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AN INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE
OPERATOR WITH INTEGRAL DELAY

MANAF DZH. MANAFOV

In memory of M. G. Gasymov (1939-2008)

Abstract. In this article, we study an inverse spectral problem for Sturm-

Liouville operator with integral delay. We prove that the standard spectral

asymptotic conditions are necessary and sufficient for unique solvability of the
inverse problem.

1. Introduction

We consider inverse problem for the boundary-value problem (BVP) generated
by the integro-differential equation

ly := −y′′ + q(x)y +
∫ x

0

M(x− t)y(t)dt = λ2y, x ∈ (0, a) ∪ (a, π) (1.1)

with the Dirichlet boundary conditions

U(y) := y(0) = 0, V (y) := y(π) = 0, (1.2)

and the conditions at the point x = a :

I(y) :=

{
y(a+ 0) = y(a− 0) ≡ y(a),
y′(a+ 0)− y′(a− 0) = 2αλy(a),

(1.3)

q(x) and M(x) are complex-valued functions, q(x) ∈ L2(0, π) and (π − x)M(x) ∈
L2(0, π), α ∈ C, a ∈ (π2 , π) and λ is a spectral parameter.

Sturm-Liouville spectral problems with potentials depending on the spectral pa-
rameter (in case K(x) ≡ 0) arise in various models of quantum and classical me-
chanics. For instance, the evolution equations that are used to model interactions
between colliding relativistic spineless particles can be reduced to the form (1.1).
Then λ2 is associated with the energy of the system (see [12, 13]).

Spectral problems of differential operators are studied in two main branches,
namely, direct and inverse problems. Direct problems of spectral analysis consist
in investigating the spectral properties of an operator. On the other hand, inverse
problems aim at recovering operators from their spectral characteristics. Such
problems often appear in mathematics, mechanics, physics, electronics, geophysics,
meteorology and other branches of naturel sciences and engineering. Direct and
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inverse problems for the classical Sturm-Liouville operators have been extensively
studied (see [5, 7, 11] and the references therein).

For integro-differential and other classes of nonlocal operators inverse problems
are more difficult for investigation, and the classical methods either are not ap-
plicable to them or require essential modifications (see [1, 2, 3, 5, 6, 14, 15]). In
this aspect, various inverse spectral problems for the (1.1), (1.3) BVP (special case
M(x) ≡ 0) have been investigated in [8, 9, 10]).

In this article we establish uniqueness result for inverse spectral problem for
Sturm-Liouville operator with integral delay.

2. Integral representations for solutions

In this section, we construct an integral representation of the solution y(x, λ) of
(1.1), (1.3), satisfying the initial conditions

y(0, λ) = 1, y′(0, λ) = iλ . (2.1)

Also we study some properties of the solutions. Using the standard successive
approximation methods (see [11]), we can prove the following theorem.

Theorem 2.1. The solution y(x, λ) has the form

y(x, λ) = y0(x, λ) +
∫ x

−x
A(x, t)eiλtdt, (2.2)

where

y0(x, λ) =

{
eixλ, x < a

(1− iα)eixλ + iαeiλ, x > a

and the function A(x, t) satisfies∫ x

−x
|A(x, t)|dt ≤ eCσ0(x) − 1 (2.3)

with

σ0(x) =
∫ x

0

(x− t)[|q(t)|+
∫ t

0

|M(t− τ)|dτ ]dt,

and C = 1 + 2|α|.

Proof. It is clear that when α = 0, if we consider the equation (1.1) separately on
the intervals (0, a) and (a, π), we can write the solutions as

e0(x, λ) = eixλ +
∫ x

−x
K0(x, t)eiλtdt, 0 ≤ x < a, (2.4)

ea(x, λ) = eiλ(x−a) +
∫ x

−x+2a

Ka(x, t)eiλ(t−a)dt, x > a, (2.5)

respectively. For the solutions of the above equations to solve the equation that
has representation (2.5), the following equality must be satisfied:∫ x

−x+2a

Ka(x, t)eiλ(t−a)dt

=
1
λ

∫ x

a

sinλ(x− t)
{
q(t)

[
eiλ(t−a) +

∫ t

−t+2a

Ka(t, τ)eiλ(τ−a)dτ
]

+
∫ t

0

M(t− τ)
[
eiλ(τ−a) +

∫ τ

−τ+2a

Ka(τ, s)eiλ(s−a)ds
]
dτ
}
dt .
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It is easy to obtain the integral equation

Ka(x, t) =
1
2

∫ x+t
2

a

q(u)du+
1
2

∫ x

a

q(u)
∫ t+(x−u)

t−(x−u)

Ka(u, v) dv du

+
1
2

∫ x

a

∫ t+(x−u)

t−(x−u)

M(u− v) dx du

+
1
2

∫ x

a

∫ u

0

∫ t+(x−u)

t−(x−u)

M(u− v)Ka(v, ξ)dξ dx du.

(2.6)

Since ea(x,−λ) is also the solution of (1.1), (1.3) on the interval 0 < x ≤ π, the
solution y(x, λ) has the form

y(x, λ) =

{
e0(x, λ), 0 ≤ x < a,

c1ea(x, λ) + c2ea(x,−λ), a < x ≤ π,
(2.7)

where the constants c1, c2 are defined from conditions (1.3). Hence, we have

y(x, λ) =


e0(x, λ), 0 ≤ x < a,

e0(a, λ) (1−2iα)ea(x,λ)+(1+2iα)ea(x,−λ)
2

+e′0(a, λ) ea(x,λ)−ea(x,−λ)
2iλ , 0 < x ≤ π.

(2.8)

Using (2.4), (2.5) and (2.8), after some simple computations, we find the following
expression for y(x, λ) (a < x ≤ π),

y(x, λ) = e(x, λ) +
∫ x

−x+2a

Ka(x, t)e(t, λ)dt, (2.9)

where

e(x, λ) = e0(a, λ)[cosλ(x− a) + 2α sinλ(x− a)] + e′0(a, λ)
sinλ(x− a)

λ

= (1− iα)eiλx + iαeiλ(2a−x) +
∫ x

−x
A1(x, t)eiλtdt,

(2.10)

A1(x, t) = A0 +
1
2
K0(a, t+ 2a− x) +

1
2
K0(a, t+ x) +

1
2

∫ t+x

t+2a−x
H(s)ds, |t| < x,

A0 =

{
1
2

∫ a
0
q(t)dt+ 1

4

∫ a
−a q(

a+t
2 )dt, 2a− x < t < x,

0, −x < t < 2a− x,

H(s) =
1
2

∫ a

a−s
2

K0(σ, s− a+ σ)q(σ)dσ +
1
2

∫ a

a+s
2

K0(σ, s+ a− σ)q(σ)dσ. (2.11)

Here, we assume that K0(a, t) ≡ 0, H(t) ≡ 0, for |t| > a and A1(x, t) = 0 for
|t| > x. Now using the expression (2.10) in (2.9), we have for a < x ≤ π (|t| < x)

y(x, λ) = (1− iα)eiλx + iαeiλ(2a−x) +
∫ x

−x
A2(x, t)eiλtdt, (2.12)

where
A2(x, t) = A1(x, t) + (1− iα)Ka(x, t)− iαKa(x, 2a− t)

+
∫ x

2a−x
Ka(x, s)A1(s, t)ds.

(2.13)
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From (2.4) and (2.12), we can write the formula (2.2) for the solution y(x, λ), where

A(x, t) =

{
K0(x, t), if 0 ≤ x ≤ a, |t| < x

A2(x, t), if a < x ≤ π, |t| < x.
(2.14)

From (2.6) it is easy to obtain∫ x

2a−x
|Ka(x, t)|dt ≤ eCaσa(x) − 1, (2.15)

where Ca > 0 is a constant and

σa(x) =
∫ x

a

(x− t)
[
q(t) +

∫ t

0

|M(t− τ)|dτ
]
dt.

Using (2.15), from (2.11) and (2.13), we have the estimate∫ x

−x
|A2(x, t)|dt ≤ eCσ0(x) − 1 (2.16)

for some constant C > 0. Hence, from (2.14) and (2.16), we arrive at (2.3). �

Let s(x, λ) be a solution of (1.1) with initial conditions

s(0, λ) = 0, s′(0, λ) = 1.

Because y(x, λ) and y(x,−λ) are two linearly independent solutions of (1.1), (1.3),
then

s(x, λ) =
y(x, λ)− y(x,−λ)

2i
.

Using integral representation (2.2), we easily obtain

s(x, λ) = s0(x, λ) +
∫ x

0

G(x, t)
sinλt
λ

dt, (2.17)

where

s0(x, λ) =

{
sinλx
λ , x < a

(1− iα) sinλx
λ + iα sinλ(2a−x)

λ , x > a,

G(x, t) = A(x, t)−A(x,−t) is a continuous function, and G(x, 0) = 0.

3. Properties of the spectral characteristics

In the section, we study properties of eigenvalues and eigenfunctions of (1.1). Let
y(x) and z(x) be continuously differentiable functions on (0, a) and (a, π). Denote
〈y, z〉 := yz′ − y′z. If y(x) and z(x) satisfy the matching conditions (1.3), then

〈y, z〉x=a−0 = 〈y, z〉x=a+0, (3.1)

i.e. the function 〈y, z〉 is continuous on (0, π).
Denote ∆(λ) = s(π, λ). The eigenvalues {λ2

n}n≥1 of the BVP (1.1) coincide with
the zeros of the function ∆(λ).

Theorem 3.1. The eigenvalues λ2
n and eigenfunctions s(x, λn) of the BVP (1.1)

satisfy the following asymptotic estimates for sufficiently large n,

λn = λ0
n + o

( 1
λ0
n

)
, (3.2)
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s(x, λn) = o
( 1
λ0

)
+


sinλ0

nx
λ0
n

, x < a

(1− iα) sinλ0
nx

λ0
n

+ iα
sinλ0

n(2a−x)
λ0
n

, x > a,
(3.3)

where λ0
n are the roots of ∆0(λ) := (1− iα) sinλπ

λ + iα sinλ(2a−π)
λ and λ0

n = n+ hn,
hn ∈ l∞.

Proof. From (2.17), we have

∆(λ) = (1− iα)
sinλπ
λ

+ iα
sinλ(2a− π)

λ
+
∫ π

0

G(π, t)
sinλt
λ

dt. (3.4)

Denote Γn := {λ : |λ| = λ0
n + δ}, n = 0, 1, . . . , (δ > 0). Since ∆(λ) − ∆0(λ) =

o( e
| Imλ|π

|λ| ) and |∆0(λ)| ≥ Cδ
e| Imλ|π

|λ| for all λ ∈ Γn, we establish by the Rouche’s
Theorem (see [4, p. 125]) that λn = λ0

n+εn, where εn = o(1). Moreover, εn = o( 1
λ0
n

)
is obtained from the equality o = ∆(λn) = (∆′0(λ0

n) + o(1))εn + o( 1
λ0
n

). This
completes the proof of (3.2).

From (2.17) and (3.2), one can easily prove that the asymptotic formula (3.3) is
true. �

Theorem 3.2. The specification of the spectrum {λ2
n}n≥1 uniquely determines the

characteristic function ∆(λ) by the formula

∆(λ) = [(1− iα)π + iα(2a− π)]
∞∏
n=1

λ2
n − λ2

(λ0
n)2

. (3.5)

Proof. It follows from (3.4) and consequently by Hadamard’s factorization theorem
(see [4, p. 289]), ∆(λ) is uniquely determined up to a multiplicative constant by
its zeros:

∆(λ) = C

∞∏
n=1

(1− λ2

λ2
n

). (3.6)

Consider the function

∆0(λ) := (1− iα)
sinλπ
λ

+ iα
sinλ(2a− π)

λ

= [(1− iα)π + iα(2a− π)]
∞∏
n=1

(1− λ2

(λ0
n)2

).

Then

∆(λ)
∆0(λ)

= C
1

[(1− iα)π + iα(2a− π)]

∞∏
n=1

(λ0
n)2

λ2

∞∏
n=1

(
1 +

λ2
n − (λ0

n)2

(λ0
n)2 − λ2

)
.

Taking (3.2) and (3.4) into account we calculate

lim
λ→−∞

∆(λ)
∆0(λ)

= 1, lim
λ→−∞

∞∏
n=1

(
1 +

λ2
n − (λ0

n)2

(λ0
n)2 − λ2

)
= 1

and hence

C = [(1− iα)π + iα(2a− π)]
∞∏
n=1

λ2
n

(λ0
n)2

.

Substituting this into account (3.6) we arrive at (3.5). �
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4. Formulation of the inverse problem uniqueness theorem

In this section, we study inverse problem of recovering M(x) from the given
spectral characteristics. We denote the BVP (1.1)-(1.3) by L = L(M). Together
with L = L(M) we consider a BVP L̃ = L(M̃) of the same form, but with different
kernel M̃ .
Inverse Problem: Given a function q(x), numbers α, a, and the spectrum {λn}n≥1,
construct the function M(x).

Let us prove the uniqueness theorem for the solution of the Inverse Problem. Ev-
erywhere below if a certain symbol e denotes an object to L, then the corresponding
symbol ẽ denotes the analogous object related to L̃ and ê = e− ẽ.

Theorem 4.1. Fix b ∈ (0, a). Let Λ ⊂ N be a subset of nonnegative integer num-
bers, and let Ω := {λ2

n}n∈Λ be a part of the spectrum of L such that the system of
functions {cosλnx}n∈Λ is complete in L2(0, π). Let M(x) = M̃(x) almost every-
where (a.e.) on (b, π), and Ω = Ω̃. Then M(x) = M̃(x) a.e. on (0, π).

Proof. Let χ(x, λ) be the solution of the equation

l∗z := −z′′ + q(x)z +
∫ π

x

M(t− x)z(t)dt = λ2z, x ∈ (0, a) ∪ (a, π) (4.1)

under the conditions χ(π, λ) = 0, χ′(π, λ) = −1 and the conditions at the point
x = a : χ(a+ 0, λ) = χ(a− 0, λ) ≡ χ(a, λ), χ′(a+ 0, λ)− χ′(a− 0, λ) = 2αλχ(a, λ).
Denote ∆∗(λ) = χ(0, λ). Then by (3.1) we have∫ π

0

χ(x, λ)
∫ x

0

M̂(x− t)s̃(t, λ) dt dx

=
∫ π

0

χ(x, λ)ls̃(x, λ)dx−
∫ π

0

χ(x, λ)l̃s̃(x, λ)dx

=
∫ π

0

l∗χ(x, λ)s̃(x, λ)dx−
∫ π

0

χ(x, λ)l̃s̃(x, λ)dx

+ [s̃(x, λ)χ′(x, λ)− s̃′(x, λ)χ(x, λ)](|a0 + |πa)

= ∆∗(λ)− ∆̃(λ).

For l̃ = l we have ∆∗(λ) ≡ ∆(λ), and consequently∫ π

0

χ(x, λ)
∫ x

0

M̂(x− t)s̃(t, λ) dt dx = ∆̂(λ). (4.2)

We transform (4.2) into∫ π

0

M̂(x)
(∫ π

x

χ(t, λ)s̃(t− x, λ)dt
)
dx = ∆̂(λ). (4.3)

Denote w(x, λ) = χ(π − x, λ), N(x) = M(π − x),

ϕ(x, λ) =
∫ x

0

w(t, λ)s̃(x− t, λ)dt. (4.4)

Then (4.2) takes the form ∫ π

0

N̂(x)ϕ(x, λ)dx = ∆̂(λ). (4.5)
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For x ≤ a the following representation holds [14],

ϕ(x, λ) =
1

2λ2

(
− x cosλx+

∫ x

0

V (x, t) cosλt dt
)
, (4.6)

where V (x, t) is a continuous function which does not depend on λ. Since Ω = Ω̃,
we have by Theorem 3.2

∆(λ) ≡ ∆̃(λ) =⇒ ∆̂(λ) ≡ 0.

Then, substituting (4.6) into (4.5), we obtain∫ b

0

(
− xN̂(x) +

∫ b

x

V (t, x)N̂(t)
)

cosλx dx ≡ 0,

and consequently,

−xN̂(x) +
∫ b

x

V (t, x)N̂(t)dt = 0 a.e. on (0, b).

Since this homogeneous Volterra integral equation has only the trivial solution it
follows that N̂(x) = 0 a.e. on (0, b), i.e. M(x) = M̃(x) a.e. on (0, π). �
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