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Abstract. In this article we study a new class of boundary value problems

for fractional differential equations and inclusions with multiple orders of frac-

tional derivatives and integrals, in both fractional differential equation and
boundary conditions. The Sadovski’s fixed point theorem is applied in the

single-valued case while, in multi-valued case, the nonlinear alternative for

contractive maps is used. Some illustrative examples are also included.

1. Introduction

Fractional differential equations have attracted more and more attention in re-
cent years, which is partly because of their numerous applications in many branches
of science and engineering including fluid flow, signal and image processing, frac-
tals theory, control theory, electromagnetic theory, fitting of experimental data,
optics, potential theory, biology, chemistry, diffusion, and viscoelasticity, etc. For
a detailed account of applications and recent results on initial and boundary value
problems of fractional differential equations, we refer the reader to a series of books
and papers [1, 2, 4, 5, 6, 7, 8, 10, 13, 16, 17, 19, 20, 23, 24, 25] and references cited
therein.

In this article, we investigate boundary value problems which contains multiple
orders of fractional derivatives and integrals, in both fractional differential equation
and boundary conditions. More precisely, we consider the following boundary value
problems which consist from the differential equation(

λDα + (1− λ)Dβ
)
x(t) = f(t, x(t)), t ∈ (0, T ), (1.1)

which includes two fractional derivatives, supplemented by boundary conditions
with:

• two fractional derivatives

x(0) = 0, µDγ1x(T ) + (1− µ)Dγ2x(T ) = γ3, (1.2)

or
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• two fractional integrals

x(0) = 0, µIδ1x(T ) + (1− µ)Iδ2x(T ) = δ3, (1.3)

or
• one fractional derivative and one fractional integral

x(0) = 0, µDγ1x(T ) + (1− µ)Iδ2x(T ) = γ3, (1.4)

where Dφ is the Riemann-Liouville or Caputo fractional derivative of order φ ∈
{α, β, γ1, γ2} such that 1 < α, β ≤ 2 and 0 < γ1, γ2 < α − β, γ3, δ3 ∈ R, Iχ is the
Riemann-Liouville fractional integral of order χ ∈ {δ1, δ2}, 0 < λ ≤ 1, 0 ≤ µ ≤ 1
are given constants and f : [0, T ]× R→ R is a continuous function.

Also we consider the multi-valued analogues of boundary value problems above
by studying the differential inclusion(

λDα + (1− λ)Dβ
)
x(t) ∈ F (t, x(t)), t ∈ (0, T ), (1.5)

supplemented by boundary conditions (1.2)-(1.4), where F : [0, T ] × R → P(R) is
a multivalued function (P(R) is the family of all nonempty subsets of R).

In fact, fractional calculus provide an excellent tool for the description of mem-
ory and hereditary properties of various materials and processes in mathematical
modeling. The fractional differential equation (1.1) and inclusion (1.5) subject to
boundary conditions (1.2), (1.3) and (1.4) describe models of physical problems in
which often some parameters have been adjusted to suitable situations. The values
of these parameters can be change the effects of fractional derivatives and integrals.
Especially, in this paper, the linear adjusting or convex combination is used.

Recently in [15] we studied problem (1.1)-(1.2) with four Riemann-Liouville frac-
tional derivatives. Existence and uniqueness results were proved by using Banach’s
fixed point theorem, Krasnoselskii’s fixed point theorem and Leray-Schauder’s non-
linear alternative. Similar results for the boundary value problems (1.1)-(1.2) to
(1.1)-(1.4) can be established also for Caputo fractional derivatives, with obvious
modifications.

In this article we prove an existence result for the boundary value problem (1.1)-
(1.2), with four Caputo type fractional derivatives, via Sadovski’s fixed point theo-
rem and an existence result for the multi-valued analogue (1.5)-(1.2), by means of
nonlinear alternative for contractive maps.

This article is organized as follows. In section 2, we present the framework in
which the boundary value problems (1.1)-(1.2), (1.1)-(1.3), (1.1)-(1.4), are formu-
lated in a fixed point equation. Section 3 is devoted to the problem (1.1)-(1.2) and
Section 4 to the problem (1.5)-(1.2). Illustrative examples are also presented.

2. Preliminaries

In this section, we introduce some notation and definitions of fractional calculus
[13, 19] and present preliminary results needed in our proofs later.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function g : (0,∞)→ R is defined by

Jαg(t) =
∫ t

0

(t− s)α−1

Γ(α)
g(s)ds,

provided the right-hand side is point-wise defined on (0,∞), where Γ is the Gamma
function.
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Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function g : (0,∞)→ R is defined by

Dαg(t) =
1

Γ(n− α)

( d
dt

)n ∫ t

0

g(s)
(t− s)α−n+1

ds, n− 1 < α < n,

where n = [α] + 1, [α] denotes the integer part of real number α, provided the
right-hand side is point-wise defined on (0,∞).

Definition 2.3. The Caputo derivative of order q for a function f : [0,∞) → R
can be written as

cDqf(t) = Dq
(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < q < n.

Remark 2.4. If f(t) ∈ Cn[0,∞), then

cDqf(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)
(t− s)q+1−n ds = In−qf (n)(t), t > 0, n− 1 < q < n.

Lemma 2.5. For q > 0, the general solution of the fractional differential equation
cDqx(t) = 0 is given by

x(t) = c0 + c1t+ . . .+ cn−1t
n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.5, it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ . . .+ cn−1t
n−1, (2.1)

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

Lemma 2.6. The boundary value problem(
λDα + (1− λ)Dβ

)
x(t) = ω(t), t ∈ (0, T ),

x(0) = 0, µDγ1x(T ) + (1− µ)Dγ2x(T ) = γ3,
(2.2)

is equivalent to the integral equation

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1ω(s)ds

+
t

Λ1

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds

− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds
)
, t ∈ J := [0, T ],

(2.3)

where the non zero constant Λ1 is defined by

Λ1 =
µT 1−γ1

Γ(2− γ1)
+

(1− µ)T 1−γ2

Γ(2− γ2)
. (2.4)
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Proof. From the first equation of (2.2), we have

Dαx(t) =
λ− 1
λ

Dβx(t) +
1
λ
ω(t), t ∈ J. (2.5)

Taking the Riemann-Liouville fractional integral of order α to both sides of (2.5),
we obtain

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1ω(s)ds

+ C1 + C2t,

for C1, C2 ∈ R. The first boundary condition of (2.2) implies that C1 = 0. Hence

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1ω(s)ds+C2t. (2.6)

Applying the Caputo fractional derivative of order ψ ∈ {γ1, γ2} such that 0 < ψ <
α− β to (2.6), we have

Dψx(t) =
λ− 1

λΓ(α− β − ψ)

∫ t

0

(t− s)α−β−ψ−1x(s)ds

+
1

λΓ(α− ψ)

∫ t

0

(t− s)α−ψ−1ω(s)ds+ C2
1

Γ(2− ψ)
t1−ψ.

Substituting the values ψ = γ1 and ψ = γ2 to the above relation and using the
second condition of (2.2), we obtain

γ3 =
µ(λ− 1)

λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

+
µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds+
µT 1−γ1

Γ(2− γ1)
C2

+
(1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

+
1− µ

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds+
(1− µ)T 1−γ2

Γ(2− γ2)
C2,

which leads to

C2 =
1

Λ1

[
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds

− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1ω(s)ds
]
.

Substituting the value of the constant C2 in (2.6), we deduce the integral equation
(2.3). The converse follows by direct computation. This completes the proof. �

The following lemmas concerning the boundary value problems (1.1)-(1.3) and
(1.1)-(1.4), are similar to that of Lemma 2.6. We omit the proofs.
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Lemma 2.7. The boundary value problem(
λDα + (1− λ)Dβ

)
x(t) = ω(t), t ∈ (0, T ),

x(0) = 0, µIδ1x(T ) + (1− µ)Iδ2x(T ) = δ3,
(2.7)

is equivalent to the integral equation

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1ω(s)ds

+
t

Λ2

(
δ3 −

µ(λ− 1)
λΓ(δ1 + α− β)

∫ T

0

(T − s)δ1+α−β−1x(s)ds

− µ

λΓ(δ1 + α)

∫ T

0

(T − s)δ1+α−1ω(s)ds

− (1− µ)(λ− 1)
λΓ(δ2 + α− β)

∫ T

0

(T − s)δ2+α−β−1x(s)ds

− 1− µ
λΓ(δ2 + α)

∫ T

0

(T − s)δ2+α−1ω(s)ds
)
, t ∈ J := [0, T ],

(2.8)

where the non-zero constant Λ2 is defined by

Λ2 =
µT 1+δ1

Γ(2 + δ1)
+

(1− µ)T 1+δ2

Γ(2 + δ2)
. (2.9)

Lemma 2.8. The boundary value problem(
λDα + (1− λ)Dβ

)
x(t) = ω(t), t ∈ (0, T ),

x(0) = 0, µDγ1x(T ) + (1− µ)Iδ2x(T ) = γ3,
(2.10)

is equivalent to the integral equation

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1ω(s)ds

+
t

Λ3

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1ω(s)ds

− (1− µ)(λ− 1)
λΓ(δ2 + α− β)

∫ T

0

(T − s)δ2+α−β−1x(s)ds

− 1− µ
λΓ(δ2 + α)

∫ T

0

(T − s)δ2+α−1ω(s)ds
)
, t ∈ J := [0, T ],

(2.11)

where the non zero constant Λ3 is defined by

Λ3 =
µT 1−γ1

Γ(2− γ1)
+

(1− µ)T 1+δ2

Γ(2 + δ2)
. (2.12)

3. Existence result for problem (1.1)-(1.2)

Let C := C([0, T ],R) denote the Banach space of all continuous functions from
[0, T ] into R with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, T ]}.

Our existence result for the problem (1.1)-(1.2) is based on Sadovskii’s fixed
point theorem. Before proceeding further, let us recall some auxiliary material.
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Definition 3.1. Let M be a bounded set in metric space (X, d), then Kuratowskii
measure of noncompactness, α(M) is defined as inf{ε : M covered by a finitely
many sets such that the diameter of each set ≤ ε}.

Definition 3.2 ([11]). Let Φ : D(Φ) ⊆ X → X be a bounded and continuous
operator on Banach space X. Then Φ is called a condensing map if α(Φ(B)) <
α(B) for all bounded sets B ⊂ D(Φ), where α denotes the Kuratowski measure of
noncompactness.

Lemma 3.3 ([26, Example 11.7]). The map K + C is a k-set contraction with
0 ≤ k < 1, and thus also condensing, if

(i) K,C : D ⊆ X → X are operators on the Banach space X;
(ii) K is k-contractive, i.e.,

‖Kx−Ky‖ ≤ k‖x− y‖
for all x, y ∈ D and fixed k ∈ [0, 1);

(iii) C is compact.

Lemma 3.4 ([21]). Let B be a convex, bounded and closed subset of a Banach
space X and Φ : B → B be a condensing map. Then Φ has a fixed point.

Theorem 3.5. Let f : J × R→ R be a continuous function. Assume that:
(H1) there exists a function ν ∈ C(J,R+) such that

|f(t, u)| ≤ ν(t), for a.e. t ∈ J, and each u ∈ R.
(H2)

Ω1 :=
Tα−β |λ− 1|
λΓ(α− β + 1)

+
Tα−β−γ1+1µ|λ− 1|
λΛ1Γ(α− β − γ1 + 1)

+
Tα−β−γ2+1(1− µ)|λ− 1|
λΛ1Γ(α− β − γ2 + 1)

< 1.

Then, problem (1.1)-(1.2) has at least one solution on J .

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r} be a closed bounded and convex subset of C,
where r is a fixed constant. Consider the operator P : C → C defined by

Px(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds

+
t

Λ1

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1f(s, x(s))ds

− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1f(s, x(s))ds
)
, t ∈ J.

(3.1)
Let us define P1,P2 : C → C by

(P1x)(t) =
(λ− 1)

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds
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− t

Λ1

[ µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

+
(1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds
]
,

and

(P2x)(t) =
1

λΓ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1f(s, x(s))ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1f(s, x(s))ds
]
.

Clearly
(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ J. (3.2)

Obviously the operator P has a fixed point is equivalent to P1 + P2 has one, so it
turns to prove that P1 + P2 has a fixed point. We shall show that the operators
P1 and P2 satisfy all conditions of Lemma 3.4. The proof will be given in several
steps.

Step 1: PBr ⊂ Br. Let us select r ≥ ‖ν‖Ω2+|γ3|T/Λ1
1−Ω1

where Ω1 defined by (H2)
and

Ω2 =
Tα

λΓ(α+ 1)
+

Tα−γ1+1µ

λΛ1Γ(α− γ1 + 1)
+

Tα−γ2+1(1− µ)
λΛ1Γ(α− γ2 + 1)

. (3.3)

For any x ∈ Br, we have

‖Px‖

≤ sup
t∈J

∣∣∣ (λ− 1)
λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds

− tµ(λ− 1)
λΛ1Γ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− t(1− µ)(λ− 1)
λΛ1Γ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−β−γ1−1f(s, x(s))ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1f(s, x(s))ds
]∣∣∣

≤ ‖x‖
[ Tα−β |λ− 1|
λΓ(α− β + 1)

+
Tα−β−γ1+1µ|λ− 1|
λΛ1Γ(α− β − γ1 + 1)

+
Tα−β−γ2+1(1− µ)|λ− 1|
λΛ1Γ(α− β − γ2 + 1)

]
+
|γ3|T
Λ1

+ ‖ν‖
[ Tα

λΓ(α+ 1)
+

Tα−γ1+1µ

λΛ1Γ(α− γ1 + 1)
+

Tα−γ2+1(1− µ)
λΛ1Γ(α− γ2 + 1)

]
≤ rΩ1 + ‖ν‖Ω2 +

|γ3|T
Λ
≤ r,

which implies that PBr ⊂ Br.
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Step 2: P2 is compact. Observe that the operator P2 is uniformly bounded in
view of Step 1. Let t1, t2 ∈ J with t1 < t2 and x ∈ Br. Then we obtain

|(P2x)(t2)− (P2x)(t1)|

≤ 1
λΓ(α)

[ ∫ t1

0

[t2 − s)α−1 − (t1 − s)α−1]ν(s)ds+
∫ t2

t1

(t1 − s)α−1ν(s)ds
]

+
|t2 − t1|

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−β−γ1−1ν(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1ν(s)ds
]
,

which is independent of x and tends to zero as t2 − t1 → 0. Thus, P2 is equicon-
tinuous. Hence, by the Arzelá-Ascoli Theorem, P2(Br) is a relatively compact set.

Step 3: P1 is γ-contractive. Let x, y ∈ Br. Then, we have

‖P1x− P1y‖ ≤
|λ− 1|

λΓ(α− β)

∫ T

0

(T − s)α−β−1|x(s)− y(s)|ds

+
Tµ|λ− 1|

λΛ1Γ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1|x(s)− y(s)|ds

+
T (1− µ)|λ− 1|
λΛ1Γ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1|x(s)− y(s)|ds

≤
{ Tα−β |λ− 1|
λΓ(α− β + 1)

+
Tα−β−γ1+1µ|λ− 1|
λΛ1Γ(α− β − γ1 + 1)

+
Tα−β−γ2+1(1− µ)|λ− 1|
λΛ1Γ(α− β − γ2 + 1)

]}
‖x− y‖

= Ω1‖x− y‖,

which is γ-contractive, since Ω1 < 1.

Step 4: P is condensing. Since P1 is continuous, γ-contraction and P2 is compact,
therefore, by Lemma 3.3, P : Br → Br with P = P1 + P2 is a condensing map on
Br.

From the above four steps, we conclude by Lemma 3.4 that the map P has a
fixed point which, in turn, implies that the problem (1.1)-(1.2) has a solution. �

Setting two constants

Ω3 =
|λ− 1|Tα−β

λΓ(α− β + 1)
+

µ|λ− 1|T δ1+α−β+1

λΛ2Γ(δ1 + α− β + 1)
+

(1− µ)|λ− 1|T δ2+α−β+1

λΛ2Γ(δ2 + α− β + 1)
,

Ω4 =
|λ− 1|Tα−β

λΓ(α− β + 1)
+

µ|λ− 1|Tα−β−γ1+1

λΛ3Γ(α− β − γ1 + 1)
+

(1− µ)|λ− 1|T δ2+α−β+1

λΛ3Γ(δ2 + α− β + 1)
.

Theorem 3.6. Let condition (H1) of Theorem 3.5 be satisfied. If Ω3 < 1, then
problem (1.1)-(1.3) has at least one solution on J .

Theorem 3.7. Let condition (H1) of Theorem 3.5 be satisfied. If Ω4 < 1, then
problem (1.1)-(1.4) has at least one solution on J .
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Remark 3.8. If λ = 1, then (1.1) is reduced to a single order fractional differential
equation and also Ω1 = Ω3 = Ω4 = 0. In this case, only condition (H1) can be used
for the existence of solutions for problems (1.1)-(1.2), (1.1)-(1.3) and (1.1)-(1.4).

Example 3.9. Let us consider the following two orders fractional differential equa-
tion with two orders fractional derivative boundary conditions

38
43
D7/4x(t) +

5
43
D5/4x(t) =

x(t)e2t

|x(t)|+ 1
sin2 x(t) +

2
3
, t ∈ [0, 3/2], (3.4)

x(0) = 0,
15
32
D1/3x

(
3
2

)
+

17
32
D1/4x

(
3
2

)
=

3
4
. (3.5)

Here λ = 38/43, α = 7/4, β = 5/4, µ = 15/32, γ1 = 1/3, γ2 = 1/4, γ3 = 3/4,
T = 3/2 and f(t, x) = (xe2t sin2 x)/(|x| + 1) + (2/3). Observe that 0 < γ1, γ2 <
(1/2) = α− β. It is obvious that

|f(t, x)| ≤ e2t +
2
3

:= v(t),

which satisfies condition (H1) of Theorem 3.5. In addition, we can find that

Ω1 = 0.3421779589 < 1.

Hence, by Theorem 3.5, the four orders fractional boundary value problem (3.4)-
(3.5) has at least one solution on [0, 3/2].

Example 3.10. Let us consider the two orders fractional differential equation (3.4)
subject to two orders fractional boundary conditions

x(0) = 0,
7
16
I3/4x

(
3
2

)
+

9
16
I4/5x

(
3
2

)
=

1
6
, (3.6)

and mixed fractional derivative and integral boundary conditions

x(0) = 0,
13
28
D1/5x

(
3
2

)
+

15
28
I4/3x

(
3
2

)
=

3
7
. (3.7)

Problem I (3.4)-(3.6). In this case µ = 7/16, δ1 = 3/4, δ2 = 4/5 and δ3 = 1/6.
We can find that Λ2 = 1.249160013 and Ω3 = 0.4121621065 < 1. Therefore, by
applying Theorem 3.6, the two orders fractional derivatives and integrals boundary
value problem (3.4)-(3.6) has at least one solution on [0, 3/2].
Problem II (3.4)-(3.7). In the final case µ = 13/28, γ1 = 1/5, δ2 = 4/3 and
γ3 = 3/7. We can find that Λ3 = 1.186148831 and Ω4 = 0.3877544803 < 1.
Therefore, by using the conclusion in Theorem 3.7, the mixed type of fractional
derivative and integral boundary value problem (3.4)-(3.7) has at least one solution
on [0, 3/2].

4. Existence result for problem (1.5)-(1.2)

First of all, we recall some basic concepts for multi-valued maps [9, 12, 22]. For
a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈
P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact} and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X):
(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X;
(ii) is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all

B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞);
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(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set
G(x0) is a nonempty closed subset of X, and if for each open set N of X
containing G(x0), there exists an open neighborhood N0 of x0 such that
G(N0) ⊆ N ;

(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B 6= ∅} is
open for any open set B in E;

(v) is said to be completely continuous if G(B) is relatively compact for every
B ∈ Pb(X);

(vi) is said to be measurable if for every y ∈ R, the function

t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable;

(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set
of the multivalued operator G will be denoted by FixG.

Definition 4.1. A multivalued map F : J × R → P(R), J := [0, T ], is said to be
Carathéodory if

(i) t 7→ F (t, x) is measurable for each x ∈ R;
(ii) x 7→ F (t, x) is upper semicontinuous for almost all t ∈ J .

Further a Carathéodory function F is called L1−Carathéodory if
(iii) for each α > 0, there exists ϕα ∈ L1(J,R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a.e. t ∈ J .

Recall that C := C(J,R). For each x ∈ C, define the set of selections of F by

SF,x := {v ∈ L1(J,R) : v(t) ∈ F (t, x(t)) for a.e. t ∈ J}.
We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and

recall two useful results regarding closed graphs and upper-semicontinuity.

Lemma 4.2 ([9, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a
closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if
when n→∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if
G is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 4.3 ([14]). Let X be a Banach space. Let F : J × R → Pcp,c(X) be an
L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X)→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)

is a closed graph operator in C(J,X)× C(J,X).

To prove our main result in this section, we use the following form of the nonlinear
alternative for contractive maps [18, Corollary 3.8].

Theorem 4.4. Let X be a Banach space, and D a bounded neighborhood of 0 ∈
X. Let Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) two multi-valued operators
satisfying

(a) Z1 is contraction, and
(b) Z2 is upper semi-continuous and compact.

Then, if Q = Z1 + Z2, either
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(i) Q has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λQ(u).

Definition 4.5. A function x ∈ C2(J,R) is a solution of problem (1.5)-(1.2) if
x(0) = 0, µDγ1x(T ) + (1− µ)Dγ2x(T ) = γ3, and there exists function v ∈ L1(J,R)
such that v(t) ∈ F (t, x(t)) a.e. on J and

x(t) =
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds

+
t

Λ1

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds

− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
)
, t ∈ J,

(4.1)

where Λ1 6= 0 is defined by (2.4).

Theorem 4.6. Assume that (H2) holds. In addition we assume that:
(H3) F : J × R→ Pcp,c(R) is L1-Carathéodory;
(H4) there exists a continuous nondecreasing function Φ : [0,∞)→ (0,∞) and a

function p ∈ L1(J,R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)Φ(‖x‖) for each (t, x) ∈ J × R;

(H5) there exists a constant M > 0 such that

(1− Ω1)M
Φ(M)Ψ1 + |γ3|T/Λ1

> 1, (4.2)

where

Ψ1 =
1

λΓ(α)

∫ T

0

(T − s)α−1p(s)ds+
T

Λ1

[ µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1p(s)ds

+
1− µ

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

Then the boundary value problem (1.5)-(1.2) has at least one solution on J .

Proof. To transform problem (1.5)-(1.2) into a fixed point problem, we define an
operator N : C → P(C) by

N (x) =
{
h ∈ C : h(t) =

λ− 1
λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds

+
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds

+
t

Λ1

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds
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− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
)}

for v ∈ SF,x.
Next we introduce the operator A : C → C by

Ax(t) =
(λ− 1)

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds

− t

Λ1

[ µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

+
(1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds
]
,

and the multi-valued operator B : C → P(C) by

Bx(t) =
{
h ∈ C : h(t) =

1
λΓ(α)

∫ t

0

(t− s)α−1v(s)ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
]}

for v ∈ SF,x. Observe that N = A + B. We shall show that the operators A
and B satisfy all the conditions of Theorem 4.4 on J . First, we show that the
operators A and B define the multivalued operators A,B : Br → Pcp,c(C) where
Br = {x ∈ C : ‖x‖ ≤ r} is a bounded set in C. First we prove that B is compact-
valued on Br. Note that the operator B is equivalent to the composition L ◦ SF ,
where L is the continuous linear operator on L1(J,R) into C, defined by

L(v)(t)

=
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
]
.

Suppose that x ∈ Br is arbitrary and let {vn} be a sequence in SF,x. Then, by
definition of SF,x, we have vn(t) ∈ F (t, x(t)) for almost all t ∈ J . Since F (t, x(t))
is compact for all t ∈ J , there is a convergent subsequence of {vn(t)} (we denote
it by {vn(t)} again) that converges in measure to some v(t) ∈ SF,x for almost all
t ∈ J . On the other hand, L is continuous, so L(vn)(t)→ L(v)(t) pointwise on J .

To show that the convergence is uniform, we have to show that {L(vn)} is an
equi-continuous sequence. Let t1, t2 ∈ J with t1 < t2. Then, we have

|L(vn)(t2)− L(vn)(t1)|

≤
∣∣∣ 1
λΓ(α)

[ ∫ t2

0

(t2 − s)α−1vn(s)ds−
∫ t1

0

(t1 − s)α−1vn(s)ds
]

+
|t2 − t1|

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−β−γ1−1vn(s)ds
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+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1vn(s)ds
]∣∣∣

≤ Φ(r)
λΓ(α)

[ ∫ t1

0

[t2 − s)α−1 − (t1 − s)α−1]p(s)ds+
∫ t2

t1

(t1 − s)α−1p(s)ds
]

+ Φ(r)
|t2 − t1|

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−β−γ1−1p(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

We see that the right-hand side of the above inequality tends to zero as t2 →
t1. Thus, the sequence {L(vn)} is equi-continuous and by using the Arzelá-Ascoli
theorem, we obtain that there is a uniformly convergent subsequence. So, there is
a subsequence of {vn} (we denote it again by {vn}) such that L(vn)→ L(v). Note
that, L(v) ∈ L(SF,x). Hence, B(x) = L(SF,x) is compact for all x ∈ Br. So B(x) is
compact.

Now, we show that B(x) is convex for all x ∈ C. Let h1, h2 ∈ B(x). We select
v1, v2 ∈ SF,x such that

hi(t)

=
1

λΓ(α)

∫ t

0

(t− s)α−1vi(s)ds+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1vi(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1vi(s)ds
]
, i = 1, 2,

for almost all t ∈ J . Let 0 ≤ θ ≤ 1. Then, we have

[θh1 + (1− θ)h2](t)

=
1

λΓ(α)

∫ t

0

(t− s)α−1[θv1(s) + (1− θ)v2(s)]ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1[θv1(s) + (1− θ)v2(s)]ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1[θv1(s) + (1− θ)v2(s)]ds
]
.

Since F has convex values, so SF,u is convex and θv1(s) + (1 − θ)v2(s) ∈ SF,x.
Thus

θh1 + (1− θ)h2 ∈ B(x).

Consequently, B is convex-valued. Obviously, A is compact and convex-valued.
The rest of the proof consists of several steps and claims.

Step 1: A is a contraction on C. This was proved in Step 3 of Theorem 3.5.
Step 2: B is compact and upper semi-continuous. This will be established in
several claims.
Claim I: B maps bounded sets into bounded sets in C. Let Br = {x ∈ C : ‖x‖ ≤ r}
be a bounded set in C. Then, for each h ∈ B(x), x ∈ Br, there exists v ∈ SF,x such
that

h(t)
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=
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
]
.

Then, for t ∈ J , we have

|h(t)| ≤ Φ(r)
1

λΓ(α)

∫ T

0

(T − s)α−1p(s)ds

+
TΦ(r)

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1p(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

Thus,

‖h‖ ≤ Φ(r)
1

λΓ(α)

∫ T

0

(T − s)α−1p(s)ds

+
TΦ(r)

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1p(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

Claim II: B maps bounded sets into equi-continuous sets. Let t1, t2 ∈ J with
t1 < t2 and x ∈ Br. Then, for each h ∈ B(x), we obtain

|h(t2)− h(t1)|

≤ Φ(r)
λΓ(α)

[ ∫ t1

0

[t2 − s)α−1 − (t1 − s)α−1]p(s)ds+
∫ t2

t1

(t1 − s)α−1p(s)ds
]

+ Φ(r)
|t2 − t1|

Λ1

[
|γ3|+

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−β−γ1−1p(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

Obviously the right-hand side of the above inequality tends to zero independently
of x ∈ Br as t2 − t1 → 0. Therefore it follows by the Ascoli-Arzelá theorem that
B : C → P(C) is completely continuous.

Next we show that B is an upper semi-continuous multi-valued mapping. It is
knowm by Lemma 4.2 that B will be upper semicontinuous if we establish that it
has a closed graph, since already shown to be completely continuous. Thus we will
prove that:
Claim III: B has a closed graph. Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then we
need to show that h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there exists vn ∈ SF,xn

such that for each t ∈ J ,

hn(t) =
1

λΓ(α)

∫ t

0

(t− s)α−1vn(s)ds+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1vn(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1vn(s)ds
]
.
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Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each t ∈ J ,

h∗(t) =
1

λΓ(α)

∫ t

0

(t− s)α−1v∗(s)ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v∗(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v∗(s)ds
]
.

Let us consider the linear operator Θ : L1(J,R)→ C given by

v 7→ Θ(v)(t) =
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds

+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
]
.

Observe that

‖hn(t)− h∗(t)‖ =
∥∥∥ 1
λΓ(α)

∫ t

0

(t− s)α−1(vn(s)− v∗(s))ds

+
t

Λ1

[
− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1(vn(s)− v∗(s))ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1(vn(s)− v∗(s))ds
]∥∥∥→ 0,

as n→∞.
Thus, it follows by Lemma 4.3 that Θ ◦ SF is a closed graph operator. Further,

we have hn(t) ∈ Θ(SF,xn
). Since xn → x∗, we have that

h∗(t)

=
1

λΓ(α)

∫ t

0

(t− s)α−1v∗(s)ds+
t

Λ1

[
γ3 −

µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v∗(s)ds

− (1− µ)
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v∗(s)ds
]
,

for some v∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed values).
In consequence, the operator B is compact valued and upper semi-continuous.

Thus the operators A and B satisfy all the conditions of Theorem 4.4 and hence
its conclusion implies either condition (i) or condition (ii) holds. We show that the
conclusion (ii) is not possible. If x ∈ θA(x) + θB(x) for θ ∈ (0, 1), then there exist
v ∈ SF,x such that

x(t) = θ
λ− 1

λΓ(α− β)

∫ t

0

(t− s)α−β−1x(s)ds+ θ
1

λΓ(α)

∫ t

0

(t− s)α−1v(s)ds

+ θ
t

Λ1

(
γ3 −

µ(λ− 1)
λΓ(α− β − γ1)

∫ T

0

(T − s)α−β−γ1−1x(s)ds

− µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1v(s)ds
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− (1− µ)(λ− 1)
λΓ(α− β − γ2)

∫ T

0

(T − s)α−β−γ2−1x(s)ds

− 1− µ
λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1v(s)ds
)
, t ∈ J.

By our assumptions, we obtain

|x(t)| ≤ ‖x‖
[ Tα−β |λ− 1|
λΓ(α− β + 1)

+
Tα−β−γ1+1µ|λ− 1|
λΛ1Γ(α− β − γ1 + 1)

+
Tα−β−γ2+1(1− µ)|λ− 1|
λΛ1Γ(α− β − γ2 + 1)

]
+
|γ3|T
Λ1

+ Φ(‖x‖) 1
λΓ(α)

∫ T

0

(T − s)α−1p(s)ds

+
TΦ(‖x‖)

Λ1

[ µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1p(s)ds

+
(1− µ)

λΓ(α− γ2)

∫ T

0

(T − s)α−γ2−1p(s)ds
]
.

Thus

(1− Ω1)‖x‖ ≤ Φ(‖x‖)Ψ1 + |γ3|T/Λ1. (4.3)

If condition (ii) of Theorem 4.4 holds, then there exists θ ∈ (0, 1) and x ∈ ∂BM
with x = θN (x). Then, x is a solution of (1.5)-(1.2) with ‖x‖ = M . Now, by the
inequality (4.3), we obtain

(1− Ω1)M
Φ(M)Ψ1 + |γ3|T/Λ1

≤ 1,

which contradicts (4.2). Hence, N has a fixed point in J by Theorem 4.4, and
consequently the problem (1.5)-(1.2) has a solution. This completes the proof. �

In the above results, we define the following two constants

Ψ2 =
1

λΓ(α)

∫ T

0

(T − s)α−1p(s)ds+
T

Λ2

[ µ

λΓ(δ1 + α)

∫ T

0

(T − s)δ1+α−1p(s)ds

+
1− µ

λΓ(δ2 + α)

∫ T

0

(T − s)δ2+α−1p(s)ds
]
,

Ψ3 =
1

λΓ(α)

∫ T

0

(T − s)α−1p(s)ds+
T

Λ3

[ µ

λΓ(α− γ1)

∫ T

0

(T − s)α−γ1−1p(s)ds

+
1− µ

λΓ(δ2 + α)

∫ T

0

(T − s)δ2+α−1p(s)ds
]
.

Theorem 4.7. Let Ω3 < 1. Assume that the conditions (H3), (H4) are satisfied.
If there exists a positive constant M such that

(1− Ω3)M
Φ(M)Ψ2 + |δ3|T/Λ2

> 1,

then problem (1.5)-(1.3) has at least one solution on J .
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Theorem 4.8. Let Ω4 < 1. Suppose that the conditions (H3), (H4) are satisfied.
If there exists a positive constant M such that

(1− Ω4)M
Φ(M)Ψ3 + |γ3|T/Λ3

> 1,

then problem (1.5)-(1.4) has at least one solution on J .

Example 4.9. Let us consider the following two order fractional differential inclu-
sion with two order fractional derivative boundary conditions

47
54
D16/9x(t) +

7
54
D10/9x(t) ∈ F (t, x(t)), t ∈ [0, 1],

x(0) = 0,
9
23
D7/15x(1) +

14
23
D4/15x(1) =

1
12
.

(4.4)

where F (t, x) is the multivalue function

F (t, x) =
[(√t+ 1

5

)( |x| sin2 x

18(1 + |x|)
+

1
4

)
,
(

3
√
t+

1
4

)( |x| sinx
15

+
1
2

)]
.

Here λ = 47/54, α = 16/9, β = 10/9, µ = 9/23, γ1 = 7/15, γ2 = 4/15, γ3 = 1/12,
T = 1. Observe that 0 < γ1, γ2 < 2/3 = α−β. We can find that Λ1 = 1.105743248
and Ω1 = 0.3147893857. It is easy to see that

‖F (t, x)‖P = sup{|y| : y ∈ F (t, x)} ≤
(

3
√
t+

1
4

)( |x|
15

+
1
2

)
.

Set p(t) = 3
√
t+ (1/4) and Φ(x) = (x/15) + (1/2). By direct computation, we have

Ψ1 = 1.410896861. From the given data, we can prove that there exists a positive
constant M > 1.267866938 satisfying inequality (4.2) of Theorem 4.6. Therefore,
by applying Theorem 4.6, we deduce that the boundary value problem (4.4) has at
least one solution on [0, 1].
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