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STABILITY OF NONLINEAR NEUTRAL DELAY
DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

GUILING CHEN, DINGSHI LI, ONNO VAN GAANS, SJOERD VERDUYN LUNEL

Abstract. We present new criteria for asymptotic stability of two classes of

nonlinear neutral delay differential equations. By using two auxiliary functions

on a contraction condition, we extend the results in [12]. Also we give two
examples that illustrate our results.

1. Introduction

In recent years there has been an increasing interest in stability results for neutral
delay differential equations involving terms of the form c(t)x(t−r(t))x′(t−r(t)) (see
[3, 15]). In this article, we consider the following two classes of nonlinear neutral
delay differential equations

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) + b(t)g(x(t− r(t))), (1.1)

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) +
∫ t

t−r(t)
K(t, s)g(x(s)) ds, (1.2)

where a, b : [0,∞) → R are continuous functions, c : [0,∞) → R is continuously
differentiable function and r : [0,∞) → (0,∞) is a continuous function, K(t, s) :
[0,∞)× [r0,∞)→ R is a continuous function, r0 = inf{t−r(t) : t ≥ 0}, g(x) = |x|γ ,
γ ≥ 1 is a constant, then g satisfies a locally Lipschitz condition; that is, there exists
L > 0 and l > 0 such that g satisfies

|g(x)− g(y)| ≤ L|x− y| for x, y ∈ [−l, l]. (1.3)

Ahcene and Rabah [12] studied the special case of (1.1) and (1.2) when g(x) = x2.
The results in [12] mainly dependent on the constraint | c(t)

1−r′(t) | < 1. However,
there are interesting examples where the constraint is not satisfied. It is our aim
in this paper to remove this constraint condition and study the stability properties
of (1.1) and (1.2).

Recent work of Burton and many others [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16]
has shown the power of the fixed point method in studying stability properties of
functional differential equations. The idea of using fixed point method to study
properties of solutions seems to have emerged independently several times by dif-
ferent schools of authors. In addition to Burton’s work, we would like to mention
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Corduneann [10] and Azbelev and his co-workers [4]. In this paper, we will use the
fixed point method to study stability properties of (1.1) and (1.2). In particular, we
introduce two auxiliary continuous functions v(t) and p(t) to define an appropriate
mapping, and present new criteria for asymptotic stability of equations (1.1) and
(1.2) which can be applied in the case | c(t)

1−r′(t) | ≥ 1 as well.
An initial condition for the differential equation (1.1) is defined by

x(t) = φ(t) for t ∈ [r0, 0], (1.4)

where φ ∈ C([r0, 0],R). Here C([r0, 0],R) denotes the set of all continuous functions
ϕ : [r0, 0] → R with the supremum norm ‖ · ‖. For φ ∈ C([r0, 0],R), we call a
continuous function x(t, φ) to be a solution of (1.1) with initial condition (1.4) if
x : [r0, a)→ R for some positive constant a > 0 satisfies

d

dt

(
x(t)− c(t)

2(1− r′(t))
x(t− r(t))2

)
= −a(t)x(t) + b(t)g(x(t− r(t)))− d

dt

( c(t)
2(1− r′(t))

)
x2(t− r(t))

(1.5)

on [0, a) and x = φ on [r0, 0]. We denote such a solution by x(t) := x(t, φ). Note
that equation (1.5) is in the standard form d

dt (D(t, xt)) = f(t, xt) as studied in [13].
According to [13, Theorems 8.1 and 8.3], for each φ ∈ C([r0, 0],R), there exists a
unique solution x(t) = x(t, φ) of (1.1) defined on [0,∞).

Definition 1.1. The zero solution of (1.1) is said to be stable, if for every ε > 0,
there exists a δ = δ(ε) > 0 such that φ : [r0, 0]→ (−δ, δ) implies that |x(t)| < ε for
t ≥ 0.

Definition 1.2. The zero solution of (1.1) is said to be asymptotically stable, if it is
stable and there exists a δ > 0 such that for any initial function φ : [r0, 0]→ (−δ, δ),
the solution x(t) with x(t) = φ(t) on [r0, 0] tends to zero as t→∞.

By introducing two auxiliary functions v(t) and p(t) to construct a contraction
mapping on a complete metric space, we obtain Theorem 1.3 and Theorem 1.4,
which will be proved in Section 2 and Section 3, respectively.

Theorem 1.3. Consider the neutral delay differential equation (1.1) and suppose
the following conditions are satisfied:

(i) r(t) is twice differentiable with r′(t) 6= 1 and t− r(t)→∞ as t→∞;
(ii) there exists a bounded function p : [r0,∞) → (0,∞) with p(t) = 1 for

t ∈ [r0, 0] such that p′(t) exists on [r0,∞) and there exists a constant α ∈ (0, 1) and
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an arbitrary continuous functions v : [r0,∞)→ R such that

l
{∣∣c(t)p2(t− r(t))

p(t)(1− r′(t))
∣∣+
∫ t

0

|k(s)− 2b1(s)|e−
R t

s
v(u) du ds

}
+ L

∫ t

0

e−
R t

s
v(u) du |b(s)|p(s− r(s))γ

p(s)
ds

+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣|1− r′(s)| ds
≤ α,

(1.6)

where

k(s) =
[c(s)v(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
, c(s) =

c(s)p2(s− r(s))
p(s)

, (1.7)

b1(s) =
c(s)p(s− r(s))p′(s− r(s))

p(s)
, (1.8)

and the constants l, L are defined as in (1.3);
(iii) and such that

lim inf
t→∞

∫ t

0

v(s) ds > −∞.

Then the zero solution of (1.1) is asymptotically stable if and only if∫ t

0

v(s) ds→∞ as t→∞. (1.9)

Theorem 1.4. Consider the neutral Voterra integro-differential equation (1.2) and
suppose the following conditions are satisfied:

(i) r(t) is twice differentiable, r′(t) 6= 1, t− r(t)→∞ as t→∞;
(ii) There exists a bounded function p : [r0,∞) → (0,∞) with p(0) = 1 such

that p′(t) exists on [r0,∞) and there exists a constant α ∈ (0, 1) and a continuous
functions v : [r0,∞)→ R such that

l
{∣∣c(t)p2(t− r(t))

p(t)(1− r′(t))
∣∣+
∫ t

0

|k(s)− 2b1(s)|e−
R t

s
v(u) du ds

}
+ L

∫ t

0

e−
R t

s
v(u) du

∫ s

s−r(s)

|K(s, u)|pγ(u)
p(s)

du

+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣|1− r′(s)| ds
≤ α,

(1.10)
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where k(s) and b1(s) are defined as (1.7) and (1.8), respectively, the constants l, L
are defined as in (1.3);

(iii) and such that

lim inf
t→∞

∫ t

0

v(s) ds > −∞.

Then the zero solution of (1.2) is asymptotically stable if and only if∫ t

0

v(s) ds→∞ as t→∞. (1.11)

The technique for constructing a contraction mapping comes from an idea in
[16]. Our work extends and improves the results in [12, 16].

Remark 1.5. The method applied in this paper can be used to treat more general
equations such as

d

dt
x(t) = −a(t)h(t− r(t)) +

d

dt
Q(t, x(t− r(t))) +G(t, x(t), x(t− r(t)))

(studied by Mesmouli, Ardjouni and Djoudi in [14]) to give more general results.

2. Proof of Theorem 1.3

We start with some preparations. Define

Slφ =
{
ϕ ∈ C([r0,∞),R) : ‖ϕ‖ = sup

t≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t)

for t ∈ [r0, 0], ϕ(t)→ 0 as t→∞
}
.

Then Slφ is a complete metric space with metric ρ(x, y) = supt≥r0{|x(t)− y(t)|}.
Let z(t) = φ(t) on [r0, 0], and let x(t) = p(t)z(t) for t ≥ 0. If z satisfies

z′(t) = −
(
a(t) +

p′(t)
p(t)

)
z(t) +

c(t)p(t− r(t))p′(t− r(t))
p(t)

z2(t− r(t))

+
c(t)p2(t− r(t))

p(t)
z(t− r(t))z′(t− r(t))

+
b(t)p(t− r(t))γ

p(t)
g(z(t− r(t))),

(2.1)

then it can be verified that x satisfies (1.5). Since p(t) is a positive bounded
function, we only have to prove that the zero solution of (2.1) is asymptotically
stable.

If we multiply both sides of (2.1) by e
R t
0 v(s) ds and then integrate from 0 to t, we

obtain

z(t) = φ(0)e−
R t
0 v(s) ds +

∫ t

0

(
v(s)− a(s)− p′(s)

p(s)

)
e−

R t
s
v(u) duz(s) ds

+
∫ t

0

e−
R t

s
v(u) du c(s)p(s− r(s))p′(s− r(s))

p(s)
z2(s− r(s)) ds

+
∫ t

0

e−
R t

s
v(u) du c(s)p

2(s− r(s))
p(s)

z(s− r(s))z′(s− r(s)) ds

+
∫ t

0

e−
R t

s
v(u) du b(s)p(s− r(s))γ

p(s)
g(z(s− r(s))) ds.

(2.2)
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Taking ∫ t

0

e−
R t

s
v(u) du c(s)p

2(s− r(s))
p(s)

z(s− r(s))z′(s− r(s)) ds

=
∫ t

0

e−
R t

s
v(u) du c(s)p

2(s− r(s))
p(s)

z(s− r(s))z′(s− r(s))

× (1− r′(s)) 1
1− r′(s)

ds

(2.3)

and integrating by parts the right-hand side of (2.3), we obtain∫ t

0

e−
R t

s
v(u) du c(s)p

2(s− r(s))
p(s)

z(s− r(s))z′(s− r(s)) ds

=
p2(t− r(t))

2p(t)
c(t)

1− r′(t)
z2(t− r(t))− p2(−r(0))

2p(0)
c(0)

1− r′(0)
φ2(−r(0))

× e−
R t
0 v(s) ds − 1

2

∫ t

0

e−
R t

s
v(u) duk(s)z2(s− r(s)) ds

(2.4)

where k(s) is given by (1.7).
Integrating by parts, we obtain∫ t

0

(
v(s)− a(s)− p′(s)

p(s)

)
e−

R t
s
v(u) duz(s) ds

=
∫ t

0

e−
R t

s
v(u) du d

(∫ s

s−r(s)

(
v(u)− a(u)− p′(u)

p(u)

)
z(u) du

)
+
∫ t

0

e−
R t

s
v(u) du

(
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

)
× (1− r′(s))z(s− r(s)) ds

=
∫ t

t−r(t)

(
v(s)− a(s)− p′(s)

p(s)

)
z(s) ds

−
∫ t

0

e−
R t

s
v(u) duv(s)

∫ s

s−r(s)

(
v(u)− a(u)− p′(u)

p(u)

)
z(u) du ds

+
∫ t

0

e−
R t

s
v(u) du

(
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

)
× (1− r′(s))z(s− r(s)) ds

(2.5)

Combining (2.2), (2.4) and (2.5), we obtain that a solution of (2.1) has the form

z(t) =
[
φ(0)−

∫ 0

−r(0)

(
v(s)− a(s)− p′(s)

p(s)

)
φ(s) ds

− p2(−r(0))
2p(0)

c(0)
1− r′(0)

φ2(−r(0))
]
e−

R t
0 v(s) ds

+
p2(t− r(t))

2p(t)
c(t)

1− r′(t)
z2(t− r(t))

+
∫ t

t−r(t)

(
v(s)− a(s)− p′(s)

p(s)

)
z(s) ds
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−
∫ t

0

e−
R t

s
v(u) duv(s)

∫ s

s−r(s)

(
v(u)− a(u)− p′(u)

p(u)

)
z(u) du ds

+
∫ t

0

e−
R t

s
v(u) du

(
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

)
× (1− r′(s))z(s− r(s)) ds

− 1
2

∫ t

0

e−
R t

s
v(u) du

(
k(s)− 2b1(s)

)
z2(s− r(s)) ds

+
∫ t

0

e−
R t

s
v(u) du b(s)p(s− r(s))γ

p(s)
g(z(s− r(s))) ds :=

7∑
i=1

Ii(t),

where k(s) and b1(s) are defined in (1.7) and (1.8), respectively.

Lemma 2.1. Let z ∈ Slφ and define an operator by (Pz)(t) = φ(t) for t ∈ [r0, 0]
and for t ≥ 0, (Pz)(t) =

∑7
i=1 Ii(t). If conditions (i)–(ii) and 1.9 in Theorem 1.3

are satisfied, then there exists δ > 0 such that for any initial function φ : [r0, 0]→
(−δ, δ), we have that P : Slφ → Slφ and P is a contraction with respect to the metric
ρ defined on Slφ.

Proof. Set J = supt≥0{e−
R t
0 v(s) ds}, by (iii), J is well defined. Suppose that 1.9

holds. We choose δ > 0 such that[
δ + δ

∫ 0

−r(0)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds+
p2(−r(0))

2p(0)
c(0)

1− r′(0)
δ2
]
J ≤ (1− α)l.

Let φ be a given small bounded initial function with ‖φ‖ < δ, and let ϕ ∈ Slφ, then
‖ϕ‖ ≤ l. Since g satisfies a locally Lipschitz condition, from (1.6) in Theorem 1.3,
we have

|Pϕ(t)| ≤
[
δ + δ

∫ 0

−r(0)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds+
p2(−r(0))

2p(0)
c(0)

1− r′(0)
δ2
]
J + αl ≤ l.

Thus, ‖Pϕ‖ ≤ l.
Next, we show that Pϕ → 0 as t → ∞. It is clear that Ii(t) → 0 for i =

1, 2, 3, 4, 5, 7, since e
R t
0 v(s) ds → ∞, t − r(t) → ∞ and ϕ → 0 as t → ∞. Now, we

prove that I6(t) → 0 as t → ∞. For t − r(t) → ∞ and ϕ → 0, we obtain that for
any ε > 0, there is a positive number T1 > 0 such that for t ≥ T1, ϕ(t− r(t)) < ε,
so we have

|I6(t)| =
∣∣1
2

∫ t

0

e−
R t

s
v(u) du

(
k(s)− 2b1(s)

)
ϕ2(s− r(s)) ds

∣∣
≤ 1

2
e
−

R t
T1
v(u) du

∫ T1

0

e−
R T1

s
v(u) du|k(s)− 2b1(s)|ϕ2(s− r(s)) ds

+
1
2

∫ t

T1

e−
R t

s
v(u) du

∣∣k(s)− 2b1(s)
∣∣ϕ2(s− r(s)) ds

≤ 1
2

(
sup
t≥r0
|ϕ(t)|

)2

e
−

R t
T1
v(u) du

∫ T1

0

e−
R T1

s
v(u) du|k(s)− 2b1(s)| ds

+
1
2
ε2
∫ t

T1

e−
R t

s
v(u) du|k(s)− 2b1(s)| ds
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≤ α

2
l2e
−

R t
T1
v(u) du + αε.

By 1.9, there exists T2 > T1 such that t > T2 implies α
2 l

2e
−

R t
T1
v(u) du

< ε, which
implies I6(t)→ 0 as t→∞. Hence, we have (Pϕ)(t)→ 0 as t→∞.

Finally, we show that P is a contraction mapping. In fact, for ϕ, η ∈ Slφ, using
condition (1.6) in Theorem 1.3, we obtain∣∣(Pϕ)(t)− (Pη)(t)

∣∣
≤ 2l

∣∣∣∣p2(t− r(t))
2p(t)

c(t)
1− r′(t)

∣∣∣∣ ‖ϕ− η‖+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣‖ϕ− η‖ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ ‖ϕ− η‖ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣
× |1− r′(s)|‖ϕ− η‖ ds

+ l

∫ t

0

e−
R t

s
v(u) du|k(s)− 2b1(s)| ‖ϕ− η‖ ds

+ L

∫ t

0

e−
R t

s
v(u) du |b(s)|p(s− r(s))γ

p(s)
‖ϕ− η‖ ds

≤ α‖ϕ− η‖.

Therefore, P : Slφ → Slφ is a contraction mapping. �

Proof of Theorem 1.3. Let P be defined as in Lemma 2.1. By the contraction
mapping principle, P has a unique fixed point z in Slφ which is a solution of (2.1)
with z(t) = φ(t) on [r0, 0] and z(t)→ 0 as t→∞.

To prove stability, let ε > 0 be given, then we choose m > 0 so that m <
min{L, ε}. Replacing l with m in Slφ, we obtain that there is a δ > 0 such that ‖φ‖ <
δ implies that the unique solution of (2.1) with z(t) = φ(t) on [r0, 0] satisfies |z(t)| ≤
m < ε for all t ≥ r0. This shows that the zero solution of (2.1) is asymptotically
stable if 1.9 holds.

Conversely, we suppose that 1.9 fails. Then by (iii), there exists a sequence {tn},
tn → ∞ as n → ∞ such that limn→∞

∫ tn
0
v(s) ds = v for some v ∈ R. We may

choose a positive constant M such that

−M ≤
∫ tn

0

v(s) ds ≤M (2.6)

for all n ≥ 1. To simplify our expressions, we define

w(s) = l|k(s)− 2b1(s)|+ |v(s)|
∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du
+
L|b(s)|p(s− r(s))γ

p(s)

+
∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))
∣∣|1− r′(s)|
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for all s ≥ 0. By (ii) we have∫ tn

0

e−
R tn

s
v(u) duw(s) ds ≤ α. (2.7)

Combining (2.6) and (2.7), we have
∫ tn
0
e

R s
0 v(u) duw(s) ds ≤ αe

R tn
0 v(u) du ≤ αeM ,

which yields that
∫ tn
0
e

R s
0 v(u) duw(s) ds is bounded. Hence, there exists a convergent

subsequence, we assume that limk→∞
∫ tnk

0
e

R s
0 v(u) duw(s) ds = γ for some γ ∈ R+.

We choose a positive integer k1 so large that limk→∞
∫ tnk

tnk1

e
R s
0 v(u) duw(s) ds ≤ δ0

4J

for all nk > nk1 , where δ0 > 0 satisfies 2δ0JeM + α < 1.
Now, we consider the solution z(t) = z(t, tnk1

, φ) of (2.1) with φ(tnk1
) = δ0 and

φ(s) ≤ δ0 for s ≤ tnk1
, and we may choose φ such that |z(t)| ≤ 1 for t ≥ tnk1

and

φ(tnk1
)−

∫ tnk1

tnk1
−r(tnk1

)

(
v(s)− a(s)− p′(s)

p(s)

)
φ(s) ds

−
p2(tnk1

− r(tnk1
))

2p(tnk1
)

c(tnk1
)

1− r′(tnk1
)
φ2(tnk1

− r(tnk1
)) ≥ 1

2
δ0.

(2.8)

So, it follows from (2.8) with z(t) = (Pz)(t) that for k ≥ k1,∣∣∣z(tnk
)− p2(tnk

− r(tnk
))

2p(tnk
)

c(tnk
)

1− r′(tnk
)
z2(t− r(tnk

))

−
∫ tnk

tnk
−r(tnk

)

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds

∣∣∣
≥ 1

2
δ0e
−

R tnk
tnk1

v(u) du
−
∫ tnk

tnk1

e−
R tnk

s v(u) duw(s) ds

= e
−

R tnk
tnk1

v(u) du
[1

2
δ0 − e−

R tnk1
0 v(u) du

∫ tnk

tnk1

e
R s
0 v(u) duw(s) ds

]
≥ e
−

R tnk
tnk1

v(u) du
[1

2
δ0 − J

∫ tnk

tnk1

e
R s
0 v(u) duw(s) ds

]
≥ 1

4
δ0e
−

R tnk
tnk1

v(u) du
≥ 1

4
δ0e
−2M > 0.

(2.9)

On the other hand, suppose that the solution of (2.1) z(t) = z(t, tnk1
, φ) → 0 as

t→∞. Since tnk
− r(tnk

)→∞ as k →∞, and (ii) holds, we have

z(tnk
)− p2(tnk

− r(tnk
))

2p(tnk
)

c(tnk
)

1− r′(tnk
)
z2(t− r(tnk

))

−
∫ tnk

tnk
−r(tnk

)

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds→ 0 as k →∞,

which contradicts (2.9). Hence condition 1.9 is necessary for the asymptotic stabil-
ity of the zero solution of (2.1).

Since p(t) is a positive bounded function, from the above arguments we obtain
that 1.9 is a necessary and sufficient condition for the asymptotic stability of the
zero solution of (1.1). �

When g(x) = x2 in (1.1), we have the following result.
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Corollary 2.2. Suppose the following conditions are satisfied: (i) the delay r(t) is
twice differentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;

(ii) there exists a bounded function p : [r0,∞) → (0,∞) with p(0) = 1 such
that p′(t) exists on [r0,∞), and there exists a constant α ∈ (0, 1) and an arbitrary
continuous functions v : [r0,∞)→ R such that

l
{∣∣c(t)p2(t− r(t))

p(t)(1− r′(t))
∣∣+
∫ t

0

|k(s)− 2b(s)|e−
R t

s
v(u) du ds

}
+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣|1− r′(s)| ds
≤ α,

(2.10)

where k(s) is defined as in (1.7),

b(s) =
b(s)p2(s− r(s)) + c(s)p(s− r(s))p′(s− r(s))

p(s)
, (2.11)

and l > 0 is defined as in (1.3);
(iii) and such that

lim inf
t→∞

∫ t

0

v(s) ds > −∞.

Then the zero solution x(t, φ) of (1.1) is asymptotically stable if and only if∫ t

0

v(s) ds→∞ as t→∞. (2.12)

3. Proof of Theorem 1.4

We start with some preparations. Define

Slφ =
{
ϕ ∈ C([r0,∞),R) : ‖ϕ‖ = sup

t≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t)

for t ∈ [r0, 0], ϕ(t)→ 0 as t→∞
}
.

Then Slφ is complete metric space with metric ρ(x, y) = supt≥r0{|x(t)− y(t)|}.
Let z(t) = φ(t) on [r0, 0], and let x(t) = p(t)z(t), for t ≥ 0, from (1.2), we obtain

z′(t) = −
(
a(t) +

p′(t)
p(t)

)
z(t) +

c(t)p(t− r(t))p′(t− r(t))
p(t)

z2(t− r(t))

+
c(t)p2(t− r(t))

p(t)
z(t− r(t))z′(t− r(t))

+
∫ t

t−r(t)

pγ(s)K(t, s)
p(t)

g(z(s)) ds.

(3.1)

Since p(t) is bounded, we only need to prove that the zero solution of (3.1) is
asymptotically stable.
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If we multiply both sides of (3.1) by e
R t
0 v(s) ds, integrate from 0 to t, and perform

an integration by parts, we obtain

z(t) =
{
φ(0)−

∫ 0

−r(0)

(
v(s)− a(s)− p′(s)

p(s)

)
φ(s) ds

− p2(−r(0))
2p(0)

c(0)
1− r′(0)

φ2(−r(0))
}
e−

R t
0 v(s) ds

+
p2(t− r(t))

2p(t)
c(t)

1− r′(t)
z2(t− r(t))

+
∫ t

t−r(t)

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds

−
∫ t

0

e−
R t

s
v(u) duv(s)

∫ s

s−r(s)

(
v(u)− a(u)− p′(u)

p(u)

)
z(u) du ds

+
∫ t

0

e−
R t

s
v(u) du

(
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

)
× (1− r′(s))z(s− r(s)) ds

− 1
2

∫ t

0

e−
R t

s
v(u) du

(
k(s)− 2b1(s)

)
z2(s− r(s)) ds

+
∫ t

0

e−
R t

s
v(u) du

∫ s

s−r(s)

K(s, u)pγ(u)
p(s)

g(z(u)) du ds :=
7∑
i=1

Ii(t)

where k(s) and b1(s) are defined as in (1.7) and (1.8) respectively.

Lemma 3.1. Let z ∈ Slφ and define an operator by (Pz)(t) = φ(t) for t ∈ [r0, 0]
and for t ≥ 0, (Pz)(t) =

∑7
i=1 Ii(t). If conditions (i)-(iii) in Theorem 1.4 are

satisfied, then there exists δ > 0 such that for any φ : [r0, 0]→ (−δ, δ), we have that
P : Slφ → Slφ and P is a contraction mapping with respect to the metric defined on
Slφ.

Proof. Set J = supt≥0{e−
R t
0 v(s) ds}, by (iii), J is well defined. Suppose that (iii)

holds. Using the similar arguments as as the proof of Theorem 1.3, we obtain that
Pϕ ∈ Slφ for ϕ ∈ Slφ. Now, we show that P is a contraction mapping. In fact, for
ϕ, η ∈ Slφ, by using condition (1.10) in Theorem 1.4, we obtain that∣∣(Pϕ)(t)− (Pη)(t)

∣∣
≤
∣∣p2(t− r(t))

2p(t)
c(t)

1− r′(t)
∣∣2l‖ϕ− η‖

+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ‖ϕ− η‖ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ ‖ϕ− η‖ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣
× |1− r′(s)|‖ϕ− η‖ ds
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+
1
2

∫ t

0

|k(s)− 2b1(s)|2l‖ϕ− η‖

+ L

∫ t

0

e−
R t

s
v(u) du

∫ s

s−r(s)

|K(s, u)|pγ(u)
p(s)

du · ‖ϕ− η‖ ds

≤ α‖ϕ− η‖.

Hence, we obtain that P : Slφ → Slφ is a contraction mapping. �

Proof of Theorem 1.4. Let P be defined as in Lemma 3.1. By the contraction
mapping principle, P has a unique fixed point z in Slφ which is a solution of (1.2)
with z(t) = φ(t) on [r0, 0] and z(t)→ 0 as t→∞.

Let ε > 0 be given, then we choose m > 0 so that m < min{l, ε}. Replacing l
with m in Slφ, we obtain there is a δ > 0 such that ‖φ‖ < δ implies that the unique
solution of (1.2) with z(t) = φ(t) on [r0, 0] satisfies |z(t)| ≤ m < ε for all t ≥ r0.
This shows that the zero solution of (1.2) is asymptotically stable if 1.11 holds.

Following the similar arguments as the proof of Theorem 1.3, we obtain that 1.11
is necessary for the asymptotic stability of the zero solution of (1.2). The proof is
complete. �

When g(x) = x2, we have the following corollary.

Corollary 3.2. Suppose the following conditions are satisfied:
(i) the delay r(t) is twice differentiable, r′(t) 6= 1, t− r(t)→∞ as t→∞;
(ii) there exists a bounded function p : [r0,∞)→ (0,∞) with p(0) = 1 such that

p′(t) exists on [r0,∞), and there exists a constant α ∈ (0, 1), a constant l > 0 and
a continuous functions v : [r0,∞)→ R such that

l
{∣∣c(t)p2(t− r(t))

p(t)(1− r′(t))
∣∣+
∫ t

0

[
|k(s)− 2b1(s)|

+ 2
∫ s

s−r(s)

∣∣K(s, u)p2(u)
p(s)

∣∣ du]e− R t
s
v(u) du ds

}
+
∫ t

t−r(t)

∣∣v(s)− a(s)− p′(s)
p(s)

∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣|1− r′(s)| ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du ds ≤ α,

(3.2)

where k(s) and b1(s) are defined as in (1.7) and (1.8);
(iii) and such that

lim inf
t→∞

∫ t

0

v(s) ds > −∞.

Then the zero solution of (1.2) with a small initial function φ is asymptotically
stable if and only if ∫ t

0

v(s) ds→∞ as t→∞. (3.3)
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4. Examples

Example 4.1. Consider the nonlinear neutral differential equation

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) + b(t)x2(t− r(t)) (4.1)

for t ≥ 0, where a(t) = 2
t+1 , c(t) = 0.95, r(t) = 0.05t, l = 1, b(t) satisfies |k(s) −

2b(s)| ≤ 0.3
s+1 , then the zero solution of (4.1) is asymptotically stable.

Proof. We check condition (2.10) in Corollary 2.2, choosing v(t) = 1.5
t+1 and p(t) =

1
t+1 , we obtain that

l
{∣∣c(t)p2(t− r(t))

p(t)(1− r′(t))
∣∣+
∫ t

0

e−
R t

s
v(u) du|k(s)− 2b(s)| ds

}
+
∫ t

t−r(t)

∣∣∣∣v(s)− a(s)− p′(s)
p(s)

∣∣∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣v(u)− a(u)− p′(u)
p(u)

∣∣∣∣ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣|1− r′(s)| ds
< 0.36 + 0.026 + 0.026 + 0.33 + 0.2 = 0.941 < 1,

and since
∫ t
0
v(s) ds =

∫ t
0

1.5
s+1 ds = 1.5 ln(t + 1) → ∞ as t → ∞, p(t) ≤ 1, so the

conditions of Corollary 2.2 are satisfied. Therefore, the zero solution of (4.1) is
asymptotically stable. �

Note that | c(t)
1−r′(t) | = 1; therefore the result in [12] is not applicable.

Example 4.2. Consider the nonlinear neutral Volterra integral equation

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) +
∫ t

t−r(t)
K(t, s)x2(s) ds (4.2)

for t ≥ 0, where a(t) = 2.5
t+0.1 , c(t) = (0.95t+0.1)2

t+0.1 , r(t) = 0.05t, l = 1, K(t, s) = 1
t+0.1 ,

then the zero solution of (4.2) is asymptotically stable.

Proof. We check the condition (3.2) in Corollary 3.2, choosing v(t) = 2
t+0.1 and

p(t) = 0.1
t+0.1 , we obtain that

l

∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣
+ l

∫ t

0

[
|k(s)− 2b1(s)|+ 2

∫ s

s−r(s)

∣∣K(s, u)p2(u)
p(s)

∣∣ du]e− R t
s
v(u) du ds

+
∫ t

t−r(t)

∣∣∣∣v(s)− a(s)− p′(s)
p(s)

∣∣∣∣ ds
+
∫ t

0

e−
R t

s
v(u) du|v(s)|

∫ s

s−r(s)

∣∣v(u)− a(u)− p′(u)
p(u)

∣∣ du ds
+
∫ t

0

e−
R t

s
v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣ |1− r′(s)| ds
< 0.106 + 0.416 + 0.026 + 0.026 + 0.25 = 0.824 < 1,
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and since
∫ t
0
v(s) ds =

∫ t
0

2
s+0.1 ds = 2 ln(t + 0.1) → ∞ as t → ∞, p(t) ≤ 1, so

the conditions of Corollary 3.2 are satisfied. Therefore, the zero solution of (4.2) is
asymptotically stable. �

Note that | c(t)
1−r′(t) | = (0.95t+0.1)2

0.95(t+0.1) → ∞ as t → ∞; therefore the result in [12] is
not applicable.
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