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SOLUTION TO RANDOM DIFFERENTIAL EQUATIONS WITH
BOUNDARY CONDITIONS
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Communicated by Mokhtar Kirane

Abstract. We study a family of random differential equations with bound-
ary conditions. Using a random fixed point theorem, we prove an existence

theorem that yields a unique random solution.

1. Introduction

Let C([0, 1],R) be the set of all continuous real-valued functions on [0, 1] endowed
with the partial order relation: x, y ∈ C([0, 1],R), x - y if and only if x(t) ≤ y(t) for
every t ∈ [0, 1]. This is a relation which we can extend in C([0, 1],R)× C([0, 1],R)
as follows:

(x, y), (u, v) ∈ C([0, 1],R)× C([0, 1],R), (x, y) - (u, v)⇐⇒ x - u, y - v.

In this article, we study the following nonlinear boundary value problem for system
of random differential equations:

x′′(ω, t) = f1(ω, t, x(ω, t), y(ω, t)), 0 < t < 1, ω ∈ Ω,

y′′(ω, t) = f2(ω, t, x(ω, t, ), y(ω, t)), 0 < t < 1, ω ∈ Ω,

x(ω, 0) = 0, x(ω, 1) = ψ1

(∫ 1

0

x(ω, t)dt
)
, ω ∈ Ω, ψ1 ∈ C(R,R),

y(ω, 0) = 0, y(ω, 1) = ψ2

(∫ 1

0

y(ω, t)dt
)
, ω ∈ Ω, ψ2 ∈ C(R,R),

(1.1)

where f1, f2 : Ω × [0, 1] × R × R → R are two functions with some regularity
properties. By a random solution of system (1.1), we mean a couple of measurable
functions (x, y) : Ω→ C([0, 1],R)×C([0, 1],R) satisfying (1.1). The interest for such
a kind of equations is motivated as follows (see also the books of Bharucha-Reid [4]
and Skorohod [21]): the mathematical model representation of natural phenomena
arising in biology, physics, engineering processes deal with specific parameters which
may assume unknown values. If we want to take into account this uncertainty, a

2010 Mathematics Subject Classification. 35R60, 47H10.
Key words and phrases. Measurable space; random differential equation;

random fixed point; vector-valued metric.
c©2017 Texas State University.

Submitted February 15, 2017. Published April 25, 2017.

1



2 F. TCHIER, C. VETRO, F. VETRO EJDE-2017/110

way to model it is based on the parameter ω ∈ Ω. From (1.1), in absence of ω, we
retrieve the system

x′′(t) = f1(t, x(t), y(t)), 0 < t < 1,

y′′(t) = f2(t, x(t), y(t)), 0 < t < 1,

x(0) = 0, x(1) = ψ1

(∫ 1

0

x(t)dt
)
, ψ1 ∈ C(R,R),

y(0) = 0, y(1) = ψ2

(∫ 1

0

y(t)dt
)
, ψ2 ∈ C(R,R),

(1.2)

where f1, f2 ∈ C([0, 1] × R × R,R). So by a solution of system (1.2), we mean a
couple of functions (x, y) ∈ C([0, 1],R)× C([0, 1],R) satisfying (1.2). Precisely, by
using Green’s function from the literature, the couple of solutions is such that

x(t) =
∫ 1

0

K(t, s)f1(s, x(s), y(s))ds+ ψ1

(∫ 1

0

x(s)ds
)
t, 0 < t < 1,

y(t) =
∫ 1

0

K(t, s)f2(s, x(s), y(s))ds+ ψ2

(∫ 1

0

y(s)ds
)
t, 0 < t < 1,

where

K(t, s) =

{
−t(1− s), 0 ≤ t ≤ s ≤ 1,
−s(1− t), 0 ≤ s ≤ t ≤ 1.

(1.3)

System (1.2) and its equation version are largely studied by many authors, with dif-
ferent local and nonlocal conditions. Here, we recall some interesting contributions
from the existing literature. Multi-point boundary value problems were studied
by Moshinsky [11] and Palamides [15]. Existence, localization and multiplicity of
solutions for systems of local and nonlocal boundary value problems were proved
by Agarwal-O’Regan-Wong [1, 2, 3], Bolojan-Nica-Infante-Precup [5], Henderson-
Ntouyas-Purnaras [7], Precup [17, 18, 19]. An interesting way of studying differen-
tial equations makes use of the fixed point theory. For instance, Nieto-Rodŕıguez-
López [13, 14] studied ordinary differential equations via fixed point theorems in
partially ordered sets. On the other hand, few authors have investigated the case
of random differential equations. Here we recall the recently published papers of
Li-Duan [9], Nieto-Ouahab-Rodŕıguez-López [12] (which is the main inspiration of
this work) and Sinacer-Nieto-Ouahab [20]. These authors consider the problem
of fixed points for random operators and use this problem to study an equivalent
problem of solutions for random differential equations. In the references of [12, 20],
the reader can find a good list of manuscripts which point out the cornerstones in
the development of random fixed point theory and applications; for instance, we
refer to Itoh [8] and Papageorgiou [16].

In this paper, using iterative methods from the fixed point theory, together with
the theory of measurable spaces and monotone operators, we study problem (1.1).
Precisely, first we prove three abstract results which are general random fixed point
theorems, then we work with suitable integral operators associated to a large family
of random differential equations, finally we deduce the existence of a unique random
solution for problem (1.1).



EJDE-2017/110 SOLUTION TO RANDOM DIFFERENTIAL EQUATIONS 3

2. Preliminaries

In this section, we collect some basic notions and notation from the literature.
By B(X) we mean the Borel σ-algebra on a metric space X. Given a measurable
space (Ω,Σ), by Σ⊗B(X) we mean the smallest σ-algebra on Ω×X containing all
the sets M ×B (such that M ∈ Σ and B ∈ B(X)).

Definition 2.1. Let (Ω,Σ) be a measurable space, X and Y two metric spaces.
A mapping ĥ : Ω ×X → Y is called Carathéodory if, for all x ∈ X, the mapping
ω → ĥ(ω, x) is (Σ,B(Y ))-measurable (Σ-measurable, for short) and, for all ω ∈ Ω,
the mapping x→ ĥ(ω, x) is continuous.

We need the following results from Denkowski-Migórski-Papageorgiou [6].

Theorem 2.2 ([6, Theorem 2.5.22]). If (Ω,Σ) is a measurable space, X is a sep-
arable metric space, Y is a metric space and ĥ : Ω × X → Y is a Carathéodory
mapping, then ĥ is Σ⊗ B(X)-measurable.

Corollary 2.3 ([6, Corollary 2.5.24]). If (Ω,Σ) is a measurable space, X is a
separable metric space, Y is a metric space, ĥ : Ω × X → Y is a Carathéodory
mapping and u : Ω → X is Σ-measurable, then ω → ĥ(ω, u(ω)) is a Σ-measurable
mapping from Ω into Y .

Let (Ω,Σ) be a measurable space, X a separable metric space and Y a metric
space. A mapping h̃ : Ω × X → Y is said to be superpositionally measurable
(sup-measurable, for short), if for all Σ-measurable mapping u : Ω → X, the
mapping ω → h̃(ω, u(ω)) is Σ-measurable from Ω into Y . From Corollary 2.3 we
deduce that a Carathéodory mapping is sup-measurable. Also every Σ ⊗ B(X)-
measurable mapping is sup-measurable (see Denkowski-Migórski-Papageorgiou [6,
Remark 2.5.26]). Moreover, a mapping f : Ω ×X → X is called random operator
whenever, for any x ∈ X, ω → f(ω, x) is Σ-measurable. So, a random fixed point
of f is a Σ-measurable mapping z : Ω → X such that z(ω) = f(ω, z(ω)) for all
ω ∈ Ω.

Lemma 2.4. Let X,Y be two locally compact metric spaces. A mapping f : Ω ×
X → Y is Carathéodory if and only if the mapping ω → r(ω)(·) = f(ω, ·) is Σ-
measurable from Ω to C(X,Y ) (i.e., the space of all continuous functions from X
into Y endowed with the compact-open topology).

3. Fixed point theorems

In this section we prove three theorems producing the existence and uniqueness
of a random fixed point for a given mapping f : Ω ×X → X, where Ω and X are
two nonempty sets.

Later on, we use the following notation. If (Ω,Σ) is a measurable space and X
a metric space, then we denote by XΩ the family of all mappings from Ω into X
and by M(Ω, X) the subset of XΩ containing all Σ-measurable mappings. If X
is endowed with a partial order -, then the mappings g, h ∈ XΩ are comparable
if, for every ω ∈ Ω, we have g(ω) - h(ω) or h(ω) - g(ω). Let h0 ∈ XΩ, if
hn(ω) = f(ω, hn−1(ω)) for all ω ∈ Ω and n ∈ N, then we say that {hn} is a Picard
sequence starting at h0 and {hn(ω)} is a Picard sequence (associate to ω) starting
at h0(ω).

The hypotheses on the data of the random fixed point problem are the following:
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(H0) (Ω,Σ) is a measurable space, (X, d,-) is a separable complete ordered
metric space, and f : Ω×X → X is a random mapping such that, for each
ω ∈ Ω, x→ f(ω, x) is a monotone operator;

(H1) for each ω ∈ Ω, there exists a nondecreasing function rω : [0,+∞[→ [0,+∞[
such that limn→+∞ rn

ω(t) = 0 for all t > 0 and

d(f(ω, x), f(ω, y)) ≤ rω(d(x, y)), for all x, y ∈ X, x - y;

(H2) there exists a mapping x0 ∈ M(Ω, X) with “x0(ω) - f(ω, x0(ω)), for each
ω ∈ Ω” or “x0(ω) % f(ω, x0(ω)), for each ω ∈ Ω”;

(H3) if {xn} is a monotone sequence in X and xn → x, then xn and x are
comparable for all n ∈ N.

Remark 3.1. Hypothesis (H0) characterizes the space setting that we will use here
and the monotonic behaviour of the mapping x → f(ω, x). Hypothesis (H1) is a
contraction condition of Matkowski type (see [10]).

Remark 3.2. Hypothesis (H3) is a regularity condition of the partial order relation,
that needs to be satisfied whenever we do not assume that f is Carathéodory.

First we establish our theorem with complete proof in the case that f is a
Carathéodory mapping. Then, we state the analogous result without this assump-
tion.

Theorem 3.3. If (H0)–(H2) hold and f is a Carathéodory mapping, then there
exists z ∈ M(Ω, X) which is a random fixed point of f . Further, if for all x, y ∈
M(Ω, X), there exists u ∈ XΩ that is comparable to x and y, then z is a unique
random fixed point of f .

Proof. Let x0 and u0 be two comparable elements of XΩ. We consider the Picard
sequences {xn} and {un} starting respectively at x0 and u0. We claim that

lim
n→+∞

d(xn(ω), un(ω)) = 0, for all ω ∈ Ω. (3.1)

Let ω ∈ Ω be fixed, since x→ f(ω, x) is a monotone operator, we obtain that xn(ω)
and un(ω) are comparable for each n ∈ N. Clearly, (3.1) holds if xn(ω) = un(ω)
for some n ∈ N. Thus we assume that xn(ω) 6= un(ω) for all n ∈ N. Then by (H1),
we have

d(xn(ω), un(ω)) ≤ rω(d(xn−1(ω), un−1(ω))) ≤ rn
ω(d(x0(ω), u0(ω))) (3.2)

for all n ∈ N. From (3.2), using the property of the function rω (see (H1)), if we
pass to the limit as n→ +∞, we obtain

lim
n→+∞

d(xn(ω), un(ω)) = 0.

Clearly, this holds for all ω ∈ Ω. Next, let x0 ∈M(Ω, X) be a mapping as in (H2).
If, for each ω ∈ Ω, f(ω, x0(ω)) = x0(ω), then x0 is a random fixed point of f .
Suppose that, for some ω ∈ Ω, f(ω, x0(ω)) 6= x0(ω). From (H2), we have that x0

and x1 are two comparable elements of XΩ. Then, from (3.1), if we choose u0 = x1,
we deduce

lim
n→+∞

d(xn(ω), xn+1(ω)) = 0, for all ω ∈ Ω. (3.3)

Now, we show that {xn(ω)} is a Cauchy sequence for each ω ∈ Ω. Let ω ∈ Ω be
fixed. First of all, we note that rω(t) < t for all t > 0 and rω(0) = 0. Given a real
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number ε > 0, by (3.3), there exists n(ε) ∈ N such that

d(xm(ω), xm+1(ω)) < ε− rω(ε), for all m ∈ N, m ≥ n(ε).

We claim that
d(xm(ω), xn+1(ω)) < ε (3.4)

whenever m ≥ n(ε) and n ≥ m. Clearly, (3.4) holds if n = m. Now, we suppose
that (3.4) holds for some n ≥ m and prove that (3.4) holds also for n+ 1. In fact,

d(xm(ω), xn+2(ω)) ≤ d(xm(ω), xm+1(ω)) + d(xm+1(ω), xn+2(ω))

≤ d(xm(ω), xm+1(ω)) + rω(d(xm(ω), xn+1(ω))

< ε− rω(ε) + rω(ε) = ε.

Thus {xn(ω)} is a Cauchy sequence for all ω ∈ Ω. Then there exists z ∈ XΩ such
that

z(ω) = lim
n→+∞

xn(ω), for all ω ∈ Ω.

By Corollary 2.3, we obtain xn ∈ M(Ω, X) for all n ∈ N and hence z ∈ M(Ω, X).
We claim that z(ω) = f(ω, z(ω)) for each ω ∈ Ω. The hypothesis that f is a
Carathéodory mapping ensures that

d(z(ω), f(ω, z(ω))) = lim
n→+∞

d(xn(ω), f(ω, xn(ω))), for all ω ∈ Ω.

From

d(xn(ω), f(ω, xn(ω))) = d(f(ω, xn−1(ω)), f(ω, xn(ω)))

≤ rω(d(xn−1(ω), xn(ω)))

≤ d(xn−1(ω), xn(ω)),

letting n → +∞, we obtain d(z(ω), f(ω, z(ω))) = 0 for all ω ∈ Ω. Thus z(ω) =
f(ω, z(ω)) for each ω ∈ Ω, that is, z is a random fixed point of f .

We have to prove the uniqueness of this fixed point. So, we assume that v ∈
M(Ω, X) is another random fixed point of f . If z and v are comparable, then from
(H1), we deduce that z = v. Assume that z and v are not comparable, that is
z(ω) is not comparable with v(ω) for some ω ∈ Ω. In this case, let u ∈ XΩ be
comparable with z and v and let {un} be the Picard sequence starting at u0 = u.
By (3.1) with x0 = z and x0 = v, we obtain

lim
n→+∞

d(z(ω), un(ω)) = lim
n→+∞

d(v(ω), un(ω)) = 0. (3.5)

From (3.5), we obtain z = v and hence z is a unique random fixed point of f . �

Now, we are ready the theorem that produces the existence of a random fixed
point of f , by replacing the Carathéodory assumption with hypothesis (H3) and
sup-measurability of f .

Theorem 3.4. If (H0)–(H3) hold and f is a sup-measurable mapping, then there
exists a mapping z ∈M(Ω, X) which is a random fixed point of f .

Proof. Let {xn} and z ∈ M(Ω, X) as in the proof of Theorem 3.3. We note that
the hypothesis that f is sup-measurable ensures that xn ∈ M(Ω, X) for all n ∈ N.
This implies that z ∈ M(Ω, X). By (H3), xn(ω) and z(ω) are comparable for all
n ∈ N and ω ∈ Ω. Using (H1) we obtain

d(z(ω), f(ω, z(ω))) ≤ d(z(ω), f(ω, xn(ω))) + d(f(ω, xn(ω), f(ω, z(ω)))
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≤ d(z(ω), f(ω, xn(ω))) + rω(d(xn(ω), z(ω)))

≤ d(z(ω), xn+1(ω)) + d(xn(ω), z(ω)).

Letting n→ +∞, we obtain d(z(ω), f(ω, z(ω)) = 0 for all ω ∈ Ω. This means that
z is a random fixed point of f . �

Next, we adapt the previous hypotheses for solving the above random fixed point
problem in the setting of generalized metric spaces (see Sinacer-Nieto-Ouahab [20]).
Let Rk

+ := {x ∈ Rk : xj ≥ 0 for all j = 1, . . . , k}, where Rk is equipped with the
partial order relation:

x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk, x � y ⇐⇒ xj ≤ yj for all j = 1, . . . , k.

Also, x ≺ y denote that x � y and x 6= y; x � y denote that xj < yj for
all j = 1, . . . , k; θ denote the zero vector in Rk. Let Rk be the family of all
nondecreasing functions r = (r1, . . . , rk) : Rk

+ → Rk
+ such that

(i) limn→+∞ rn(t) = θ for all t ∈ Rk
+ with θ ≺ t;

(ii) r(θ) = θ and θ ≺ r(t) ≺ t for t ∈ Rk
+ \ {θ};

(iii) θ � t implies r(t)� t.

Example 3.5. Let r : Rk
+ → Rk

+ be defined by

r(t) =
( t1

1 + t1
, . . . ,

tk
1 + tk

)
for all t = (t1, . . . , tk) ∈ Rk

+.

Then r ∈ Rk.

Example 3.6. Let r : Rk
+ → Rk

+ be defined by

r(t) = AtT for all t = (t1, . . . , tk) ∈ Rk
+

where A = diag(a1, . . . , ak) is a diagonal matrix such that 0 < aj < 1 for all
j = 1, . . . , k. Then r ∈ Rk.

We consider the following set of hypotheses:
(H4) (Ω,Σ) is a measurable space, (X, d,-) is a separable complete ordered

generalized metric space, and f : Ω × X → X is a random operator such
that, for each ω ∈ Ω, x→ f(ω, x) is a monotone operator;

(H5) for each ω ∈ Ω, there exists a function rω = (rω,1, . . . , rω,k) ∈ Rk such that

d(f(ω, x), f(ω, y)) � rω(d(x, y)) for all x, y ∈ X, x - y;

(H6) there exists a mapping x0 ∈ M(Ω, X) with “x0(ω) - f(ω, x0(ω)), for all
ω ∈ Ω” or “x0(ω) % f(ω, x0(ω)), for all ω ∈ Ω”.

Remark 3.7. For the sake of completeness, we point out that hypotheses (H4)
and (H6) sound formally as the previous hypotheses (H0) and (H2), but with the
difference that here (X, d) denotes a generalized metric space. Precisely, a general-
ized metric space (X, d) is a pair, where X is a nonempty set and d : X ×X → Rk

+

is a vector-valued metric, in the sense of the following definition.

Definition 3.8. Let X be a nonempty set. By a vector-valued metric on X, we
mean a mapping d : X ×X → Rk

+ with the following properties:
(i) if d(u, v) = θ then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) � d(u,w) + d(w, v) for all u, v, w ∈ X.
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Let (X, d) be a generalized metric space. Let {xn} be a sequence in X and
x ∈ X. The sequence {xn} converges to x if, for every ε ∈ Rk

+ with θ � ε, there is
an n(ε) ∈ N such that for all n ≥ n(ε) we have d(xn, x) � ε. If, for every ε ∈ Rk

+

with θ � ε, there is an n(ε) ∈ N such that d(xn, xm)� ε for all n,m ≥ n(ε), then
{xn} is a Cauchy sequence. If every Cauchy sequence is convergent in X, then X
is called a complete generalized metric space.

On this basis we prove our third theorem producing the existence of a random
fixed point of f . This result is analogous to the existence part of Theorem 3.3.

Theorem 3.9. If (H4)–(H6) hold and f is a Carathéodory mapping, then there
exists a mapping z ∈M(Ω, X) which is a random fixed point of f .

Proof. As in the proof of Theorem 3.3, we consider two comparable elements of
XΩ, say x0 and u0, and the corresponding Picard sequences {xn} and {un} starting
respectively at x0 and u0. Also in this theorem, the first step of the proof is to
claim that

lim
n→+∞

d(xn(ω), un(ω)) = θ for all ω ∈ Ω. (3.6)

Then, we have

xn(ω) and un(ω) are comparable for all n ∈ N (x→ f(ω, x) is monotone),

⇒ d(xn(ω), un(ω)) � rω(d(xn−1(ω), un−1(ω))) (by (H5)),

� rn
ω(d(x0(ω), u0(ω)) for each ω ∈ Ω and all n ∈ N.

Letting n→ +∞ in the previous inequalities and by property (i) of the elements
of Rk, we deduce that (3.6) holds. Next let x0 ∈ M(Ω, X) be a mapping as in
(H6). If, for each ω ∈ Ω, f(ω, x0(ω)) = x0(ω), then x0 is a random fixed point of
f . Suppose that, for some ω ∈ Ω, f(ω, x0(ω)) 6= x0(ω). We consider the Picard
sequence {xn} starting at x0. From hypothesis (H6), we obtain that x0 and x1 are
two comparable elements of XΩ. Then, from (3.6), if we choose u0 = x1, we obtain

lim
n→+∞

d(xn(ω), xn+1(ω)) = θ, for each ω ∈ Ω. (3.7)

Now, we show that {xn(ω)} is a Cauchy sequence for all ω ∈ Ω. Let ω ∈ Ω be
fixed. First of all, we note that θ � t− rω(t) whenever θ � t (by property (iii) of
the elements of Rk). Then given ε ∈ Rk

+ with θ � ε, by (3.7), there exists n(ε) ∈ N
such that

d(xm(ω), xm+1(ω))� ε− rω(ε), for all m ∈ N, m ≥ n(ε).

We claim that
d(xm(ω), xn+1(ω))� ε (3.8)

whenever m ≥ n(ε) and n ≥ m. Note that {xn(ω)} is a monotone sequence in
virtue of (H4) and (H6). Clearly, (3.8) holds if n = m. So, we suppose that (3.8)
holds for some n ≥ m and prove that (3.8) holds also for n+ 1. In fact,

d(xm(ω), xn+2(ω)) � d(xm(ω), xm+1(ω)) + d(xm+1(ω), xn+2(ω))

� d(xm(ω), xm+1(ω)) + rω(d(xm(ω), xn+1(ω)))

� ε− rω(ε) + rω(ε) = ε.

Thus {xn(ω)} is a Cauchy sequence for all ω ∈ Ω. Then, there exists z ∈ XΩ such
that

z(ω) = lim
n→+∞

xn(ω), for all ω ∈ Ω.
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By Corollary 2.3, we obtain xn ∈M(Ω, X) for all n ∈ N and hence z ∈M(Ω, X).
The hypothesis that f is a Carathéodory mapping ensures that

d(z(ω), f(ω, z(ω))) = lim
n→+∞

d(xn(ω), f(ω, xn(ω))), for all ω ∈ Ω.

From

d(xn(ω), f(ω, xn(ω))) = d(f(ω, xn−1(ω)), f(ω, xn(ω)))

� rω(d(xn−1(ω), xn(ω)))

� d(xn−1(ω), xn(ω)),

letting n → +∞, we obtain d(z(ω), f(ω, z(ω))) = θ for all ω ∈ Ω. Thus z(ω) =
f(ω, z(ω)) for each ω ∈ Ω, that is, z is a random fixed point of f . �

Remark 3.10. In respect of Theorem 3.9, one can establish also the uniqueness
of random fixed point, by using the additional assumptions in the statement of
Theorem 3.3. Here, to avoid repetition, we omit details.

4. Solution of boundary value problem (1.1)

In this section, we prove a theorem producing the existence of a unique random
solution of problem (1.1), see also Nieto-Ouahab-Rodŕıguez-López [12]. Let (Ω,Σ)
be a measurable space. Let f1, f2 : Ω×[0, 1]×R×R→ R be Carathéodory functions,
which means that ω → fi(ω, t, u, v) is measurable for all (t, u, v) ∈ [0, 1] × R × R
and (t, u, v)→ fi(ω, t, u, v) is continuous for all ω ∈ Ω, i = 1, 2. Denote with G the
family of the functions g : Ω × [0, 1] × R → R such that gu : Ω × [0, 1] → R is a
Carathéodory function for every u ∈ C([0, 1],R), where gu(ω, t) = g(ω, t, u(t)) for
all (ω, t) ∈ Ω × [0, 1]. Then, consider the integral operator F : Ω × C([0, 1],R) ×
C([0, 1],R)→ C([0, 1],R)× C([0, 1],R) defined by

F (ω, x, y)(t) = (F1(ω, x, y)(t), F2(ω, x, y)(t)), x, y ∈ C([0, 1],R), t ∈ [0, 1],

with

F1(ω, x, y)(t) =
∫ 1

0

K(t, s)f1(ω, s, x(s), y(s))ds+ g1,x(ω, t), (4.1)

F2(ω, x, y)(t) =
∫ 1

0

K(t, s)f2(ω, s, x(s), y(s))ds+ g2,y(ω, t) (4.2)

where K : R×R→ R is a continuous function such that |K(t, s)| ≤ 1 for all t, s ∈ R
and g1, g2 ∈ G.

Remark 4.1. F is a random operator from Ω × C([0, 1],R) × C([0, 1],R) into
C([0, 1],R) × C([0, 1],R). In fact, given (x, y) ∈ C([0, 1],R) × C([0, 1],R), since
fi and gi (i = 1, 2) are Carathéodory functions, for s ∈ [0, 1] fixed, the function
h : Ω×[0, 1]→ R defined by h(ω, t) = K(t, s)fi(ω, s, x(s), y(s)) is Carathéodory. By
Lemma 2.4, the integrals in (4.1) and (4.2) are limit of a finite sum of measurable
functions. So, the mappings ω → F1(ω, x, y) and ω → F2(ω, x, y) are measurable
and hence F is a random operator.

The hypotheses are the following:
(H7) for each ω ∈ Ω there exists a nondecreasing function ψω = (ψω,1, ψω,2) :

R2
+ → R2

+ such that

|fi(ω, t, x, y)− fi(ω, t, u, v)| ≤ ψω,i((|x− u|, |y − v|)), i = 1, 2,
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for each t ∈ [0, 1] and all x, y, u, v ∈ R with (x, y) � (u, v);
(H8) for each ω ∈ Ω there exists a function rω = (rω,1, rω,2) ∈ R2 such that

ψω,1((‖x− u‖∞, ‖y − v‖∞)) + |g1,x(ω, t)− g1,u(ω, t)|
≤ rω,1((‖x− u‖∞, ‖y − v‖∞)),

ψω,2((‖x− u‖∞, ‖y − v‖∞)) + |g2,y(ω, t)− g2,v(ω, t)|
≤ rω,2((‖x− u‖∞, ‖y − v‖∞)),

for each t ∈ [0, 1] and all x, y, u, v ∈ C([0, 1],R);
(H9) for each ω ∈ Ω fixed, (x, y)→ fi(ω, t, x, y) and x→ gi(ω, t, x), i = 1, 2, (for

every t ∈ [0, 1]), are all nondecreasing or all nonincreasing operators;
(H10) one of the following conditions holds:

0 ≤ fi(ω, t, 0, 0), 0 ≤ gi(ω, t, 0), for all t ∈ [0, 1], ω ∈ Ω, i = 1, 2,

or

0 ≥ fi(ω, t, 0, 0), 0 ≥ gi(ω, t, 0), for all t ∈ [0, 1], ω ∈ Ω, i = 1, 2.

Later on, we consider C([0, 1],R) × C([0, 1],R) equipped with the generalized
metric d given by

d((x, y), (u, v)) = (‖x− u‖∞, ‖y − v‖∞),

for all (x, y), (u, v) ∈ C([0, 1],R)×C([0, 1],R). Now, we have the theorem producing
a unique random fixed point.

Theorem 4.2. If the hypotheses (H7)–(H10) hold, then the random integral oper-
ator F has a unique random fixed point.

Proof. For ω ∈ Ω fixed, we show that (x, y)→ F (ω, x, y) is a continuous operator.
Indeed, consider a sequence {(xn, yn)} in C([0, 1],R)×C([0, 1],R) with (xn, yn)→
(x, y) ∈ C([0, 1],R)× C([0, 1],R), as n→ +∞. For t ∈ [0, 1], we have

|F1(ω, xn, yn)(t)− F1(ω, x, y)(t)|

≤
∫ 1

0

|f1(ω, s, xn(s), yn(s))− f1(ω, s, x(s), y(s))|ds+ |g1,xn
(ω, t)− g1,x(ω, t)|

≤
∫ 1

0

ψω,1((|xn(s)− x(s)|, |yn(s)− y(s)|))ds+ |g1,xn
(ω, t)− g1,x(ω, t)|

≤ ψω,1((‖xn(s)− x(s)‖∞, ‖yn(s)− y(s)‖∞)) + |g1,xn
(ω, t)− g1,x(ω, t)|

implies

‖F1(ω, xn, yn)− F1(ω, x, y)‖∞ ≤ rω,1((‖xn − x‖∞, ‖yn − y‖∞))

by (H8).
By an analogous reasoning one has

‖F2(ω, xn, yn)− F2(ω, x, y)‖∞ ≤ rω,2((‖xn − x‖∞, ‖yn − y‖∞)).

So d(F (ω, xn, yn), F (ω, x, y))→ (0, 0), as n→ +∞, implies that (x, y)→ F (ω, x, y)
is a continuous operator, for each fixed ω ∈ Ω.

In addition, for each ω ∈ Ω, (x, y)→ F (ω, x, y) is a monotone operator. Indeed,
consider (x, y), (u, v) ∈ C([0, 1],R) × C([0, 1],R) such that (x, y) - (u, v), that is,
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x(t) ≤ u(t), y(t) ≤ v(t), for all t ∈ [0, 1]. For every t ∈ [0, 1], if (x, y)→ fi(ω, t, x, y)
and x→ gi(ω, t, x), i = 1, 2, are nondecreasing operators, then

fi(ω, t, x(t), y(t)) ≤ fi(ω, t, u(t), v(t)), for all t ∈ [0, 1], i = 1, 2,

g1(ω, t, x(t)) ≤ g1(ω, t, u(t)), for all t ∈ [0, 1],

g2(ω, t, y(t)) ≤ g2(ω, t, v(t)), for all t ∈ [0, 1],

implies
Fi(ω, x, y)(t) ≤ Fi(ω, u, v)(t), for all t ∈ [0, 1], i = 1, 2,

which implies F (ω, x, y) - F (ω, u, v).
In a similar way, for every t ∈ [0, 1], whenever (x, y) → fi(ω, t, x, y) and x →

gi(ω, t, x), i = 1, 2, are nonincreasing operators, then we deduce that F (ω, u, v) -
F (ω, x, y).

A crucial step of the proof is to show that F satisfies a contraction condition (see
hypothesis (H5)). Precisely, for every ω ∈ Ω and all (x, y), (u, v) ∈ C([0, 1],R) ×
C([0, 1],R) such that (x, y) - (u, v), we have to show that

d(F (ω, x, y), F (ω, u, v)) � rω(d((x, y), (u, v))).

Again, consider ω ∈ Ω fixed. Let (x, y), (u, v) ∈ C([0, 1],R) × C([0, 1],R) be such
that (x, y) - (u, v), then

|F1(ω, x, y)(t)− F1(ω, u, v)(t)|

≤
∫ 1

0

|f1(ω, s, x(s), y(s))− f1(ω, s, u(s), v(s))|ds+ |g1,x(ω, t)− g1,u(ω, t)|

≤
∫ 1

0

ψω,1((|x(s)− u(s)|, |y(s)− v(s)|))ds+ |g1,x(ω, t)− g1,u(ω, t)|

≤ ψω,1((‖x− u‖∞, ‖y − v‖∞)) + |g1,x(ω, t)− g1,u(ω, t)|

implies
‖F1(ω, x, y)− F1(ω, x, y)‖∞ ≤ rω,1((‖x− u‖∞, ‖y − v‖∞)).

By an analogous reasoning

‖F2(ω, x, y)− F2(ω, u, v)‖∞ ≤ rω,2((‖x− u‖∞, ‖y − v‖∞)),

⇒ d(F (ω, x, y), F (ω, u, v)) � rω(d((x, y), (u, v))).

Now we prove that condition (H6) holds. Precisely, by (H10), we can easily show
that

0 ≤ F1(ω, ·, 0, 0) and 0 ≤ F2(ω, ·, 0, 0), for all ω ∈ Ω,

or
0 ≥ F1(ω, ·, 0, 0) and 0 ≥ F2(ω, ·, 0, 0), for all ω ∈ Ω;

that is, F (ω, 0, 0) � (0, 0) for all ω ∈ Ω or F (ω, 0, 0) � (0, 0) for all ω ∈ Ω.
This means that, for the couple of null random variables defined as (0, 0) : Ω →
C([0, 1],R) × C([0, 1],R), by (0, 0)(ω) = (0, 0), for all ω ∈ Ω, one of the following
two conditions holds:

F (ω, (0, 0)(ω)) � (0, 0)(ω), for all ω ∈ Ω

or
F (ω, (0, 0)(ω)) � (0, 0)(ω), for all ω ∈ Ω.
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Note that the uniqueness condition also holds. Thus all the hypotheses of Theorem
3.9 are satisfied and so the existence and uniqueness of a fixed point of F is a direct
consequence of above Theorem 3.9. �

By particularizing the choice of Carathéodory functions g1, g2 : Ω×[0, 1]×R→ R,
we can have the theorem producing a unique random solution of problem (1.1). Let
gi(ω, t, u(t)) = ψi

( ∫ 1

0
u(ω)(s)ds

)
t, where ψi ∈ C(R,R), for i = 1, 2 and consider

the random integral operator

F̃ (ω, x, y)(t) = (F̃1(ω, x, y)(t), F̃2(ω, x, y)(t)), x, y ∈ C([0, 1],R), t ∈ [0, 1],

with

F̃1(ω, x, y)(t) =
∫ 1

0

K(t, s)f1(ω, s, x(s), y(s))ds+ ψ1

(∫ 1

0

x(ω)(s)ds
)
t,

F̃2(ω, x, y)(t) =
∫ 1

0

K(t, s)f2(ω, s, x(s), y(s))ds+ ψ2

(∫ 1

0

y(ω)(s)ds
)
t

where K : R× R→ R is given by (1.3).

Theorem 4.3. If (H7)–(H10) hold, then problem (1.1) has a unique random solu-
tion.

Proof. Note that the random fixed points of F̃ are solutions to (1.1) and conversely.
Indeed, given a couple of random variables (x, y) : Ω → C([0, 1],R) × C([0, 1],R),
we obtain that

F̃ (ω, x(ω), y(ω)) = (x(ω), y(ω)), for all ω ∈ Ω,

is equivalent to

x(ω)(t) =
∫ 1

0

K(t, s)f1(ω, s, x(ω)(s), y(ω)(s))ds+ ψ1

(∫ 1

0

x(ω)(s)ds
)
t, 0 < t < 1,

y(ω)(t) =
∫ 1

0

K(t, s)f2(ω, s, x(ω)(s), y(ω)(s))ds+ ψ2

(∫ 1

0

y(ω)(s)ds
)
t, 0 < t < 1,

so that the corresponding solution of (1.1) is defined as x(ω, t) = x(ω)(t), y(ω, t) =
y(ω)(t), for t ∈ [0, 1] and ω ∈ Ω. Then, from Theorem 4.2, there exists a unique
random solution to Problem (1.1). �
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