FIRST-ORDER SELFADJOINT SINGULAR DIFFERENTIAL operators in a hilbert space of vector functions

PEMBE IPEK, BÜLENT YILMAZ, ZAMEDDIN I. ISMAILOV
Communicated by Ludmila Pulkina

Abstract

In this article, we give a representation of all selfadjoint extensions of the minimal operator generated by first-order linear symmetric multipoint singular differential expression, with operator coefficient in the direct sum of Hilbert spaces of vector-functions defined at the semi-infinite intervals. To this end we use the Calkin-Gorbachuk method. Finally, the geometry of spectrum set of such extensions is researched.

1. Introduction

In the first years of the previous century, von Neumann [11] and Stone 10 investigated the theory of selfadjoint extensions of linear densely defined closed symmetric operators in a Hilbert spaces. Applications to scalar linear even order symmetric differential operators and description of all selfadjoint extensions in terms of boundary conditions due to Glazman in his seminal work 5 and in the book of Naimark [8]. In this sense the famous Glazman-Krein-Naimark (or Everitt-Krein-Glazman-Naimark) Theorem in the mathematical literature it is to be noted. In the mathematical literature there is another method co-called Calkin-Gorbachuk method. (see [6, 9]).

Our motivation for this article originates from the interesting researches of Everitt, Markus, Zettl, Sun, O'Regan, Agarwal [2, 3, 4, 12] in scalar cases. Throughout this paper we consider Zettl and Suns's view about these topics [12]. A selfadjoint ordinary differential operator in Hilbert space is generated by two things:
(1) a symmetric (formally selfadjoint) differential expression;
(2) a boundary condition which determined selfadjoint differential operators;

And also for a given selfadjoint differential operator, a basic question is: What is its spectrum?

In this work in Section 3 the representation of all selfadjoint extensions of a multipoint symmetric quasi-differential operator, generated by first-order symmetric differential-operator expression (for the definition see (4) in the direct sum of Hilbert spaces of vector-functions defined at the semi-infinite intervals in terms of

[^0]boundary conditions are described. In sec. 4 the structure of spectrum of these selfadjoint extensions is investigated.

2. Statement of the problem

In the direct sum $\mathcal{H}=L^{2}\left(H,\left(-\infty, a_{1}\right)\right) \oplus L^{2}\left(H,\left(a_{2}, \infty\right)\right), H$ is a separable Hilbert space, and $a_{1}, a_{2} \in \mathbb{R}$ will be considered for the multipoint differential-operator expression in the form

$$
\begin{gathered}
l(u)=\left(l_{1}\left(u_{1}\right), l_{2}\left(u_{2}\right)\right) \\
l_{k}\left(u_{k}\right)=i \rho_{k} u_{k}^{\prime}+\frac{1}{2} i \rho_{k}^{\prime} u_{k}+A_{k} u_{k}, \quad k=1,2
\end{gathered}
$$

where
(1) $\rho_{1}:\left(-\infty, a_{1}\right) \rightarrow(0, \infty), \rho_{2}:\left(a_{2}, \infty\right) \rightarrow(0, \infty)$;
(2) $\rho_{1} \in A C_{l o c}\left(-\infty, a_{1}\right)$ and $\rho_{2} \in A C_{l o c}\left(a_{2}, \infty\right)$;
(3) $\int_{-\infty}^{a_{1}} \frac{d s}{\rho_{1}(s)}=\infty, \int_{a_{2}}^{\infty} \frac{d s}{\rho_{2}(s)}=\infty$;
(4) $A_{k}^{*}=A_{k}: D\left(A_{k}\right) \subset H \rightarrow H, k=1,2$.

The minimal operators L_{0}^{1} and L_{0}^{2} corresponding to differential-operator expressions l_{1} and l_{2} in $L^{2}\left(H,\left(-\infty, a_{1}\right)\right)$ and $L^{2}\left(H,\left(a_{2}, \infty\right)\right)$, respectively, can be defined by a standard processes, see $\left[7\right.$. The operators $L_{1}=\left(L_{0}^{1}\right)^{*}$ and $L_{2}=\left(L_{0}^{2}\right)^{*}$ are maximal operators corresponding to l_{1} and l_{2} in $L^{2}\left(H,\left(-\infty, a_{1}\right)\right)$ and $L^{2}\left(H,\left(a_{2}, \infty\right)\right)$, respectively. In this case the operators

$$
L_{0}=L_{0}^{1} \oplus L_{0}^{2} \quad \text { and } \quad L=L^{1} \oplus L^{2}
$$

will be indicating the minimal and maximal operators corresponding to differential expression on \mathcal{H}, respectively.

It is clear that

$$
\begin{aligned}
D\left(L^{1}\right)= & \left\{u_{1} \in L^{2}\left(H,\left(-\infty, a_{1}\right)\right): l_{1}\left(u_{1}\right) \in L^{2}\left(H,\left(-\infty, a_{1}\right)\right\}\right. \\
& D\left(L_{0}^{1}\right)=\left\{u_{1} \in D\left(L^{1}\right):\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)=0\right\}
\end{aligned}
$$

and

$$
\begin{gathered}
D\left(L^{2}\right)=\left\{u_{2} \in L^{2}\left(H,\left(a_{2}, \infty\right)\right): l_{2}\left(u_{2}\right) \in L^{2}\left(H,\left(a_{2}, \infty\right)\right\},\right. \\
D\left(L_{0}^{2}\right)=\left\{u_{2} \in D\left(L^{2}\right):\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=0\right\}
\end{gathered}
$$

3. Description of Selfadjoint Extensions

In this section using the Calkin-Gorbachuk method will be investigated the general representation of selfadjoint extensions of minimal operator L_{0}. Firstly we prove the following result.
Lemma 3.1. The deficiency indices of the operators L_{0}^{1} and L_{0}^{2} are of the form

$$
\left(m\left(L_{0}^{1}\right), n\left(L_{0}^{1}\right)\right)=(0, \operatorname{dim} H), \quad\left(m\left(L_{0}^{2}\right), n\left(L_{0}^{2}\right)\right)=(\operatorname{dim} H, 0)
$$

Proof. Now for simplicity we assume that $A_{1}=A_{2}=0$. It is clear that the general solutions of differential equations

$$
\begin{aligned}
& i \rho_{1}(t) u_{1 \pm}^{\prime}(t)+\frac{1}{2} i \rho_{1}^{\prime}(t) u_{1 \pm}(t) \pm i u_{1 \pm}(t)=0, \quad t<a_{1} \\
& i \rho_{2}(t) u_{2 \pm}^{\prime}(t)+\frac{1}{2} i \rho_{2}^{\prime}(t) u_{2 \pm}(t) \pm i u_{2 \pm}(t)=0, \quad t>a_{2}
\end{aligned}
$$

in $L^{2}\left(H,\left(-\infty, a_{1}\right)\right)$ and $L^{2}\left(H,\left(a_{2},+\infty\right)\right)$ are in the form

$$
u_{1 \pm}(t)=\exp \left(\pm \int_{t}^{c_{1}} \frac{2 \pm \rho_{1}^{\prime}(s)}{2 \rho_{1}(s)} d s\right) f_{1}, \quad f_{1} \in H, t<a_{1}, c_{1}<a_{1}
$$

and

$$
u_{2 \pm}(t)=\exp \left(\mp \int_{c_{2}}^{t} \frac{2 \pm \rho_{2}^{\prime}(s)}{2 \rho_{2}(s)} d s\right) f_{2}, \quad f_{2} \in H, t>a_{2}, c_{2}>a_{2}
$$

respectively. From these representations we have

$$
\begin{aligned}
& \left\|u_{1+}\right\|_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}^{2} \\
& =\int_{-\infty}^{a_{1}}\left\|u_{1+}(t)\right\|_{H}^{2} d t \\
& =\int_{-\infty}^{a_{1}} \exp \left(\int_{t}^{c_{1}} \frac{2+\rho_{1}^{\prime}(s)}{\rho_{1}(s)} d s\right) d t\left\|f_{1}\right\|_{H}^{2} \\
& =\int_{-\infty}^{a_{1}} \frac{\rho_{1}\left(c_{1}\right)}{\rho_{1}(t)} \exp \left(\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right) d t\left\|f_{1}\right\|_{H}^{2} \\
& =\frac{\rho_{1}\left(c_{1}\right)}{2} \int_{-\infty}^{a_{1}} \exp \left(\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right) d\left(-\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)\left\|f_{1}\right\|_{H}^{2} \\
& =-\frac{\rho_{1}\left(c_{1}\right)}{2}\left[\exp \left(\int_{a_{1}}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)-\exp \left(\int_{-\infty}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)\right]\left\|f_{1}\right\|_{H}^{2}=\infty
\end{aligned}
$$

Consequently,

$$
\operatorname{dim} \operatorname{ker}\left(L_{0}^{1}+i E\right)=0
$$

On the other hand it is clear that

$$
\begin{aligned}
& \left\|u_{1-}\right\|_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}^{2} \\
& =\int_{-\infty}^{a_{1}}\left\|u_{1-}(t)\right\|_{H}^{2} d t \\
& =\int_{-\infty}^{a_{1}} \exp \left(-\int_{t}^{c_{1}} \frac{2+\rho_{1}^{\prime}(s)}{\rho_{1}(s)} d s\right) d t\left\|f_{1}\right\|_{H}^{2} \\
& =\int_{-\infty}^{a_{1}} \frac{\rho_{1}\left(c_{1}\right)}{\rho_{1}(t)} \exp \left(-\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right) d t\left\|f_{1}\right\|_{H}^{2} \\
& =\frac{\rho_{1}\left(c_{1}\right)}{2} \int_{-\infty}^{a_{1}} \exp \left(-\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right) d\left(-\int_{t}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)\left\|f_{1}\right\|_{H}^{2} \\
& =\frac{\rho_{1}\left(c_{1}\right)}{2}\left[\exp \left(-\int_{a_{1}}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)-\exp \left(-\int_{-\infty}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)\right]\left\|f_{1}\right\|_{H}^{2} \\
& =\frac{\rho_{1}\left(c_{1}\right)}{2} \exp \left(-\int_{a_{1}}^{c_{1}} \frac{2}{\rho_{1}(s)} d s\right)\left\|f_{1}\right\|_{H}^{2}<\infty
\end{aligned}
$$

Therefore,

$$
u_{1-}(t)=\exp \left(\int_{a_{1}}^{t} \frac{2-\rho_{1}^{\prime}(s)}{2 \rho_{1}(s)} d s\right) f_{1} \in L^{2}\left(H,\left(-\infty, a_{1}\right)\right)
$$

Hence

$$
\operatorname{dim} \operatorname{ker}\left(L_{0}^{1}-i E\right)=\operatorname{dim} H
$$

In a similar way it can be shown that

$$
m\left(L_{0}^{2}\right)=\operatorname{dim} \operatorname{ker}\left(L_{0}^{2}+i E\right)=\operatorname{dim} H \quad \text { and } \quad n\left(L_{0}^{2}\right)=\operatorname{dim} \operatorname{ker}\left(L_{0}^{2}-i E\right)=0
$$

This completes the proof.
Consequently, the minimal operator L_{0} has selfadjoint extensions; see 6]. To describe these extensions we need to obtain the space of boundary values.

Definition 3.2 (6]). Let H be any Hilbert space and $S: D(S) \subset H \rightarrow H$ be a closed densely defined symmetric operator in the Hilbert space \mathcal{H} having equal finite or infinite deficiency indices. A triplet $\left(\mathcal{B}, \gamma_{1}, \gamma_{2}\right)$, where \mathcal{B} is a Hilbert space, γ_{1} and γ_{2} are linear mappings from $D\left(S^{*}\right)$ into \mathcal{B}, is called a space of boundary values for the operator S if for any $f, g \in D\left(S^{*}\right)$

$$
\left(S^{*} f, g\right)_{H}-\left(f, S^{*} g\right)_{H}=\left(\gamma_{1}(f), \gamma_{2}(g)\right)_{\mathcal{B}}-\left(\gamma_{2}(f), \gamma_{1}(g)\right)_{\mathcal{B}}
$$

while for any $F_{1}, F_{2} \in \mathcal{B}$, there exists an element $f \in D\left(S^{*}\right)$ such that $\gamma_{1}(f)=F_{1}$ and $\gamma_{2}(f)=F_{2}$.

Lemma 3.3. Let

$$
\begin{array}{ll}
\gamma_{1}: D(L) \rightarrow H, & \gamma_{1}(u)=\frac{1}{i \sqrt{2}}\left(\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)+\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)\right), \\
\gamma_{2}: D(L) \rightarrow H, & \gamma_{2}(u)=\frac{1}{\sqrt{2}}\left(\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)-\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)\right),
\end{array}
$$

where $u=\left(u_{1}, u_{2}\right) \in D(L)$. Then the triplet $\left(H, \gamma_{1}, \gamma_{2}\right)$ is a space of boundary values of the minimal operator L_{0} in \mathcal{H}.

Proof. For any $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in D(L)$

$$
\begin{aligned}
&(L u, v)_{\mathcal{H}}-(u, L v)_{\mathcal{H}} \\
&=\left(L_{1} u_{1}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+\left(L_{2} u_{2}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}-\left(u_{1}, L_{1} v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)} \\
&-\left(u_{2}, L_{2} v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)} \\
&= {\left[\left(i \rho_{1} u_{1}^{\prime}+\frac{i}{2} \rho_{1}^{\prime} u_{1}+A_{1} u_{1}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}\right.} \\
&\left.-\left(u_{1}, i \rho_{1} v_{1}^{\prime}+\frac{i}{2} \rho_{1}^{\prime} v_{1}+A_{1} v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}\right] \\
&+\left[\left(i \rho_{2} u_{2}^{\prime}+\frac{i}{2} \rho_{2}^{\prime} u_{2}+A_{2} u_{2}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right. \\
&\left.-\left(u_{2}, i \rho_{2} v_{2}^{\prime}+\frac{i}{2} \rho_{2}^{\prime} v_{2}+A_{2} v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right] \\
&= i\left[\left(\rho_{1} u_{1}^{\prime}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+\left(u_{1}, \rho_{1} v_{1}^{\prime}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}\right] \\
&+\frac{i}{2}\left[\left(\rho_{1}^{\prime} u_{1}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+\left(u_{1}, \rho_{1}^{\prime} v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}\right] \\
&+i\left[\left(\rho_{2} u_{2}^{\prime}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}+\left(u_{2}, \rho_{2} v_{2}^{\prime}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right] \\
&+\frac{i}{2}\left[\left(\rho_{2}^{\prime} u_{2}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}+\left(u_{2}, \rho_{2}^{\prime} v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right] \\
&= i\left[\left(\rho_{1} u_{1}^{\prime}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+\left(u_{1}, \rho_{1} v_{1}^{\prime}\right)_{\left.L^{2}\left(H,\left(-\infty, a_{1}\right)\right)\right]+i\left(\rho_{1}^{\prime} u_{1}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}}\right. \\
& \quad+i\left[\left(\rho_{2} u_{2}^{\prime}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}+\left(u_{2}, \rho_{1} v_{2}^{\prime}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right]+i\left(\rho_{2}^{\prime} u_{2}, v_{2}\right) L_{\left(H,\left(a_{2}, \infty\right)\right)} \\
&= i\left[\left(\rho_{1} u_{1}^{\prime}+\rho_{1} u_{1}, v_{1}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+\left(\rho_{1} u_{1}, v_{1}^{\prime}\right)_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}\right] \\
&+i\left[\left(\rho_{2} u_{2}^{\prime}+\rho_{2} u_{2}, v_{2}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}+\left(\rho_{2} u_{2}, v_{2}^{\prime}\right)_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}\right] \\
&= i\left[\left(\left(\rho_{1} u_{1}\right), v_{1}\right)^{\prime}\right]_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}+i\left[\left(\left(\rho_{2} u_{2}\right), v_{2}\right)^{\prime}\right]_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =i\left[\left(\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right),\left(\sqrt{\rho_{2}} v_{2}\right)\left(a_{2}\right)\right)_{H}-\left(\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right),\left(\sqrt{\rho_{1}} v_{1}\right)\left(a_{1}\right)\right)_{H}\right] \\
& =\left(\gamma_{1}(u), \gamma_{2}(v)\right)_{H}-\left(\gamma_{2}(u), \gamma_{1}(v)\right)_{H} .
\end{aligned}
$$

Now for any element $f_{1}, f_{2} \in H$ let us find the function $u=\left(u_{1}, u_{2}\right) \in D(L)$ such that

$$
\begin{aligned}
& \gamma_{1}(u)=\frac{1}{i \sqrt{2}}\left(\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)+\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)\right)=f_{1} \\
& \gamma_{2}(u)=\frac{1}{\sqrt{2}}\left(\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)-\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)\right)=f_{2}
\end{aligned}
$$

From here the following two expressions are obtained

$$
\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)=\left(i f_{1}+f_{2}\right) / \sqrt{2}, \quad\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=\left(i f_{1}-f_{2}\right) / \sqrt{2}
$$

If we choose the functions $u_{1}(\cdot), u_{2}(\cdot)$ in the following forms

$$
\begin{aligned}
& u_{1}(t)=\frac{1}{\sqrt{\rho_{1}(t)}} e^{t-a_{1}}\left(i f_{1}+f_{2}\right) / \sqrt{2}, \quad t<a_{1} \\
& u_{2}(t)=\frac{1}{\sqrt{\rho_{2}(t)}} e^{a_{2}-t}\left(i f_{1}-f_{2}\right) / \sqrt{2}, \quad t>a_{2}
\end{aligned}
$$

then it is clear that $u=\left(\sqrt{\rho_{1}} u_{1}, \sqrt{\rho_{2}} u_{2}\right) \in D(L)$ and $\gamma_{1}(u)=f_{1}, \gamma_{2}(u)=f_{2}$.
Theorem 3.4. If \widetilde{L} is a selfadjoint extension of the minimal operator L_{0} in \mathcal{H} , then it is generated by the differential-operator expression $l(\cdot)$ and the following boundary condition

$$
\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=W\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)
$$

where $W: H \rightarrow H$ is a unitary operator. Moreover, the unitary operator W in H is determined uniquely by the extension \widetilde{L}, i.e. $\widetilde{L}=L_{W}$ and vice versa.

4. Spectrum of the Selfadjoint Extensions

In this section the structure of the spectrum of the selfadjoint extensions L_{W} of the minimal operator L_{0} in \mathcal{H} will be investigated. First let us prove the following results.

Theorem 4.1. The point spectrum of the selfadjoint extension L_{W} is empty, i.e. $\sigma_{p}\left(L_{W}\right)=\emptyset$.

Proof. Consider the eigenvalue problem

$$
l(u)=\lambda u, \quad u=\left(u_{1}, u_{2}\right) \in \mathcal{H}, \quad \lambda \in \mathbb{R}
$$

with the boundary condition

$$
\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=W\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)
$$

From here the following expressions are obtained

$$
\begin{gathered}
i \rho_{1}(t) u_{1}^{\prime}(t)+\frac{1}{2} i \rho_{1}^{\prime}(t) u_{1}(t)+A_{1} u_{1}(t)=\lambda u_{1}(t), \quad t<a_{1} \\
i \rho_{2}(t) u_{2}^{\prime}(t)+\frac{1}{2} i \rho_{2}^{\prime}(t) u_{2}(t)+A_{2} u_{2}(t)=\lambda u_{2}(t), \quad t>a_{2} \\
\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=W\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right)
\end{gathered}
$$

The general solutions of these equations are in the form

$$
\begin{gathered}
u_{1}(t ; \lambda)=\sqrt{\frac{\rho_{1}(c)}{\rho_{1}(t)}} \exp \left(-i\left(A_{1}-\lambda\right) \int_{t}^{c} \frac{d s}{\rho_{1}(s)}\right) f_{\lambda}^{1}, \quad f_{\lambda}^{1} \in H, \quad t<a_{1}, c<a_{1} \\
u_{2}(t ; \lambda)=\sqrt{\frac{\rho_{2}(c)}{\rho_{2}(t)}} \exp \left(i\left(A_{2}-\lambda\right) \int_{c}^{t} \frac{d s}{\rho_{2}(s)}\right) f_{\lambda}^{2}, \quad f_{\lambda}^{2} \in H, \quad t>a_{2}, c>a_{2} \\
\left(\sqrt{\rho_{2}} u_{2}\right)\left(a_{2}\right)=W\left(\sqrt{\rho_{1}} u_{1}\right)\left(a_{1}\right) .
\end{gathered}
$$

It is clear that for the $f_{\lambda}^{1} \neq 0$ and $f_{\lambda}^{2} \neq 0$ the solutions are $u_{1}(\cdot ; \lambda) \notin L^{2}\left(H,\left(-\infty, a_{1}\right)\right)$ and $u_{2}(\cdot ; \lambda) \notin L^{2}\left(H,\left(a_{2}, \infty\right)\right)$. Therefore for every unitary operator W we have $\sigma_{p}\left(L_{W}\right)=\emptyset$.

Since the residual spectrum for any selfadjoint operator in any Hilbert space is empty, then we have to investigate the continuous spectrum of selfadjoint extensions L_{W} of the minimal operator L_{0} is investigated. On the other hand from the general theory of linear selfadjoint operators in Hilbert spaces for the resolvent set $\rho\left(L_{W}\right)$ of any selfadjoint extension L_{W} is true

$$
\rho\left(L_{W}\right) \supset\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda \neq 0\}
$$

For the continuous spectrum of selfadjoint extensions we have the following statement.

Theorem 4.2. The continuous spectrum of any selfadjoint extension L_{W} in of the form

$$
\sigma_{c}\left(L_{W}\right)=\mathbb{R}
$$

Proof. For $\lambda \in \mathbb{C}, \lambda_{i}=\operatorname{Im} \lambda>0$ and $f=\left(f_{1}, f_{2}\right) \in \mathcal{H}$ the norm of function $R_{\lambda}\left(L_{W}\right) f(t)$ in \mathcal{H} we have

$$
\begin{aligned}
&\left.\| R_{\lambda}\left(L_{W}\right)\right) f(t) \|_{\mathcal{H}}^{2} \\
&= \| \frac{1}{\rho_{1}(t)} \exp \left(i\left(\lambda-A_{1}\right) \int_{t}^{a_{1}} \frac{d s}{\rho_{1}(s)}\right) f_{\lambda}^{1} \\
&+\frac{i}{\sqrt{\rho_{1}(t)}} \int_{t}^{a_{1}} \exp \left(i\left(A_{1}-\lambda\right) \int_{s}^{t} \frac{d \tau}{\rho_{1}(\tau)}\right) \frac{f_{1}(s)}{\sqrt{\rho_{1}(s)}} d s \|_{L^{2}\left(H,\left(-\infty, a_{1}\right)\right)}^{2} \\
& \quad+\left\|\frac{i}{\sqrt{\rho_{2}(t)}} \int_{t}^{\infty} \exp \left(i\left(A_{2}-\lambda\right) \int_{s}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right) \frac{f_{2}(s)}{\sqrt{\rho_{2}(s)}} d s\right\|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2} \\
& \geq\left\|\frac{i}{\sqrt{\rho_{2}(t)}} \int_{t}^{\infty} \exp \left(i\left(A_{2}-\lambda\right) \int_{s}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right) \frac{f_{2}(s)}{\sqrt{\rho_{2}(s)}} d s\right\|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2}
\end{aligned}
$$

The vector functions $f^{*}(t ; \lambda)$ in the form

$$
f^{*}(t ; \lambda)=\left(0, \frac{1}{\sqrt{\rho_{2}(t)}} \exp \left(-i\left(\bar{\lambda}-A_{2}\right) \int_{a_{2}}^{t} \frac{d s}{\rho_{2}(s)}\right) f\right)
$$

with $\lambda \in \mathbb{C}, \lambda_{i}=\operatorname{Im} \lambda>0, f \in H$ belong to \mathcal{H}. Indeed,

$$
\begin{aligned}
\left\|f^{*}(t ; \lambda)\right\|_{\mathcal{H}}^{2} & =\int_{a_{2}}^{\infty} \frac{1}{\rho_{2}(t)}\left\|\exp \left(-i\left(\bar{\lambda}-A_{2}\right) \int_{a_{2}}^{t} \frac{d s}{\rho_{2}(s)}\right) f\right\|_{H}^{2} d t \\
& =\int_{a_{2}}^{\infty} \frac{1}{\rho_{2}(t)} \exp \left(-2 \lambda_{i} \int_{a_{2}}^{t} \frac{d s}{\rho_{2}(s)}\right) d t\|f\|_{H}^{2}
\end{aligned}
$$

$$
=\frac{1}{2 \lambda_{i}}\|f\|_{H}^{2}<\infty
$$

For such functions $f^{*}(\cdot ; \lambda)$ we have

$$
\begin{aligned}
\| & R_{\lambda}\left(L_{W}\right) f^{*}(\lambda ; \cdot) \|_{\mathcal{H}}^{2} \\
\geq & \| \frac{i}{\sqrt{\rho_{2}(t)}} \int_{t}^{\infty} \frac{1}{\rho_{2}(s)} \exp \left(i\left(A_{2}-\lambda\right) \int_{s}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right. \\
& \left.-i\left(\bar{\lambda}-A_{2}\right) \int_{a_{2}}^{s} \frac{d \tau}{\rho_{2}(\tau)}\right) f d s \|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2} \\
= & \| \frac{1}{\sqrt{\rho_{2}(t)}} \exp \left(-i \lambda \int_{a_{2}}^{t} \frac{d \tau}{\rho_{2}(\tau)}+i A_{2} \int_{a_{2}}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right) \\
& \times \int_{t}^{\infty} \frac{1}{\rho_{2}(s)} \exp \left(-2 \lambda_{i} \int_{a_{2}}^{s} \frac{d \tau}{\rho_{2}(\tau)}\right) f d s \|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2} \\
= & \left\|\frac{1}{\sqrt{\rho_{2}(t)}} \exp \left(\lambda_{i} \int_{a_{2}}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right) \int_{t}^{\infty} \frac{1}{\rho_{2}(s)} \exp \left(-2 \lambda_{i} \int_{a_{2}}^{s} \frac{d \tau}{\rho_{2}(\tau)}\right) d s\right\|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2} \\
& \times\|f\|_{H}^{2} \\
= & \left\|\frac{1}{2 \lambda_{i}} \exp \left(-\lambda_{i} \int_{a_{2}}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right)\right\|_{L^{2}\left(H,\left(a_{2}, \infty\right)\right)}^{2}\|f\|_{H}^{2} \\
= & \frac{1}{4 \lambda_{i}^{2}} \int_{a_{2}}^{\infty} \frac{1}{\rho_{2}(t)} \exp \left(-2 \lambda_{i} \int_{a_{2}}^{t} \frac{d \tau}{\rho_{2}(\tau)}\right) d t\|f\|_{H}^{2} \\
= & \frac{1}{8 \lambda_{i}^{3}}\|f\|_{H}^{2} .
\end{aligned}
$$

From this we have

$$
\left\|R_{\lambda}\left(L_{W}\right) f^{*}(\cdot ; \lambda)\right\|_{\mathcal{H}} \geq \frac{\|f\|_{H}^{2}}{2 \sqrt{2} \lambda_{i} \sqrt{\lambda_{i}}}=\frac{1}{2 \lambda_{i}}\left\|f^{*}(t ; \lambda)\right\|_{\mathcal{H}} .
$$

Then for $\lambda_{i}=\operatorname{Im} \lambda>0$ and $f \neq 0$ the following inequality is valid

$$
\frac{\left\|R_{\lambda}\left(L_{W}\right) f^{*}(\cdot, \lambda)\right\|_{\mathcal{H}}}{\left\|f^{*}(\lambda ; t)\right\|_{\mathcal{H}}} \geq \frac{1}{2 \lambda_{i}}
$$

On the other hand it is clear that

$$
\left\|R_{\lambda}\left(L_{W}\right)\right\| \geq \frac{\left\|R_{\lambda}\left(L_{W}\right) f^{*}(\cdot ; \lambda)\right\|_{\mathcal{H}}}{\left\|f^{*}(\cdot ; \lambda)\right\|_{\mathcal{H}}}, \quad f \neq 0
$$

Consequently, for $\lambda \in \mathbb{C}$ and $\lambda_{i}=\operatorname{Im} \lambda>0$ we have

$$
\left\|R_{\lambda}\left(L_{W}\right)\right\| \geq \frac{1}{2 \lambda_{i}}
$$

Remark 4.3. In the special case $\rho_{k}=1, k=1,2$, similar results have been obtained in [1].

As an example all selfadjoint extensions L_{φ} of the minimal operator L_{0}, generated by the multipoint differential expression

$$
l(u)=\left(l_{1}\left(u_{1}\right), l_{2}\left(u_{2}\right)\right)
$$

$$
\begin{aligned}
= & \left(i t u_{1}^{\prime}(t, x)+\frac{1}{2} i u_{1}(t, x)-\frac{\partial^{2} u_{1}}{\partial x^{2}}(t, x), i \sqrt{t} u_{2}^{\prime}(t, x)\right. \\
& \left.+\frac{1}{4 \sqrt{t}} i u_{2}(t, x)-\frac{\partial^{2} u_{2}}{\partial x^{2}}(t, x)\right)
\end{aligned}
$$

with boundary conditions

$$
\begin{gathered}
u_{1}(t, 0)=u_{1}(t, 1), \quad u_{1}^{\prime}(t, 0)=u_{1}^{\prime}(t, 1), \quad t<-1, \\
u_{2}(t, 0)=u_{2}(t, 1), \quad u_{2}^{\prime}(t, 0)=u_{2}^{\prime}(t, 1), \quad t>1
\end{gathered}
$$

in the direct sum $L^{2}((-\infty,-1) \times(0,1)) \oplus L^{2}((1, \infty) \times(0,1))$ in terms of boundary conditions are described the boundary condition

$$
\left(t^{1 / 4} u_{2}(t)\right)(1, x)=e^{i \varphi}\left(\sqrt{t} u_{1}(t)\right)(-1, x), \quad \varphi \in[0,2 \pi), x \in(0,1)
$$

Moreover, the spectrum of such extension is

$$
\sigma\left(L_{\varphi}\right)=\sigma_{c}\left(L_{\varphi}\right)=\mathbb{R}
$$

References

[1] Bairamov, E; Öztürk Mert, R; Ismailov, Z.; Selfadjoint extensions of a singular differential operator. J. Math. Chem. 2012; 50: 1100-1110.
[2] El-Gebeily, M. A.; O'Regan, D.; Agarwal, R.; Characterization of self-adjoint ordinary differential operators. Mathematical and Computer Modelling 2011; 54: 659-672.
[3] Everitt, W. N.; Markus, L.; The Glazman-Krein-Naimark Theorem for ordinary differential operators. Operator Theory, Advances and Applications 1997; 98: 118-130.
[4] Everitt, W. N.; Poulkou. A.; Some observations and remarks on differential operators generated by first order boundary value problems. Journal of Computational and Applied Mathematics 2003; 153: 201-211.
[5] Glazman, I. M.; On the theory of singular differential operators. Uspehi Math. Nauk 1962; 40, 102-135, (1950). English translation in Amer. Math. Soc. Translations (1), 4: 1962, 331-372.
[6] Gorbachuk, V. I.; Gorbachuk, M. I.; Boundary value problems for operator differential equations. Kluwer, Dordrecht: 1991.
[7] Hörmander, L.; On the theory of general partial differential operators. Acta Mathematica 1955; 94: 161-248.
[8] Naimark, M. A.; Linear differential operators, II. NewYork: Ungar, 1968.
[9] Rofe-Beketov, F. S.; Kholkin, A. M.; Spectral analysis of differential operators. World Scientific Monograph Series in Mathematics 2005; 7.
[10] Stone, M. H.; Linear transformations in Hilbert space and their applications in analysis. Amer. Math. Soc. Collag. 1932; 15: 49-31.
[11] von Neumann, J.; Allgemeine eigenwerttheories hermitescher funktionaloperatoren. Math. Ann. 1929-1930; 102: 49-31.
[12] Zettl, A.; Sun, J.; Survey Article: Self-Adjoint ordinary differential operators and their spectrum. Rosky Mountain Journal of Mathematics 2015; 45,1: 763-886.

Pembe Ipek
Karadeniz Technical University, Institute of Natural Sciences, 61080, Trabzon, Turkey
E-mail address: ipekpembe@gmail.com
Bülent Yilmaz
Marmara University, Department of Mathematics, Kadiköy, 34722, Istanbul, Turkey
E-mail address: bulentyilmaz@marmara.edu.tr
Zameddin I. Ismailov
Karadeniz Technical University, Department of Mathematics, 61080, Trabzon, Turkey
E-mail address: zameddin.ismailov@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47A10, 47B25.
 Key words and phrases. Multipoint singular differential expression; deficiency indeces; symmetric and selfadjoint differential operator; spectrum.
 (C)2017 Texas State University.

 Submitted March 17, 2018. Published June 17, 2017.

