Since the Laplace inverse transform of λq−1 is

L−1(λq−1) =
t−q

Γ(1− q)
= g1−q(t),

therefore, by (3.5), (3.7) and (3.8), for t ∈ J , we obtain

u(t) =
(
L−1(λq−1) ∗Kq(t)

)
u0 +

∫ t

0

Kq(t− s)f(s)ds

=
(
I1−q
0+ Kq(t)

)
u0 +

∫ t

0

Kq(t− s)f(s)ds.
(3.9)

This completes the proof. �

Remark 3.5. Let Sq(t) = I1−q
0+ Kq(t). By the uniqueness of Laplace inverse trans-

form, it is obvious that operators Sq(t) and Pq(t) (obtained here) are the same as
the ones given in [23]. In addition, we also obtain the relationship between Sq(t)
and Kq(t); that is, Sq(t) = I1−q

0+ Kq(t) for t ≥ 0. So, we can say that {Kq(t)}t≥0 is
generated by A0.

Proposition 3.6 ([30]). With assumption (H2), Pq(t) is continuous in the uniform
operator topology for t > 0.
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Proposition 3.7 ([23]). With assumption (H2), for any fixed t > 0, {Kq(t)}t>0

and {Sq(t)}t>0 are linear operators, and for any x ∈ X0,

|Kq(t)x| ≤
Mtq−1

Γ(q)
|x| and |Sq(t)x| ≤M |x|.

Proposition 3.8 ([23]). With assumption (H2), {Kq(t)}t>0 and {Sq(t)}t>0 are
strongly continuous, that is, for any x ∈ X0 and 0 < t′ < t′′ ≤ b,

|Kq(t′)x−Kq(t′′)x| → 0 and |Sq(t′)x− Sq(t′′)x| → 0, as t′′ → t′.

If we assume that f takes values in X0, then (3.4) can be written as

u(t) = Sq(t)u0 +
∫ t

0

Kq(t− s) lim
λ→+∞

Bλf(s)ds (3.10)

or

u(t) = Sq(t)u0 + lim
λ→+∞

∫ t

0

Kq(t− s)Bλf(s)ds, (3.11)

where Bλ = λ(λI − A)−1, since limλ→+∞Bλx = x for x ∈ X0. When f takes
values in X, but not in X0, then the limit in (3.11) exists (as we will prove). But
the limit in (3.10) will no longer exist.

Lemma 3.9. Any solution of integral equation (3.1) with values in X0 is repre-
sented by (3.11).

Proof. Let
uλ(t) = Bλu(t), fλ(t) = Bλf(t), uλ = Bλu0.

By applying Bλ to (3.1), we have

uλ(t) = uλ +A0I
q
0+uλ(t) + Iq0+fλ(t).

Hence, by Lemma 3.4, we obtain

uλ(t) = Sq(t)uλ +
∫ t

0

Kq(t− s)fλ(s)ds.

As u(t), u0 ∈ X0, we have

uλ(t)→ u(t), uλ → u0, Sq(t)uλ → Sq(t)u0, as λ→ +∞.

Thus (3.11) holds. This completes the proof. �

Let us define

Φq(t)x = lim
λ→+∞

∫ t

0

Kq(t− s)Bλx ds = lim
λ→+∞

∫ t

0

Kq(s)Bλx ds, (3.12)

for x ∈ X and t ≥ 0.

Proposition 3.10. For x ∈ X and t ≥ 0, the limit in (3.12) exists and defines a
bounded linear operator Φq(t).

Proof. Let

Φ0
q(t)x =

∫ t

0

Kq(t− s)x ds =
∫ t

0

Kq(s)x ds,

for x0 ∈ X0 and t ≥ 0. Then, the definition

Φq(t) = (λI −A)Φ0(t)(λI −A)−1,
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for λ > ω, extends Φ0
q(t) from X0 to X. This definition is independent of λ because

of the resolvent identity. As Φq(t) maps X into X0, we have

Φq(t)x = lim
λ→+∞

BλΦq(t)x = lim
λ→+∞

Φ0
q(t)Bλx.

This completes the proof. �

Proposition 3.11. For x ∈ X0 and t ≥ 0, CDq
0+Φ0

q(t)x = Sq(t)x and Sq(t)x =
AΦ0

q(t)x+ x.

The proof of the above proposition follows directly from the definitions of Sq(t)
and Φ0

q(t) for t ≥ 0.

Lemma 3.12. (i) For x ∈ X and t ≥ 0, Iq0+Φq(t) ∈ D(A) and

Φq(t)x = A
(
Iq0+Φq(t)x

)
+

tq

Γ(1 + q)
x. (3.13)

(ii) For x ∈ D(A),
Φq(t)Ax+ x = Sq(t)x. (3.14)

Proof. (i) For x ∈ X and t ≥ 0, let

V (t) = λIq0+Φ0
q(t)(λI −A)−1x+

tq

Γ(1 + q)
(λI −A)−1x− Φ0

q(t)(λI −A)−1x.

Clearly V (0) = 0. By Proposition 3.11, we have
CDq

0+V (t)

= λΦ0
q(t)(λI −A)−1x+ (λI −A)−1x− CDq

0+Φ0
q(t)(λI −A)−1x

= λΦ0
q(t)(λI −A)−1x+ (λI −A)−1x− Sq(t)(λI −A)−1x

= λΦ0
q(t)(λI −A)−1x+ (λI −A)−1x−AΦ0

q(t)(λI −A)−1x− (λI −A)−1x

= λΦ0
q(t)(λI −A)−1x−AΦ0

q(t)(λI −A)−1x

= (λI −A)Φ0
q(t)(λI −A)−1x

= Φq(t)x.

Then
V (t) = Iq0+Φq(t)x+ V (0) = Iq0+Φq(t)x

and

(λI −A)V (t) = (λI −A)Iq0+Φq(t)x = λIq0+Φq(t)x+
tq

Γ(1 + q)
x− Φq(t)x.

Thus

Φq(t)x = A
(
Iq0+Φq(t)x

)
+

tq

Γ(1 + q)
x.

(ii) For x ∈ D(A), it follows by Proposition 3.11 that

Φq(t)Ax = lim
λ→+∞

∫ t

0

Kq(s)BλAxds = lim
λ→+∞

A0

∫ t

0

Kq(s)Bλx ds

= A0Φ0
q(t)x = Sq(t)x− x.

This completes the proof. �
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Theorem 3.13. u(t) is an integral solution of (1.1) if and only if

u(t) = Sq(t)u0 + lim
λ→+∞

∫ t

0

Kq(t− s)Bλf(s)ds (3.15)

for t ∈ J and u0 ∈ X0.

Proof. In view of Lemma 3.9, we only need to show that (3.15) is the integral
solution of (1.1). Indeed it is sufficient to prove the theorem for u0 = 0, because
it can easily be proved for the special case f = 0. We complete the proof in two
steps.
Step I. Assume that f is continuously differentiable, then for t ∈ J , we have

uλ(t) =
∫ t

0

Kq(s)Bλf(s)ds

=
∫ t

0

Kq(s)Bλ
(
f(0) +

∫ s

0

f ′(r)dr
)
ds

=
∫ t

0

Kq(s)Bλf(0)ds+
∫ t

0

Kq(s)Bλ
(∫ s

0

f ′(r)dr
)
ds

= Φ0
q(t)Bλf(0) +

∫ t

0

Φ0
q(t− r)Bλf ′(r)dr.

By Lemma 3.12, for t ∈ J , we obtain

u(t) = lim
λ→+∞

uλ(t)

= Φq(t)f(0) +
∫ t

0

Φq(t− r)f ′(r)dr

= A
(
Iq0+Φq(t)f(0)

)
+

tq

Γ(1 + q)
f(0)

+
∫ t

0

[
A
(
Iq0+Φq(t− r)

)
+

(t− r)q

Γ(1 + q)

]
f ′(r)dr

= A
[
Iq0+Φq(t)f(0) +

∫ t

0

Iq0+Φq(t− r)f ′(r)dr
]

+
tq

Γ(1 + q)
f(0) +

1
Γ(1 + q)

∫ t

0

(t− r)qf ′(r)dr

= A
[
Iq0+Φq(t)f(0) + Iq0+

(∫ t

0

Φq(t− r)f ′(r)dr
)]

+
tq

Γ(1 + q)
f(0) +

1
Γ(1 + q)

∫ t

0

(t− r)qf ′(r)dr

= A
(
Iq0+u(t)

)
+ Iq0+f(t).

Step II. We approximate f by continuously differentiable functions fn such that

sup
t∈J
|f(t)− fn(t)| → 0, as n→∞.

Letting

un(t) = lim
λ→∞

∫ t

0

Kq(s)Bλfn(s)ds,
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we have
un(t) = A

(
Iq0+un(t)

)
+ Iq0+fn(t).

Then

|un(t)− um(t)| =
∣∣ lim
λ→∞

∫ t

0

Kq(s)Bλ
[
fn(s)− fm(s)

]
ds
∣∣

≤ MM

Γ(q)

∫ t

0

(t− s)q−1|fn(s)− fm(s)|ds

≤ MMbq

Γ(q)
‖fn − fm‖,

which implies that {un} is a Cauchy sequence and its limit, denoted by u(t), exists.
Taking limit on both sides of (3), we obtain

u(t) = A
(
Iq0+u(t)

)
+ Iq0+f(t), for t ∈ J.

Therefore, (3.15) is the integral solution of (1.1). This completes the proof. �

Remark 3.14. (i) Integrating the last term in (3.15) and using Proposition 3.8,
the integral solution (3.15) can be expressed as

u(t) = Sq(t)u0 +
d

dt

∫ t

0

Φq(t− s)f(s)ds.

(ii) (λqI−A)−1x = λ
∫∞
0
e−λtΦq(t)x ds for x ∈ X and λq > ω. In fact, by taking

Laplace transform of (3.13), we obtain

L[Φq(t)x] = AL[Iq0+Φq(t)x] + L[
tq

Γ(1 + q)
x]

= λ−qAL[Φq(t)x] + λ−q−1x

= λ−1(λqI −A)−1x.

(iii) We can say that A generates the operator {Φq(t)}t≥0. When q = 1,
{Φq(t)}t≥0 degenerates into {S(t)}t≥0, which is integrated semigroup generated
by A in [18].

4. Integral solution to a nonlinear Cauchy problem

In this section, we study the existence of integral solution of nonlinear fractional
evolution equation (1.2). We need the following assumptions:

(H3) for each t ∈ J , the function g(t, ·) : X → X is continuous and for each
x ∈ X, the function g(·, x) : J → X is strongly measurable;

(H4) there exists a function m ∈ L(J,R+) such that

Iq0+m(t) ∈ C(J,R+), lim
t→0+

Iq0+m(t) = 0,

|g(t, x)| ≤ m(t) for all x ∈ X and almost all t ∈ J ;

(H5) there exists a constant l > 0 such that for any bounded D ⊆ X,

β(g(t,D)) ≤ lβ(D), for a.e. t ∈ J.
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By Theorem 3.13, it is easy to see that the integral solution of (1.2) is equal to
the solution of

u(t) = Sq(t)u0 +
d

dt

∫ t

0

Φq(t− s)g(s, u(s))ds (4.1)

or

u(t) = Sq(t)u0 + lim
λ→+∞

∫ t

0

Kq(t− s)Bλg(s, u(s))ds. (4.2)

For u ∈ C(J,X0), define an operator

(T u)(t) = (T1u)(t) + (T2u)(t),

where

(T1u)(t) = Sq(t)u0 and (T2u)(t) = lim
λ→+∞

∫ t

0

Kq(t− s)Bλg(s, u(s))ds,

for all t ∈ J . Let Br(J) = {u ∈ C(J,X0) : ‖u‖ ≤ r}.

Lemma 4.1. Suppose that conditions (H1)–(H4) hold. Then {T u : u ∈ Br(J)} is
equicontinuous.

Proof. By Proposition 3.8, Sq(t)u0 is uniformly continuous on J . Consequently,
{T1u : u ∈ Br(J)} is equicontinuous.

For u ∈ Br(J), taking t1 = 0, 0 < t2 ≤ b, we obtain

|(T2u)(t2)− (T2u)(0) =
∣∣ lim
λ→+∞

∫ t2

0

Kq(t− s)Bλg(s, u(s))ds
∣∣

≤ MM

Γ(q)

∫ t2

0

(t2 − s)q−1m(s)ds→ 0, as t2 → 0.

For 0 < t1 < t2 ≤ b, we have

|(T2u)(t2)− (T2u)(t1)|

≤
∣∣∣ lim
λ→+∞

∫ t2

t1

(t2 − s)q−1Pq(t2 − s)Bλg(s, u(s))ds
∣∣∣

+
∣∣∣ lim
λ→+∞

∫ t1

0

(t2 − s)q−1Pq(t2 − s)Bλg(s, u(s))ds

− lim
λ→+∞

∫ t1

0

(t1 − s)q−1Pq(t2 − s)Bλg(s, u(s))ds
∣∣∣

+
∣∣∣ lim
λ→+∞

∫ t1

0

(t1 − s)q−1Pq(t2 − s)Bλg(s, u(s))ds

− lim
λ→+∞

∫ t1

0

(t1 − s)q−1Pq(t1 − s)Bλg(s, u(s))ds
∣∣∣

≤ MM

Γ(q)

∣∣∣ ∫ t2

t1

(t2 − s)q−1m(s)ds
∣∣∣

+
MM

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]m(s)ds

+
∣∣∣ lim
λ→+∞

∫ t1

0

(t1 − s)q−1[Pq(t2 − s)− Pq(t1 − s)]Bλg(s, u(s))ds
∣∣∣

≤ I1 + I2 + I3,
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where

I1 =
MM

Γ(q)

∣∣∣ ∫ t2

0

(t2 − s)q−1m(s)ds−
∫ t1

0

(t1 − s)q−1m(s)ds
∣∣∣,

I2 =
2MM

Γ(q)

∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
m(s)ds,

I3 =
∣∣∣ lim
λ→+∞

∫ t1

0

(t1 − s)q−1[Pq(t2 − s)− Pq(t1 − s)]Bλg(s, u(s))ds
∣∣∣.

By condition (H4), one can deduce that limt2→t1 I1 = 0. Noting that[
(t1 − s)q−1 − (t2 − s)q−1

]
m(s) ≤ (t1 − s)q−1m(s),

and
∫ t1
0

(t1 − s)q−1m(s)ds exists, it follows by Lebesgue dominated convergence
theorem that∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]m(s)ds→ 0, as t2 → t1,

which implies that limt2→t1 I2 = 0.
For ε > 0 small enough, by (H4), we have

I3 ≤M
∫ t1−ε

0

(t1 − s)q−1|Pq(t2 − s)− Pq(t1 − s)||g(s, u(s))|ds

+M

∫ t1

t1−ε
(t1 − s)q−1|Pq(t2 − s)− Pq(t1 − s)||g(s, u(s))|ds

≤M
∫ t1

0

(t1 − s)q−1m(s)ds sup
s∈[0,t1−ε]

|Pq(t2 − s)− Pq(t1 − s)|

+
2MM

Γ(q)

∫ t1

t1−ε
(t1 − s)q−1m(s)ds

≤ I31 + I32 + I33,

where

I31 =
rΓ(q)
MM

sup
s∈[0,t1−ε]

|Pq(t2 − s)− Pq(t1 − s)|,

I32 =
2MM

Γ(q)

∣∣∣ ∫ t1

0

(t1 − s)q−1m(s)ds−
∫ t1−ε

0

(t1 − ε− s)q−1m(s)ds
∣∣∣,

I33 =
2MM

Γ(q)

∫ t1−ε

0

[(t1 − ε− s)q−1 − (t1 − s)q−1]m(s)ds.

By Proposition 3.6, it follows that I31 → 0 as t2 → t1. Applying the arguments
similar to the ones employed in proving that I1, I2 tend to zero, we obtain I32 → 0
and I33 → 0 as ε → 0. Thus, I3 tends to zero independently of u ∈ Br(J) as
t2 → t1, ε→ 0. Therefore, |(T2u)(t2)− (T2u)(t1)| → 0 independently of u ∈ Br(J)
as t2 → t1, which implies that {T2u : u ∈ Br(J)} is equicontinuous. Therefore,
{T u : u ∈ B(J)} is equicontinuous. The proof is complete. �

Lemma 4.2. Assume that (H1)–(H4) hold. Then T maps Br(J) into Br(J), and
is continuous in Br(J).
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Proof. Claim I. T maps Br(J) into Br(J). Obviously, by (H4), there exists a
constant r > 0 such that

M
(
|u0|+ sup

t∈J

{ M

Γ(q)

∫ t

0

(t− s)q−1m(s)ds
})
≤ r.

For any u ∈ Br(J), by Proposition 3.7, we have

|(T u)(t)| ≤ |Sq(t)u0|+
∣∣ lim
λ→+∞

∫ t

0

Kq(t− s)Bλg(s, u(s))ds
∣∣

≤M |u0|+
MM

Γ(q)

∫ t

0

(t− s)q−1|g(s, u(s))|ds

≤M
(
|u0|+ sup

t∈J

{ M

Γ(q)

∫ t

0

(t− s)q−1m(s)ds
})
≤ r.

Hence ‖T u‖ ≤ r for any u ∈ Br(J).
Claim II. T is continuous in Br(J). For any um, u ∈ Br(J), m = 1, 2, . . . , with
limm→∞ um = u, by (H3), we have

g(t, um(t))→ g(t, u(t)) as m→∞,

for t ∈ J . On the one hand, using (H4), for each t ∈ J , we obtain

(t− s)q−1|g(s, um(s))− g(s, u(s))| ≤ 2(t− s)q−1m(s), a.e. in [0, t).

As the function s → 2(t − s)q−1m(s) is integrable for s ∈ [0, t) and t ∈ J , by
Lebesgue dominated convergence theorem, we obtain∫ t

0

(t− s)q−1|g(s, um(s))− g(s, u(s))|ds→ 0 as m→∞.

For t ∈ J , we obtain

|(T um)(t)− (T u)(t)|

≤
∣∣∣ lim
λ→+∞

∫ t

0

Kq(t− s)Bλ(g(s, um(s))− g(s, u(s)))ds
∣∣∣

≤ MM

Γ(q)

∫ t

0

(t− s)q−1|g(s, um(s))− g(s, u(s))|ds→ 0 as m→∞.

Therefore, T um → T u pointwise on J as m→∞. Hence it follows by Lemma 4.1
that T um → T u uniformly on J as m→∞ and so T is continuous. The proof is
complete. �

Theorem 4.3. Assume that (H1)–(H5) hold. Then the Cauchy problem (1.2) has
at least one integral solution in Br(J).

Proof. Let y0(t) = Sq(t)u0 for all t ∈ J and ym+1 = T ym, m = 0, 1, 2, · · · . Consider
the set H = {ym : m = 0, 1, 2, · · · }, and show that it is relatively compact.

By Lemmas 4.1 and 4.2, H is uniformly bounded and euqicontinuous on J .
Next, for any t ∈ J , we just need to show that H (t) = {ym(t),m = 0, 1, 2, · · · } is
relatively compact in X0.

By the assumption (H5) together with Lemmas 2.1 and 2.2, for any t ∈ J , we
have

β
(
H (t)

)
= β

(
{ym(t)}∞m=0

)
= β

(
{y0(t)} ∪ {ym(t)}∞m=1

)
= β

(
{ym(t)}∞m=1

)
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and

β
(
{ym(t)}∞m=1

)
= β

(
{(T ym)(t)}∞m=0

)
= β

({
Sq(t)u0 + lim

λ→+∞

∫ t

0

Kq(t− s)Bλg(s, ym(s))ds
}∞
m=0

)
= β

({
lim

λ→+∞

∫ t

0

Kq(t− s)Bλg(s, ym(s))ds
}∞
m=0

)
≤ 2MM

Γ(q)

∫ t

0

(t− s)1−qβ
(
g(s, {ym(s)}∞m=0)

)
ds

≤ 2MMl

Γ(q)

∫ t

0

(t− s)1−qβ
(
{ym(s)}∞m=0

)
ds.

Thus

β(H (t)) ≤ 2MMl

Γ(q)

∫ t

0

(t− s)1−qβ(H (s))ds.

Therefore, by generalized Grownwall’s inequality [21], we infer that β(H (t)) =
0. In consequence, H (t) is relatively compact. Hence, it follows from Ascoli-
Arzela theorem that H is relatively compact. Therefore, there exists a convergent
subsequence of {ym}∞m=0. For the sake of clarity, let limm→∞ ym = y∗ ∈ Br(J).
Thus, by continuity of the operator T , we have

y∗ = lim
m→∞

ym = lim
m→∞

T ym−1 = T
(

lim
m→∞

ym−1

)
= T y∗,

which implies the Cauchy problem (1.2) has least an integral solution. �

5. An example

As an application of our results we consider the fractional time partial differential
equation

∂q

∂tq
z(t, x) =

∂2

∂x2
z(, x) +G(t, z(t, x)), x ∈ [0, π], t ∈ (0, b], 0 < q < 1,

z((t, 0) = z(t, π) = 0, t ∈ (0, b],

z(0, x) = z0, x ∈ [0, π],

(5.1)

where G : [0, b]× R→ R is a given function. Let

u(t)(x) = z(t, x), t ∈ [0, b], x ∈ [0, π],

g(t, u)(x) = G(t, u(x)), t ∈ [0, b], x ∈ [0, π].

We choose X = C([0, π],R) endowed with the uniform topology and consider the
operator A : D(A) ⊂ X → X defined by:

D(A) = {u ∈ C2([0, π],R) : u(0) = u(π) = 0}, Au = u′′.

It is well known that the operator A satisfies the Hille-Yosida condition with
(0,+∞) ⊂ ρ(A), ‖(λI −A)−1‖ ≤ 1

λ for λ > 0, and

D(A) = {u ∈ X : u(0) = u(π) = 0} 6= X.

We can show that problem (1.2) is an abstract formulation of problem (5.1). Under
suitable conditions, Theorem 4.3 implies that problem (5.1) has a unique solution
z on [0, b]× [0, π].
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Concluding remarks. In this article, we have obtained the integral solution for
nonhomogeneous Cauchy problem (1.1) and established the relationship between
{Sq(t)}t≥0 and {Kq(t)}t≥0. Also sufficient conditions ensuring the existence of inte-
gral solutions to nonlinear Cauchy problem (1.2), involving a linear closed operator
A of Hille-Yosida type with not densely defined domain, are presented.

For further research, we propose the following open problem: How to establish
the existence of an integral solution to fractional evolution equation (1.2) when
linear closed operator A is not a Hille-Yosida type and its domain is not densely
defined?
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