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INSTANTANEOUS BLOW-UP OF SEMILINEAR
NON-AUTONOMOUS EQUATIONS WITH

FRACTIONAL DIFFUSION

JOSÉ VILLA-MORALES

Abstract. We consider the Cauchy initial value problem

∂

∂t
u(t, x) = k(t)∆αu(t, x) + h(t)f(u(t, x)),

u(0, x) = u0(x),

where ∆α is the fractional Laplacian for 0 < α ≤ 2. We prove that if the

initial condition u0 is non-negative, bounded and measurable then the problem
has a global integral solution when the source term f is non-negative, locally

Lipschitz and satisfies the generalized Osgood’s conditionZ ∞

‖u0‖∞

ds

f(s)
≥

Z ∞

0
h(s)ds.

Also, we prove that if the initial data is unbounded then the generalized Os-

good’s condition does not guarantee the existence of a global solution. It is

important to point out that the proof of the existence hinges on the role of the
function h. Analogously, the function k plays a central role in the proof of the

instantaneous blow-up.

1. Introduction

We consider integral solutions of the semilinear non-autonomous parabolic equa-
tion

∂

∂t
u(t, x) = k(t)∆αu(t, x) + h(t)f(u(t, x)), t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(1.1)

where the diffusion ∆α = −(−∆)α/2 is the fractional Laplacian (or α-Laplacian),
0 < α ≤ 2, u0 is the initial data and f is the source term. The diffusion and the
source terms are multiplicatively perturbated by continuous functions k, h.

Basic references for the study of the fractional Laplacian are the books [7] and
[12]. However, it is worth noticing that the systematic study of partial differential
equations considering fractional diffusion is relatively new. This area of mathemat-
ics has been actively studied in the last decade by Caffarelli, Vázquez and many
others (see for instance, [3, 14] and the references therein).
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We denote by p the real-valued function determined by∫
Rd
p(t, z)eiz·ξdz = e−t|ξ|

α

, for all t > 0, ξ ∈ Rd. (1.2)

The space of all real-valued essentially bounded functions defined on Rd will be
denoted by L∞(Rd). Let us consider the family {Tt, t ≥ 0} of bounded linear
operators defined on L∞(Rd) as

Ttg(x) =
∫

Rd
p(t, x− y)g(y)dy, x ∈ Rd.

It is well known that {Tt, t ≥ 0} is a strongly continuous semigroup with infinitesi-
mal generator ∆α (see [1]).

As in [6, 9], we introduce the following concept.

Definition 1.1. Let u0 ≥ 0 be a measurable function. We say that (1.1) has a local
integral solution on [0, T ) if there is a measurable function u : [0, T )×Rd → [0,∞]
that is finite almost everywhere and

u(t) = TK0(t)u0 +
∫ t

0

h(s)TK(s,t)f(u(s))ds, t ∈ [0, T ), (1.3)

holds almost everywhere (a.e.) in [0, T )× Rd, where

K(s, t) =
∫ t

s

k(r)dr and K0(t) = K(0, t).

We will say that (1.1) has a global integral solution if (1.1) has a local integral
solution for all T > 0.

A solution of the differential equation (1.1) is called a classical solution. It is clear
that the non-existence of a local integral solution for (1.1) implies the non-existence
of a classical solution (see [9]).

In this article we consider the following hypotheses:
(H1) u0 ≥ 0 and 0 < ‖u0‖q <∞, with 1 ≤ q ≤ ∞;
(H2) f : [0,∞)→ [0,∞) is non-decreasing, locally Lipschitz, f(0) = 0, and f > 0

on (0,∞);
(H3) h, k : (0,∞)→ (0,∞) are continuous functions:

(a) limt→0

∫ t
0
h(s)ds = 0,

(b) limt→0

∫ t
0
k(s)ds = 0.

In what follows we will use the notation

H(t) =
∫ t

0

h(s)ds, Fx0(x) =
∫ x

x0

ds

f(s)
,

where x0 ≥ 0.
It is not difficult to prove that under the hypotheses (H2) and (H3), the initial

value problem
dy(t)
dt

= h(t)f(y(t)), t > 0,

y(0) = x0 ≥ 0,
(1.4)

has a unique solution if and only if im(H) ⊆ im(Fx0). Moreover, the solution is
given by y(t) = F−1

x0
(H(t)), t ≥ 0. Such criterion, of existence and uniqueness for
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(1.4), is called the generalized Osgood’s test (for a proof see for example [4, Lemma
2.2]).

Assume the hypotheses (H2), (H3) and (H3)(a). Theorem 2.2 will establish that
(1.1) has a global integral solution if 0 ≤ u0 ∈ L∞(Rd) and im(H) ⊆ im(F‖u0‖∞).
Thus the generalized Osgood’s test is still valid in some sense.

The following question arouse naturally in [6] for the case h ≡ k ≡ 1 and α = 2:

Does im(H) ⊆ im(F‖u0‖q ) (with 1 ≤ q < ∞) guarantees the
existence of a global integral solution for (1.1)?

(1.5)

To answer the above question we define the closed ball with center at x and radius
R by BR(x) = {y ∈ Rd : |x− y| ≤ R}.

Definition 1.2. Let u0 ≥ 0 be a measurable function. We say that a measurable
function u ≥ 0 is a local p-integrable solution to (1.1) if there are x ∈ Rd, p ≥ 1,
R > 0 and T > 0, such that u(t, ·) ∈ Lp(BR(x)), for all t < T , with u(0) = u0 and
the equality (1.3) is satisfied a.e. on [0, T )×BR(x).

Of course, the non-existence of p-integrable local solutions implies the non-
existence of local integral solutions. Therefore we say that an equation blows-up
instantaneously if it does not have a p-integrable local solution.

In [6], an initial condition u0 satisfying (H1) with 1 ≤ q <∞, and a source term
f satisfying (H2) and im(H) ⊆ im(F‖u0‖q ) are assumed. Under these conditions
it is readily proved that any local integral solution for (1.1) does not belong to
L1(BR(0)) for all t < τ and R > 1.

The concept of local p-integrable solution is weaker than that of local integral
solution introduced in [6]. In this new context we will have the following conse-
quences:

(i) The answer given in [6] for the question (1.5) uses strongly the fact that
R > 1 (this assumption is essential in the study of the set {|x| ≤ (R− 1)/2

√
t− s}

introduced in the proof of [6, Theorem 4.1]). We overcome this difficulty through
Lemma 2.4: see the inequality (3.4) below.

(ii) Some new phenomenon are found.
(a) The existence of a global integral solution depends only of the combined source
term h and f . More precisely, the existence of a global integral solution depends of
(H1) (q =∞), (H2), (H3), (H3)(a) and im(H) ⊆ im(F‖u0‖q ). This, at an intuitively
level, implies that the diffusion term can be perturbed by a very large term k and
we still have the existence of a global integral solution.
(b) Symmetrically, given (H1) (1 ≤ q < ∞) and (H3), to construct a convenient
source term f̃ satisfying

∫∞
‖u0‖q

ds
f̃(s)

=∞ one requires Hypotheses (H3)(b). In this

case h is arbitrary, which means that
∫∞
0
h(s)ds could be finite or infinite. In any

case the generalized Osgood’s condition is satisfied.
It is worth mention that Osgood-type conditions appears naturally in some ap-

plied problems (see the references in [6]). On the other hand, from [15] we have
that if we require additionally that the source term f is convex then we have that
the local integral solution of (1.1) blows-up in finite time when

∫∞
‖u0‖∞

ds
f(s) < ∞

and
∫∞
0
h(s)ds = ∞. The case

∫∞
‖u0‖∞

ds
f(s) <

∫∞
0
h(s)ds < ∞ is still open, but we

believe that we also have blow-up in finite time. Concerning the global existence of
(1.1), we need additional conditions to guarantee a solution in a strong sense. For
example, when h ≡ k ≡ 1 and α ∈ (1, 2), the authors of [5] proved that (1.1) has a
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mild solution (or even such solution is classical). Moreover, (1.1) has a mild global
solution if we assume (see [10])

sup
{∫ t

0

(∫ t

s

k(r)dr
)−1/α

ds : t ∈ [0, T ]
}
<∞, for all T > 0.

The importance of the study of equations like (2.1) with fractional diffusion is
well known in applied mathematics. For example, they arise in fields like molecular
biology, hydrodynamics and statistical physics [11]. Also, notice that generators of
the form k(t)∆α arise in models of anomalous growth of certain fractal interfaces
[8]. The study of partial differential equations with fractional diffusion is becoming
more popular. In fact the number of works both theoretical and practical are
increasing: see for example [3, 5, 14] and the references therein.

This article is organized as follows. In Section 2 we prove the existence of global
mild solutions of (2.1) and we present some basic properties of p(t, x). Section 3
provides a negative answer to the question (1.5), that is, we give an initial condition
φθ ∈ Lq(Rd), 1 ≤ q < ∞, 0 < θ < d/q and a source term f̃ that satisfy the
generalized Osgood’s condition for which there is instantaneous blow-up.

2. Global existence and preliminary results

The existence of local integral solutions for (1.3) follows form the Banach con-
traction principle, as we shall see. First, we state some well known properties of
p.

Lemma 2.1. Let t > 0 and x, y ∈ Rd then:
(a) p(t, x) ≥ 0 and

∫
Rd p(t, z)dz = 1 (density property).

(b) p(t, x) = t−d/αp(1, t−1/αx) (scaling property).
(c) If |x| ≥ |y| then p(t, x) ≤ p(t, y) (radially decreasing).
(d) The function (t, x)→ p(t, x) is in C∞((0,∞)× Rd) (regularity).
(e) There exists c0 = c0(d, α) > 0, such that

p(t, x) ≥ c0 min
{ t

|x|d+α
,

1
td/α

}
.

Proof. For the proofs of (a)–(c) see [13, Section 2]. The proof of property (d) can
be found in [5], and that of property (e) can be found in [2]. �

In what follows, c will denote a positive constant whose specific value is unim-
portant and can change from place to place. On the other hand, if the constant c·
has a subindex then we refer to a specific constant.

Let us recall that, by L∞(Rd), we denote the space of all measurable functions
ϕ : Rd → R such that

‖ϕ‖∞ = inf{M ≥ 0 : |ϕ(x)| ≤M holds for almost all x} <∞.
Let τ > 0 be a real number that we will fix later. Define

Eτ = {u : [0, τ ]→ L∞(Rd) and ‖|u‖| <∞},
where

‖|u‖| = sup{‖u(t)‖∞ : 0 ≤ t ≤ τ}.
Then Eτ is a Banach space and the sets (r > 0)

Pτ = {u ∈ Eτ : u ≥ 0, a.e. }, Bτ,r = {u ∈ Eτ : ‖|u‖| ≤ r},
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are closed subsets of Eτ .

Theorem 2.2. Let us assume (H1), with q =∞, (H2), (H3), (H3)(a). Then (1.1)
has a global integral solution if im(H) ⊆ im(F‖u0‖∞).

Proof. Define the operator Ψ : Bτ,r ∩ Pτ → Eτ by

Ψ(u)(t) = TK0(t)u0 +
∫ t

0

h(s)TK(s,t)f(u(s))ds.

Since u ≥ 0 and u0 ≥ 0, it is clear that Ψ(u) ≥ 0, so Ψ(u) ∈ Pτ . Using∫
Rd p(t, x)dx = 1, for almost all x ∈ Rd and u ∈ Bτ,r, we have

Ψ(u)(t, x) ≤ ‖u0‖∞
∫

Rd
p(K0(t), y − x)dy

+
∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)f(‖u(s)‖∞)dy ds

≤ ‖u0‖∞ +
∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)f(r)dy ds

≤ ‖u0‖∞ + f(r)
∫ τ

0

h(s)ds .

(2.1)

Then

‖|Ψ(u)‖| ≤ ‖u0‖∞ + f(r)
∫ τ

0

h(s)ds.

Let us take r = 1 + ‖u0‖∞. By Hypothesis (H3)(a) we can choose τ > 0 small
enough such that

f(r)
∫ τ

0

h(s)ds < 1.

Then Ψ(u) ∈ Bτ,r ∩ Pτ , therefore Ψ(Bτ,r ∩ Pτ ) ⊂ Bτ,r ∩ Pτ .
Now let us see that Ψ is a contraction. Take u, ũ ∈ Bτ,r ∩ Pτ ,

|Ψ(u)(t, x)−Ψ(ũ)(t, x)|

=
∣∣ ∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)[f(u(s, y))− f(ũ(s, y))]dy ds

∣∣
≤ sup
t∈[0,τ ]

{∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)|f(u(s, y))− f(ũ(s, y))|dy ds

}
.

Since R is locally compact, then f is Lipschitz on each compact subset of R. In
particular, for [0, r] there exists a constant c > 0 such that

|f(s)− f(t)| ≤ c|s− t|, for all s, t ∈ [0, r].

From the above inequality we easily deduce

|f(u(s, y))− f(ũ(s, y))| ≤ c|u(s, x)− ũ(s, x)| ≤ c‖u(s)− ũ(s)‖∞.

Consequently,

‖|Ψ(u)−Ψ(ũ)‖| ≤ sup
t∈[0,τ ]

{∫ t

0

h(s)c‖u(s)− ũ(s)‖∞ds
}

≤ (c
∫ τ

0

h(s)ds)‖|u− ũ‖|.
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Using again Hypothesis (H3)(a), we can choose τ > 0 small enough such that Ψ is
a contraction. Therefore Ψ has a unique fixed point (on Bτ,r ∩ Pτ ): the local mild
solution to the equation (1.3).

Let [0, τmax) be the maximal interval for which the local integral solution u of
(1.3) exists. Clearly, τmax ≥ τ . Let us suppose that τmax < ∞. Since f is non
decreasing, we deduce

u(t, x) ≤ TK0(t)‖u0‖∞(x) +
∫ t

0

h(s)TK(s,t)f(‖u(s)‖∞)ds

= ‖u0‖∞ +
∫ t

0

h(s)f(‖u(s)‖∞)ds, 0 ≤ t < τmax, x ∈ Rd.

Then

‖u(t)‖∞ ≤ ‖u0‖∞ +
∫ t

0

h(s)f(‖u(s)‖∞)ds.

Now let us consider the integral equation

y(t) = ‖u0‖∞ +
∫ t

0

h(s)f(y(s))ds,

whose solution y is given by

y(t) = F−1
‖u0‖∞(H(t)), 0 ≤ t <∞,

where we have used that im(H) ⊆ im(F‖u0‖∞). By the Comparison Theorem (see
[4]) we have

‖u(t)‖∞ ≤ F−1
‖u0‖∞(H(t)), 0 ≤ t < τmax.

The continuity of p (property (d) in Lemma 2.1) and the Bounded Convergence
Theorem (notice that p(s) ≤ 2d/αp(τmax), τmax/2 ≤ s ≤ τmax, this is consequence
of (b) and (c) in Lemma 2.1) allow us to take the limit t ↑ τmax in (1.3),

u(τmax, x) := lim
t↑τmax

u(t, x)

= TK0(τmax)u0(x) +
∫ τmax

0

h(s)TK(s,τmax)f(u(s, ·))ds

≤ F−1
‖u0‖∞(H(τmax)).

From this, the measurability of u(τmax, ·) follows easily. Also that

0 < ‖u0‖∞ ≤ ‖u(τmax)‖∞ ≤ F−1
‖u0‖∞(H(τmax)).

Accordingly we can consider the equation (1.3) with initial condition u(τmax, ·)(∈
L∞(Rd)). By the first part of the proof, the solution u can be extended beyond
τmax, contradicting the definition of τmax. �

The following estimates will be essentials in the proof of Theorem 3.1.

Lemma 2.3. Let R > 0. There exists a δ = δ(α,R) > 0 such that∫
|y|≤R

p(t, y − x)dy ≥ c1, for all 0 < t ≤ δ, |x| ≤ R, (2.2)

where c1 = c1(d, α) is a positive constant.
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Proof. The change of variable theorem and the scaling property of p imply∫
|y|≤R

p(t, y − x)dy =
∫
|y+x|≤R

p(t, y)dy

= t−d/α
∫
|y+x|≤R

p(1, t−1/αy)dy

=
∫
|t1/αy+x|≤R

p(1, y)dy

=
∫
|y+t−1/αx|≤t−1/αR

p(1, y)dy.

We are going to set δ = Rα and

x̃ =

{
0, x = 0,
− 1

2|x|x, x 6= 0.

If 0 < t ≤ δ and |x| ≤ R, then

B1/2(x̃) ⊂ B1(0) ∩Bt−1/αR(−t−1/αx).

Therefore ∫
|y|≤R

p(t, y − x)dy ≥
∫
B1/2(x̃)

p(1, y)dy

≥ inf
z∈B1(0)

p(1, z)
∫
B1/2(x̃)

dy

= Vol(B1/2(0)) inf
z∈B1(0)

p(1, z),

where Vol(B1/2(0)) is the volume of the ball B1/2(0). �

Let 1 ≤ q <∞. We will consider the real-valued function

φθ(x) =
1
|x|θ

1B1(0)\{0}(x), x ∈ Rd. (2.3)

Observe that
φθ ∈ Lq(Rd), if 0 < θ <

d

q
. (2.4)

Lemma 2.4. Let 0 < t ≤ 1 and |x| ≤ t1/α/2, then

Ttφθ(x) ≥ c2t−θ/α, (2.5)

where c2 = c2(d, α) is a positive constant.

Proof. By property (e) in Lemma 2.1 we obtain∫
|y|≤1

p(t, y − x)
|y|θ

dy ≥ c0
∫
|y|≤1,|x−y|≤t1/α

min{t|y − x|−d−α, t−d/α}
|y|θ

dy.

Since |x− y| ≤ t1/α is equivalent to
t

|y − x|d+α
≥ 1
td/α

,

we have
Ttφθ(x) ≥ c0t−d/α

∫
|y|≤1,|x−y|≤t1/α

dy

|y|θ
.
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Moreover ∫
|y|≤1,|x−y|≤t1/α

dy

|y|θ
≥
∫
|y|≤t1/α−|x|

dy

|y|θ

= c

∫ t1/α−|x|

0

rd−1−θdr ≥ ctd/α−θ/α.

In the last inequality we have used (2.4) and |x| ≤ t1/α/2. �

3. Instantaneous blow-up

Let us consider the function φθ defined in (2.3), with d > qθ > 0. We choose

r1 := ‖φθ‖q + 1 > ‖φθ‖q,
and define recursively the sequence (ri) as

ri+1 := 2
{
ri +

(∫ K−1
0 ((ri/c2)

−α/θ)

0

h(s)K0(s)d/αds
)−1(

K0(
1
ri

)
)−2}

,

for i = 2, 3, . . . . Inasmuch as ri+1 > 2ri, then (ri) is strictly increasing and ri ↑ ∞.
We define

f̃(ri) =
(ri+1

2
− ri

)
K0(

1
ri

),

for i = 1, 2, . . . . Notice that

f̃(ri) =
(∫ K−1

0 ((ri/c2)
−α/θ)

0

h(s)K0(s)d/αds
)−1(

K0(
1
ri

)
)−1

≤
(∫ K−1

0 ((ri+1/c2)
−α/θ)

0

h(s)K0(s)d/αds
)−1(

K0(
1
ri+1

)
)−1

= f̃(ri+1),

then we can define f̃ : [0,∞)→ [0,∞) as

f̃(x) =


f̃(r1)
r1

x, 0 ≤ x ≤ r1,
f̃(ri), ri ≤ x ≤ 1

2ri+1,

linear interpolation, 1
2ri+1 ≤ x ≤ ri+1.

(3.1)

In this way f̃ is non-decreasing. Also, from the definition of f̃ follows that it is
locally Lipschitz. Moreover,∫ ∞

‖φθ‖q

ds

f̃(s)
≥
∞∑
i=1

∫ 1
2 ri+1

ri

1
f̃(ri)

ds

=
∞∑
i=1

(
K0(

1
ri

)
)−1

=∞,

because of Hypothesis (H3)(b). In this way, the function f̃ satisfies Hypothesis (H2).
Also, the generalized Osgood’s condition is satisfied for all continuous functions
h : (0,∞)→ (0,∞) because

∫∞
‖φθ‖q

ds
f̃(s)

=∞ (1 ≤ q <∞).
Our main result reads as follows.

Theorem 3.1. Let us suppose q ∈ [1,∞), f̃ is as in (3.1) and Hypotheses (H3),
(H3)(b). If 0 < θ < d/q, and u0 = φθ, then equation (1.1) possesses no local
p-integrable solution for all p ≥ 1.
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Proof. We proceed by contradiction. Suppose that there are p ≥ 1, R > 0 and
τ > 0, such that (1.3) has an p-integrable solution u(t, ·) on BR(0), for all t < τ ,
with u0 = φθ. Let us take a t < min{τ,K−1

0 (1),K0
−1(δ),K0

−1((2R)α)}, where δ
is given in Lemma 2.3.

We observe that (1.3) implies

u(s, x) ≥ TK0(s)φθ(x), for all s ≥ 0, x ∈ Rd.

From (1.3), Jensen’s inequality, and the above estimation we obtain∫
|x|≤R

u(t, x)pdx

≥
∫
|x|≤R

(
∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)f̃(TK0(s)φθ(y))dy ds)pdx

≥ cRd(1−p)(
∫
|x|≤R

∫ t

0

h(s)
∫

Rd
p(K(s, t), y − x)f̃(TK0(s)φθ(y))dy ds dx)p.

Denoting the set {y : TK0(s)φθ(y) ≥ ri} by Ai, and using that f̃ is non-decreasing
we obtain∫

|x|≤R
u(t, x)pdx

≥ c(
∫
|x|≤R

∫ t

0

h(s)
∫
Ai

p(K(s, t), y − x)f̃(TK0(s)φθ(y))dy dsdx)p

≥ c(
∫ t

0

h(s)
∫
Ai

∫
|x|≤R

p(K(s, t), y − x)dxf̃(ri)dy ds)p.

Since ri ↑ ∞, there exists i0 ∈ N such that

ti := K−1
0

(
(
ri
c2

)−α/θ
)
≤ t, for all i ≥ i0. (3.2)

If 0 ≤ s ≤ ti, the inequality (3.2) yields

ri < c2K0(s)−θ/α.

Moreover, if |y| ≤ K0(s)1/α/2, then (2.5) implies

ri < TK0(s)φθ(y).

Hence,
Ai = {y : TK0(s)φθ(y) ≥ ri} ⊃ {y : |y| ≤ 2−1K0(s)1/α}. (3.3)

On the other hand, for s < t, we have K(s, t) ≤ K0(t) ≤ δ and 2−1K0(s)1/α ≤
2−1K0(t)1/α < R which indicate that we are able to use (2.2). Then∫

|x|≤R
p(K(s, t), y − x)dx ≥ c1, for all |y| ≤ 2−1K0(s)1/α. (3.4)

Using (3.3) and (3.4) we obtain(∫
|x|≤R

u(t, x)pdx
)1/p

≥ cf̃(ri)
∫ ti

0

h(s)
∫
{|y|≤2−1K0(s)1/α}

dy ds

= cf̃(ri)
∫ ti

0

h(s)K0(s)d/αds
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= c
(∫ 1/ri

0

k(s)ds
)−1

.

Letting i → ∞, ri ↑ ∞, therefore (H3)(b) implies
∫
|x|≤R u(t, x)pdx = ∞, t < τ .

The contradiction obtained proves the result. �
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