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WELL-POSEDNESS OF WEAK SOLUTIONS TO
ELECTRORHEOLOGICAL FLUID EQUATIONS WITH

DEGENERACY ON THE BOUNDARY

HUASHUI ZHAN, JIE WEN

Communicated by Zhaosheng Feng

Abstract. In this article we study the electrorheological fluid equation

ut = div(ρα|∇u|p(x)−2∇u),

where ρ(x) = dist(x, ∂Ω) is the distance from the boundary, p(x) ∈ C1(Ω),

and p− = minx∈Ω p(x) > 1. We show how the degeneracy of ρα on the
boundary affects the well-posedness of the weak solutions. In particular, the

local stability of the weak solutions is established without any boundary value

condition.

1. Introduction

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω, and p(x) is a
measurable function. The evolutionary p(x)-Laplacian equation

ut = div(|∇u|p(x)−2∇u), (x, t) ∈ QT = Ω× (0, T ), (1.1)

comes from a new interesting type of fluids called electrorheological fluids [1, 10]. We
consider an electromagnetic field with vector of magnetic density ~B = (0, 0, u(x, t)),
where x = (x1, x2) ∈ Ω ⊂ R2. Let ~H = (H1, H2, H3) be a magnetic field intensity,
~J = (J1, J2, J3) be a current density, ~E = (E1, E2, E3) be an electrostatic field
intensity and r be a resistivity. Review Maxwell’s equations

∂ ~B

∂t
+ rot ~E = 0, (1.2)

~J ≈ rot ~H, (1.3)

~B = λ ~H, (1.4)

~E = r ~J, (1.5)
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Hölder’s inequality; local stability.
c©2017 Texas State University.

Submitted August 12, 2016. Published January 12, 2017.

1



2 H. ZHAN, J. WEN EJDE-2017/13

where λ > 0. By (1.4), we have H3 = u/λ. Therefore,

J1 ≈
∂H3

∂x2
− ∂H2

∂x3
=

1
λ

∂u

∂x2
,

J2 ≈
∂H1

∂x3
− ∂H3

∂x1
= − 1

λ

∂u

∂x1
,

J3 ≈
∂H2

∂x1
− ∂H1

∂x2
= 0.

(1.6)

Now, if we suppose that r = r0| ~J |q(x), taking into account (1.6) we know that

| ~J | =
√
J2

1 + J2
2 + J2

3 =
1
λ
|∇u|,

where r0 > 0 is a constant, q(x) is a function which depends on the environment.
If

a(x) =
r0

λq(x)+1
> 0, (1.7)

then
~E = r ~J = a(x)|∇u|q(x)(

∂u

∂x2
,− ∂u

∂x1
, 0),

as a generalization of Ohm’s law (1.5). Hence the third coordinate of the vector
rot ~E is

(rot ~E)3 =
∂E2

∂x1
− ∂E1

∂x2

=
∂

∂x1
(−a(x)|∇u|q(x) ∂u

∂x1
)− ∂

∂x2
(a(x)|∇u|q(x) ∂u

∂x2
)

= − div(a(x)|∇u|q(x)∇u).

Using (1.2), according to Mashiyev-Buhrii [9], letting p(x) = q(x) + 2, we have

ut − div(a(x)|∇u|p(x)−2∇u) = 0, (x, t) ∈ QT , (1.8)

with the initial value
u
∣∣
t=0

= u0(x), x ∈ Ω, (1.9)

and the homogeneous boundary value

u
∣∣
ΓT

= 0, (x, t) ∈ ΓT = ∂Ω× (0, T ), (1.10)

which have been researched widely recently, one can refer to [2, 4, 8, 6].
If r0 = r(x) is a function, then a(x) in (1.7) may be degenerate on the boundary.

For example, if r(x)
∣∣
Σp

= 0, where Σp ⊆ ∂Ω, then the equation is degenerate on
Σp. We will study the problem by taking a special but basic formula of the diffusion
function a(x) = ρα(x), where ρ(x) = dist(x, ∂Ω), and α > 0. Then equation (1.8)
becomes

ut = div(ρα|∇u|p(x)−2∇u), (x, t) ∈ Ω× (0, T ). (1.11)

If p(x) ≡ p , the above equation becomes

ut = div(|ρα∇u|p−2∇u), (1.12)

which was first studied by Yin-Wang [13]. They had proved the following results:
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Theorem 1.1. Let p > 1, and

u0 ∈ L∞(Ω), ρα|∇u0|p ∈ L1(Ω). (1.13)

If α < p − 1, then there exists an unique solution of equation (1.12) with the
initial-boundary conditions (1.9)-(1.10). While, if α ≥ p− 1, there exists an unique
solution of (1.12) only with the initial value (1.9). In other words, if α ≥ p − 1,
the stability of the solutions of (1.12) is true without any boundary condition.

Inspired by [13], we studied (1.11) in a similar way as the one described in [15],
and obtain a similar theorem.

Theorem 1.2. Let p > 1, and

u0 ∈ L∞(Ω), ρα|∇u0|p(x) ∈ L1(Ω). (1.14)

If α < p−−1, then there exists an unique solution of (1.11) with the initial-boundary
conditions (1.9)-(1.10). While, if α ≥ p+ − 1, then there exists an unique solution
of equation (1.11) with the initial value (1.9).

We are interested in this problem because we would like to know how the degen-
eracy of the diffusion function ρα affects equation (1.11) essentially. To see that,
we suppose that u and v are two classical solutions of (1.11) with the initial values
u(x, 0) and v(x, 0) respectively. Then∫

Ω

(u− v)(u− v)tdx+
∫

Ω

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v) dx

=
∫
∂Ω

ρα(u− v)(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ~ndΣ = 0,

where ~n is the outer unit normal vector of Ω. So
1
2
d

dt

∫
Ω

(u− v)2dx ≤ 0,∫
Ω

|u(x, t)− v(x, t)|2dx ≤
∫

Ω

|u0(x)− v0(x)|2dx. (1.15)

This implies that the classical solutions (if there are) of equation (1.11) are stable
without any boundary value condition, only if that α > 0. Certainly, since equation
(1.11) is degenerate on the boundary and may be degenerate or singular at points
where |∇u| = 0, it only has a weak solution generally, so whether the inequality
(1.15) is true or not remains to be verified.

Obviously, since p(x) is a function, there exists a gap if p− − 1 ≤ α < p+ − 1
in Theorem 1.2. In our paper, roughly speaking, only if α ≥ p− − 1, we can
establish the stability of the weak solutions of equation (1.11) without any boundary
value condition. The conclusions not only make a supplementary of the results of
[13, 15, 14], but also provide a new and more effective way to establish the stability
of the solutions (see Theorems 2.6 and 2.7 below).

2. Basic functional spaces and main results

Throughout this article we assume that 1 < p(x) ∈ C1(Ω), and denote

p+ = max
Ω̄

p(x), 1 < p− = min
Ω̄
p(x).
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First of all, we introduce some basic functional spaces. The space

Lp(x)(Ω) = {u : u is a measurable real-valued function,
∫

Ω

|u(x)|p(x)dx <∞}.

is equipped with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf{λ > 0 :
∫

Ω

∣∣u(x)
λ

∣∣p(x)
dx ≤ 1}.

The space (Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)) is a separable, uniformly convex Banach space.
The space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.
is endowed with the norm

‖u‖W 1,p(x) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω), ∀u ∈W 1,p(x)(Ω).

We use W 1,p(x)
0 (Ω) to denote the closure of C∞0 (Ω) in W 1,p(x). Some properties of

the function spaces W 1,p(x)(Ω) are quoted in the following lemma.

Lemma 2.1. (i) The spaces (Lp(x)(Ω), ‖·‖Lp(x)(Ω)), (W 1,p(x)(Ω), ‖·‖W 1,p(x)(Ω))

and W 1,p(x)
0 (Ω) are reflexive Banach spaces.

(ii) p(x)-Hölder’s inequality. Let q1(x) and q2(x) be real functions with 1
q1(x) +

1
q2(x) = 1 and q1(x) > 1. Then, the conjugate space of Lq1(x)(Ω) is
Lq2(x)(Ω). And for any u ∈ Lq1(x)(Ω) and v ∈ Lq2(x)(Ω), we have∣∣∫

Ω

uvdx
∣∣≤ 2‖u‖Lq1(x)(Ω)‖v‖Lq2(x)(Ω).

(iii)

‖u‖Lp(x)(Ω) = 1 =⇒
∫

Ω

|u|p(x)dx = 1,

‖u‖Lp(x)(Ω) > 1 =⇒ |u|p
−

Lp(x)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
+

Lp(x)
,

‖u‖Lp(x)(Ω) < 1 =⇒ |u|p
+

Lp(x)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
−

Lp(x)
.

(iv) If p1(x) ≤ p2(x), then Lp1(x)(Ω) ⊃ Lp2(x)(Ω).
(v) If p1(x) ≤ p2(x), then

W 1,p2(x)(Ω) ↪→W 1,p1(x)(Ω).

(vi) p(x)-Poincarés inequality. If p(x) ∈ C(Ω), then there is a constant C > 0,
such that

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω), ∀u ∈W 1,p(x)
0 (Ω).

This implies that ‖∇u‖Lp(x)(Ω) and ‖u‖W 1,p(x)(Ω) are equivalent norms of

W
1,p(x)
0 .

Zhikov [17] showed that

W
1,p(x)
0 (Ω) 6= {v ∈W 1,p(x)

0 (Ω)|v|∂Ω = 0} = W̊ 1,p(x)(Ω).

Hence, the property of the space is different from the case when p is a constant.
This fact gives a general idea used in studying the well-posedness of the solutions
to the evolutionary p-Laplacian equation which can not be used directly.
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If the exponent p(x) is required to satisfy logarithmic Hölder continuity condition

|p(x)− p(y)| ≤ ω(|x− y|), ∀x, y ∈ Ω, |x− y| < 1
2
,

with
lim sup
s→0+

ω(s) ln(
1
s

) = C <∞,

then W 1,p(x)
0 (Ω) = W̊ 1,p(x)(Ω). In fact Antontsev-Shmarev [2] established the well-

posedness of equation (1.8).
Now, we introduce some other Banach spaces used to define the weak solution

of the equation. For every fixed t ∈ [0, T ], we define

Vt(Ω) = {u(x) : u(x) ∈ L2(Ω) ∩W 1,1
0 (Ω), |∇u(x)|p(x) ∈ L1(Ω)},

‖u‖Vt(Ω) = ‖u‖2,Ω + ‖∇u‖p(x),Ω,

and denote by V ′t (Ω) its dual, where ‖u‖2,Ω = ‖u‖L2(Ω), ‖∇u‖p(x),Ω = ‖∇u‖Lp(x)(Ω).
Also we use the Banach space

W (QT ) =
{
u : [0, T ]→ Vt(Ω)|u ∈ L2(QT ), |∇u|p(x) ∈ L1(QT ), u = 0 on ΓT

}
,

‖u‖W (QT ) = ‖∇u‖p(x),QT + ‖u‖2,QT .

The space W ′(QT ) is the dual of W (QT ) (the space of linear functionals over
W (QT )): w ∈W ′(QT ) if and only if

w = w0 +
n∑
i=1

Diwi, w0 ∈ L2(QT ), wi ∈ Lp
′(x,t)(QT ),

∀φ ∈W (QT ), 〈〈w, φ〉〉 =
∫∫

QT

(
w0φ+

∑
i

wiDiφ
)
dx dt.

The norm in W ′(QT ) is defined by

‖v‖W ′(QT ) = sup{〈〈v, φ〉〉 : φ ∈W (QT ), ‖φ‖W (QT ) ≤ 1}.

Definition 2.2. A function u(x, t) is said to be a weak solution of (1.11) with the
initial value (1.9), if

u ∈ L∞(QT ), ut ∈W ′(QT ), ρα|∇u|p(x) ∈ L1(QT ), (2.1)

and for any function ϕ ∈ L∞(0, T ;W 1,p(x)
0 (Ω)) ∩W (QT ), it holds

〈〈ut, ϕ〉〉+
∫∫

QT

(ρα|∇u|p(x)−2∇u · ∇ϕ) dx dt = 0. (2.2)

The initial value, as usual, is satisfied in the sense of that

lim
t→0

∫
Ω

u(x, t)φ(x)dx =
∫

Ω

u0(x)φ(x)dx,∀φ(x) ∈ C∞0 (Ω). (2.3)

The main result of this article is stated as follows.

Theorem 2.3. Let 1 < p−, 0 < α. If

u0(x) ∈ L∞(Ω), ρα|∇u0|p(x) ∈ L1(Ω), (2.4)

then (1.11) with initial value (1.9) has a weak solution u in the sense of Definition
2.2. If α < p−− 1, then (1.11) with initial-boundary values (1.9)-(1.10) has a weak
solution u. The boundary value condition (1.10) is satisfied in the sense of trace.
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Theorem 2.4. Let u and v be two weak solutions of equation (1.11) with initial
values u(x, 0) and v(x, 0) respectively. If p− − 1 > α > 0,∫

Ω

ρα−1|∇u|p(x)−1dx <∞,
∫

Ω

ρα−1|∇u|p(x)−1dx <∞, (2.5)

then ∫
Ω

|u(x, t)− v(x, t)|dx ≤
∫

Ω

|u0(x)− v0(x)|dx. (2.6)

The above theorem is a weaker version of [15, Theorem 1.4] when α < p− − 1.
We can use it to prove the following Theorems.

Theorem 2.5. Let u and v be two weak solutions of equation (1.11) with the
different initial values u(x, 0), v(x, 0) respectively, and the exponent p(x) be required
to satisfy logarithmic Hölder continuity condition. If α ≥ p− − 1, u and v satisfy
(2.5), ut ∈ L2(QT ) and vt ∈ L2(QT ), then then the stability (2.6) is still true.

Theorem 2.6. Let p > 1 and 0 < α < p− − 1. If u and v are two solutions of
equation (1.11) with the differential initial values u0(x) and v0(x) respectively, then
there exists a positive constant β ≥ max{p

+−α
p−−1 , 2} such that∫

Ω

ρβ |u(x, t)− v(x, t)|2dx ≤ c
∫

Ω

ρβ |u0(x)− v0(x)|2dx. (2.7)

In particular, for any small enough constant δ > 0, there holds∫
Ωδ

|u(x, t)− v(x, t)|2dx ≤ cδ−β
∫

Ω

|u0(x)− v0(x)|2dx. (2.8)

Here, Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, by the arbitrary of δ, we have the
uniqueness of the solution. The inequality (2.7) shows the local stability of the
solutions.

Theorem 2.7. Let p > 1, α ≥ p− − 1, bi(s) be a Lipschitz function, and the
exponent p(x) be required to satisfy logarithmic Hölder continuity condition. If u,
v are two solutions of equation (1.11) with the different initial values u0(x), v0(x)
respectively, then the inequality (2.7) is true, which implies the uniqueness of the
solution.

The proof of the existence (Theorem 2.3) is quite different from that shown in
[13, 15, 14]. There to prove the stability of solutions, the authors used two ways to
deal with the cases α < p− − 1 and α ≥ p+ − 1. In this article, we adopt a similar
method to prove Theorems 2.4 and 2.5, and then develop it to prove Theorems 2.6
and 2.7. The methods used here seem to be more effective, and can be extended to
the degenerate parabolic equation related to the p(x)-Laplacian directly.

3. Proof of Theorem 2.3

Following [3], we have the following lemma.

Lemma 3.1. Let q ≥ 1. If uε ∈ L∞(0, T ;L2(Ω)) ∩W (QT ), ‖uεt‖W ′(QT ) ≤ c, and
‖∇(|uε|q−1uε)‖p−,QT ≤ c, then there is a subsequence of {uε} which is relatively
compactness in Ls(QT ) with s ∈ (1,∞).
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To study (1.11), let us consider the associated regularized problem

uεt − div(ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε) = 0, (x, t) ∈ QT , (3.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (3.2)

uε(x, 0) = u0ε(x), x ∈ Ω. (3.3)

where ρε = ρ ∗ δε + ε, ε > 0, δε is the usual mollifier, uε,0 ∈ C∞0 (Ω) and
ραε |∇uε,0|p(x) ∈ L1(Ω) is uniformly bounded, and uε,0 converges to u0 in W 1,p(x)

0 (Ω).
It is well-known that the above problem has a unique classical solution [5, 11].

Lemma 3.2. There is a subsequence of uε (we still denote it as uε), which converges
to a weak solution u of equation (1.11) with the initial value (1.9).

Proof. By the maximum principle, there is a constant c dependent on ‖u0‖L∞(Ω)

and independent on ε, such that

‖uε‖L∞(QT ) 6 c. (3.4)

Multiplying (2.1) by uε and integrating it over QT , we have

1
2

∫
Ω

u2
εdx+

∫∫
QT

ραε (|∇uε|2 + ε)
p(x)−2

2 |∇uε|2 dx dt =
1
2

∫
Ω

u2
0dx ≤ c. (3.5)

For small enough λ > 0, let Ωλ = {x ∈ Ω : dist(x, ∂Ω) > λ}. Since p− > 1, by (3.5)
we have ∫ T

0

∫
Ωλ

|∇uε| dx dt ≤ c
(∫ T

0

∫
Ωλ

|∇uε|p
−
dx dt

)1/p−

≤ c(λ). (3.6)

Now, for any v ∈W (QT ), ‖v‖W (QT ) = 1, and

〈uεt, v〉 = −
∫∫

QT

ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε · ∇v dx dt,

by Young’s inequality, we can show that

|〈uεt, v〉| ≤ c
[ ∫∫

QT

ραε |∇uε|p(x) dx dt+
∫∫

QT

(|v|p(x) + |∇v|p(x)) dx dt
]
≤ c,

then
‖uεt‖W ′(QT ) ≤ c. (3.7)

Now, let ϕ ∈ C1
0 (Ω), 0 ≤ ϕ ≤ 1 such that ϕ|Ω2λ = 1 and ϕ|Ω\Ωλ = 0. Then

|〈(ϕuε)t, v〉| = |〈ϕuεt, v〉| ≤ |〈uεt, v〉|;
so we have

‖(ϕ(x)u)εt‖W ′(QT ) ≤ ‖uεt‖W ′(QT ) ≤ c. (3.8)
By (3.6),∫∫

QT

|∇(ϕuε)|p
−
dx dt ≤ c(λ)(1 +

∫ T

0

∫
Ωλ

|∇uε|p
−
dx dt) ≤ c(λ), (3.9)

and so
‖∇(|ϕuε)‖p−,QT ≤ c(λ). (3.10)

By Lemma 3.1, ϕuε is relatively compactness in Ls(QT ) with s ∈ (1,∞). Then
ϕuε → ϕu a.e. in QT . In particular, by the arbitraries of λ, it follows that uε → u
a.e. in QT .
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Hence, by (3.4), (3.5), (3.7), there exists a function u and the n-dimensional
vector function

−→
ζ = (ζ1, · · · , ζn) satisfying

u ∈ L∞(QT ), ut ∈W ′(QT ), |
−→
ζ | ∈ L

p(x)
p(x)−1 (QT ),

and

uε ⇀ ∗u, in L∞(QT ),

∇uε ⇀ ∇u in L
p(x)
loc (QT ),

ραε |∇uε|p(x)−2∇uε ⇀
−→
ζ in L

p(x)
p(x)−1 (QT ).

To prove that u satisfies (1.11), we notice that for any function ϕ ∈ C∞0 (QT ), we
have ∫∫

QT

[uεtϕ+ ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε · ∇ϕ] dx dt = 0. (3.11)

Then ∫∫
QT

(
∂u

∂t
ϕ+ ~ς · ∇ϕ) dx dt = 0. (3.12)

Now, similar to [15, 14], we can prove that∫∫
QT

ρα|∇u|p(x)−2∇u · ∇ϕdx dt =
∫∫

QT

−→
ζ · ∇ϕdx dt (3.13)

for any function ϕ ∈ C∞0 (QT ). Thus u satisfies (1.11).
Similarly, we can prove (1.9) as in [3] in the same manner. The proof is complete.

�

Lemma 3.3. If α < p− − 1, and let u be the solution of equation (1.11) with the
initial value (1.9), then the trace of u on the boundary ∂Ω can be defined in the
traditional way.

The above lemma was proved in [15, 14]. Note that Theorem 2.3 is the directly
consequence of Lemmas 3.2 and 3.3.

4. Proof of Theorem 2.4

For small η > 0, let

Sη(s) =
∫ s

0

hη(τ)dτ, hη(s) =
2
η

(
1− |s|

η

)
+
. (4.1)

Obviously hη(s) ∈ C(R), and

hη(s) ≥ 0, |shη(s)| ≤ 1, |Sη(s)| ≤ 1,

lim
η→0

Sη(s) = sgn(s), lim
η→0

sS′η(s) = 0. (4.2)

Proof. If α < p− − 1, by Lemma 3.3, the weak solution of (1.11) can be defined
by the trace on the boundary ∂Ω in the traditional way. Let u and v be two weak
solutions of (1.11) with the initial values u(x, 0) and v(x, 0) respectively.

Let β > 0 and
φ(x) = ρβ(x). (4.3)
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Then, we can choose Sη(φ(u− v)) as the test function, and find∫
Ω

Sη(φ(u− v))
∂(u− v)

∂t
dx

+
∫

Ω

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · φ∇(u− v)S′η(φ(u− v))dx

+
∫

Ω

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇φ(u− v)S′η(φ(u− v))dx

= 0.

(4.4)

Thus, we have

lim
η→0

∫
Ω

Sη(φ(u− v))
∂(u− v)

∂t
dx =

∫
Ω

sgn(φ(u− v))
∂(u− v)

∂t
dx

=
∫

Ω

sgn(u− v)
∂(u− v)

∂t
dx =

d

dt
‖u− v‖1,

(4.5)

∫
Ω

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v)S′η(φ(u− v))φ(x)dx ≥ 0, (4.6)

and ∣∣ ∫
Ω

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇φ(u− v)S′η(φ(u− v))dx
∣∣

≤ c
∫
{x:ρβ |u−v|<η}

|ρα−1(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)|

× |φ(u− v)S′η(φ(u− v))|dx,

(4.7)

which tends to 0 as η → 0, because of (2.5) and

lim
η→0

φ(u− v)S′η(φ(u− v)) = 0.

Now, let η → 0 in (4.4). Then

d

dt
‖u− v‖1 6 c‖u− v‖1. (4.8)

This implies ∫
Ω

|u(x, t)− v(x, t)|dx 6 c(T )
∫

Ω

|u0 − v0|dx. (4.9)

The proof is complete. �

5. Proof of Theorem 2.5

Proof. If α ≥ p− − 1, the weak solution of equation (1.11) lacks the regularity on
the boundary, we can not define the trace on ∂Ω. Denote

Ωλ = {x ∈ Ω : dist(x, ∂Ω) > λ}, (5.1)

let β > 0 and
φ(x) = [dist((x,Ω \ Ωλ)]β = dβλ. (5.2)

Let u and v be two weak solutions of equation (1.11) with the initial values
u(x, 0) and v(x, 0) respectively. We can choose Sη(φ(uε − vε)) as the test function,
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where uε and vε are the mollified function of the solutions u and v respectively.
Then∫

Ωλ

Sη(φ(uε − vε))
∂(u− v)

∂t
dx

+
∫

Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · φ∇(uε − vε)S′η(φ(uε − vε))dx

+
∫

Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇φ(uε − vε)S′η(φ(uε − vε))dx

= 0.

(5.3)

For any given λ > 0, denoting QTλ = Ωλ × (0, T ), by (iii) of Lemma 2.1 and
(2.1) in Definition 2.2, we know that |∇u| ∈ Lp(x)(QTλ), |∇v|p(x) ∈ Lp(x)(QTλ).
Thus according to the definition of the mollified functions uε and vε, the exponent
p(x) is required to satisfy the logarithmic Hölder continuity condition, by [4, 17, 8],
we have

uε ∈ L∞(QT ), vε ∈ L∞(QT ), uε → u, vε → v, a.e. in QT , (5.4)

‖|∇uε|p(x)‖1,Ωλ ≤ ‖|∇u|p(x)‖1,Ωλ , ‖|∇vε|p(x)‖1,Ωλ ≤ ‖|∇v|p(x)‖1,Ωλ ,

∇uε → ∇u, ∇vε → ∇v, in Lp(x)(Ωλ).
(5.5)

Since 0 ≤ S′η(φ(uε − vε)) ≤ 2
η , it follows that

|∇(uε − vε)S′η(φ(uε − vε))|Lp(x)(Ωλ) ≤ c(η)|∇(uε − vε)|Lp(x)(Ωλ) ≤ c(η),

For any ϕ ∈ L
p(x)
p(x)−1 (Ωλ), it holds∫

Ωλ

∇(uε − vε)S′η(φ(uε − vε))ϕdx−
∫

Ωλ

∇(u− v)S′η(φ(u− v))ϕdx

=
∫

Ωλ

∇(uε − vε)[S′η(φ(uε − vε))− S′η(φ(u− v))]ϕdx

+
∫

Ωλ

[∇(uε − vε)−∇(u− v)]S′η(φ(u− v))ϕdx

= I1 + I2.

(5.6)

Since ∇uε → ∇u and ∇vε → ∇v in Lp(x)(Ωλ), it follows that

lim
ε→0

I2 = 0, (5.7)

while
lim
ε→0

I1

≤ lim
ε→0
‖∇(uε − vε)‖Lp(x)(Ωλ)‖[S′η(φ(uε − vε))− S′η(φ(u− v))]ϕ‖

L
p(x)
p(x)−1 (Ωλ)

≤ lim
ε→0
‖∇(u− v)‖Lp(x)(Ωλ)‖[S′η(φ(uε − vε))− S′η(φ(u− v))]ϕ‖

L
p(x)
p(x)−1 (Ωλ)

= 0,

(5.8)

by the controlled convergent theorem. Thus we have

∇(uε − vε)S′η(φ(uε − vε)) ⇀ ∇(u− v)S′η(φ(u− v)), in Lp(x)(Ωλ). (5.9)
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Since on Ωλ, one has

|ραφ(|∇u|p−2∇u− |∇v|p−2∇v)| ∈ L
p(x)
p(x)−1 (Ωλ)

by the weak convergency of (5.9) we have

lim
ε→0

∫
Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · φ∇(uε − vε)S′η(φ(uε − vε)) dx

=
∫

Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · φ∇(uε − vε)S′η(φ(u− v))dx.
(5.10)

At the same time, it is clear that

lim
ε→0

∫
Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇φ(uε − vε)S′η(φ(uε − vε)) dx

=
∫

Ωλ

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇φ(uε − vε)S′η(φ(u− v))dx,
(5.11)

by the controlled convergent theorem. Also, since ut, vt ∈ L2(QT ), by Hölder’s
inequality, we have∫∫

QT

|∂u
∂t
| dx dt <∞,

∫∫
QT

|∂v
∂t
| dx dt <∞. (5.12)

By the controlled convergent theorem, we have

lim
ε→0

∫
Ωλ

Sη(φ(uε − vε))
∂(u− v)

∂t
dx =

∫
Ωλ

Sη(φ(u− v))
∂(u− v)

∂t
dx. (5.13)

Now, we let ε→ 0, and then let λ→ 0, at last, let η → 0 in (5.3). As the proof
of (4.5)-(4.9), we arrive at the desired result. �

6. Uniqueness in the case 0 < α < p− − 1

Proof. Let u and v be two solutions of equation (1.11) with initial values u0(x) and
v0(x) respectively. According to the definition of W (QT ), L2(QT ) ⊂W (QT ), when
ϕ ∈ L2(QT ), we have

〈〈(u− v)t, ϕ〉〉 =
∫∫

Qτs

ϕ
∂(u− v)

∂t
dx dt. (6.1)

From the definition of the weak solution, we have∫∫
QT

ϕ
∂(u− v)

∂t
dx dt = −

∫∫
QT

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ϕdx dt,

(6.2)
for any ϕ ∈ L∞(0, T ;W 1,p(x)

0 (Ω)) ∩ L2(QT ). By Lemma 3.3, α < p− − 1, then the
trace of u on the boundary ∂Ω can be defined in the traditional way. For any fixed
τ, s ∈ [0, T ], χ[τ,s] is the characteristic function on [τ, s]. Since β ≥ 2, and

χ[τ,s](u− v)ρβ ∈ L2(QT ) ∩ L∞(0, T ;W 1,p(x)
0 (Ω)) (6.3)
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we may choose it as a test function in the above equality. Thus, by denoting
Qτs = Ω× [τ, s], we have∫∫

Qτs

(u− v)ρβ
∂(u− v)

∂t
dx dt

= −
∫∫

Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇[(u− v)ρβ ] dx dt

=
∫∫

Qτs

ρα+β(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt

+
∫∫

Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(u− v)∇ρβ dx dt.

(6.4)

The first term on the right hand side of (6.4) satisfies∫∫
Qτs

ρα+β(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt ≥ 0. (6.5)

The second term on the right hand side of (6.4), by (iii) of Lemma 2.1, satisfies∣∣ ∫∫
Qτs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ρβ dx dt
∣∣

≤
∫∫

Qτs

|u− v|ρα(|∇u|p(x)−1 + |∇v|p(x)−1)|∇ρβ | dx dt

≤ c
∫ s

τ

‖ρα
p(x)−1
p(x) (|∇u|p(x)−1 + |∇v|p(x)−1)‖

L
p(x)
p(x)−1 (Ω)

× ‖ρ
α
p(x) |∇ρβ(u− v)|‖Lp(x)(Ω)dt

≤ c
∫ s

τ

‖ρα
p(x)−1
p(x) (|∇u|p(x)−1 + |∇v|p(x)−1)‖

L
p(x)
p(x)−1 (Ω)

× ‖ρ
α
p(x) +(β−1)|(u− v)|‖Lp(x)(Ω)dt

≤ c
∫ s

τ

(∫
Ω

ρα(|∇u|p(x) + |∇v|p(x))dx
)1/p′1

×
(∫

Ω

ρα+p(x)(β−1)|u− v|p(x)dx
)1/p1

dt

≤ c
∫ s

τ

(∫
Ω

ρα+p(x)(β−1)|u− v|p(x)dx
)1/p1

dt.

(6.6)

Here, we used that |∇ρ| = 1 almost everywhere, that p1 = p+ or p−, and that
p′(x) = p(x)

p(x)−1 , where p′1 = p′+ or p′−.

Now, from β ≥ p+−α
p−−1 , we have(∫

Ω

ρα+p(x)(β−1)|u− v|p(x)dx
)1/p1

≤ c
(∫

Ω1+Ω2

ρβ |u− v|p(x)dx
)1/p1

, (6.7)

where Ω1 = {x ∈ Ω : p(x) ≥ 2}, Ω2 = {x ∈ Ω : 1 < p(x) < 2}. Then(∫
Ω1

ρβ |u− v|p(x)dx
)1/p1

≤ c
(∫

Ω1

ρβ |u− v|2dx
)1/p1

≤ c
(∫

Ω

ρβ |u− v|2dx
)1/p1

.

(6.8)
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In Ω2, by Hölder’s inequality and (iii) in Lemma 2.1, we obtain(∫
Ω2

ρβ |u− v|p(x)dx
)1/p1

≤ c
(
‖ρ

p(x)
2 |u− v|p(x)‖

L
2

p(x) (Ω2)

)1/p1

≤ c
(∫

Ω

ρβ |u− v|2dx
)q
.

(6.9)

where q < 1. Also we have∫∫
Qτs

(u− v)ρβ
∂(u− v)

∂t
dx dt

=
∫

Ω

ρβ [u(x, s)− v(x, s)]2dx−
∫

Ω

ρβ [u(x, τ)− v(x, τ)]2dx.
(6.10)

From (6.4)–(6.10), it follows that∫
Ω

ρβ [u(x, s)− v(x, s)]2dx−
∫

Ω

ρβ [u(x, τ)− v(x, τ)]2dx

≤ c
∫ s

τ

(∫
Ω

ρβ |u(x, t)− v(x, t)|2dx
)q
dt

≤ c
(∫ s

τ

∫
Ω

ρβ |u(x, t)− v(x, t)|2 dx dt
)q
,

(6.11)

where q < 1. Let κ(s) =
∫

Ω
ρβ [u(x, s)− v(x, s)]2dx. Then we deduce

κ(s)− κ(τ)
s− τ

≤ c
( ∫ s

τ
κ(t)dt

)q
s− τ

.

By the L’Hospital Rule,

κ′(τ) ≤ c lim
s→τ

κ(s)( ∫ s
τ
κ(t)dt

)1−q = c lim
s→τ

κ′(s)
κ(s)

( ∫ s

τ

κ(t)dt
)q = 0. (6.12)

Thus, because τ is arbitrary, we have∫
Ω

ρβ |u(x, τ)− v(x, τ)|2dx ≤
∫

Ω

ρβ |u0 − v0|2dx. (6.13)

The proof is complete. �

7. Uniqueness in the case α ≥ p− − 1

When α ≥ p− − 1, let u be a weak solution of equation (1.11) with the initial
value (1.9). Generally, we can not define the trace of u on the boundary.

Proof. Let the constant β ≥ max{p
+−α
p−−1 , 2}. Denote Ωλ, QTλ = Ωλ × (0, T ) as

(5.1)-(5.4), and let ξλ = dβλ. Let u and v be two solutions of equation (1.11) with
the initial values u0(x) and v0(x) respectively. We choose χ[τ,s](uε − vε)ξλ as a
test function, where uε and vε are the mollified function of the solutions u and v
respectively. Then

〈〈(u− v)t, χ[τ,s](uε − vε)ξλ〉〉

=
∫∫

Qτs

(uε − vε)ξλ
∂(u− v)

∂t
dx dt

= −
∫∫

Qτs

ρα(|∇u|p−2∇u− |∇v|p−2∇v)∇[(uε − vε)ξλ] dx dt.

(7.1)



14 H. ZHAN, J. WEN EJDE-2017/13

Now, by the weak convergence of (5.4) and

|ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)| ∈ L
p(x)
p(x)−1 (Ωλ)

we obtain

lim
ε→0

∫∫
Qτs

ραξλ(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(uε − vε) dx dt

=
∫∫

Qτs

ραξλ(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt.
(7.2)

By (5.4)-(5.5) and the Lebesgue controlled convergence theorem, we have

lim
ε→0

∫∫
Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(uε − vε)∇ξλ dx dt

=
∫∫

Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(u− v)∇ξλ dx dt.
(7.3)

So

lim
ε→0

∫∫
Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇[(uε − vε)ξλ] dx dt

=
∫∫

Qτs

ραξλ(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt

+
∫∫

Qτs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)(u− v)∇ξλ dx dt.

(7.4)

At the same time, by Hölder’s inequality, similar to (6.6)-(6.8), we have∫∫
Qτs

ραξλ(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt ≥ 0, (7.5)

and ∣∣ ∫∫
Qτs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ξλ dx dt
∣∣

≤ c
∫ s

τ

(∫
Ωλ

ραd
p(x)(β−1)
λ |u− v|p(x)dx

)1/p1
dt

≤ c
∫ s

τ

(∫
Ω

ρα+p(x)(β−1)|u− v|p(x)dx
)1/p1

dt

≤ c
(∫ s

τ

∫
Ω

|u− v|2 dx dt
)q
,

(7.6)

where q < 1. From (5.12), since (uε − vε)ξλ ∈ L∞(QT ), we can use the Lebesgue
controlled convergence theorem to deduce that

lim
ε→0

∫∫
Qτs

(uε − vε)ξλ
∂(u− v)

∂t
dx dt =

∫∫
Qτs

(u− v)ξλ
∂(u− v)

∂t
dx dt.

Now, after letting ε→ 0 and λ→ 0 in (7.1), by a similar argument for (6.10)-(6.13),
we arrive at the desired result. �
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