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CRITICAL EXPONENT FOR THE ASYMPTOTIC BEHAVIOR
OF RESCALED SOLUTIONS TO THE POROUS MEDIUM
EQUATION

LIANGWEI WANG, JINGXUE YIN

ABSTRACT. In this article, we find that pu. = 2N/(N(m —1)+2) is the critical
exponent for the asymptotic behavior of rescaled solutions t#/2u(t°x,t) for
the porous medium equation.

1. INTRODUCTION

In this article, we consider the asymptotic behavior of solutions to the Cauchy
problem of the porous medium equation

%—Aum =0 inRY x (0,00), (1.1)

u(z,t) = up(z) in RY. (1.2)
Here the initial value satisfies

u €CFRN)={pe C(RN);l llim ¢(xz) =0 and ¢(z) > 0}
xr|—0o0
and m > 1 is a physical constant.

Asymptotic behavior of solutions for the porous medium equation has attracted
much attention of mathematicians for a long time and many interesting results have
been obtained, see [2, [8, [9] 10 12} T3] T4} 15} 18, 9] 20} 21].

Friedman and Kamin [J] first revealed the fact that if the nonnegative initial
value uo € L*(R"), then the solution u(x,t) of problem (L.I)~(1.2)) satisfies

Jim £ fu(, 6) = Upg () o gy = 0,

where Uy (z,t) is the source-type solution with the same mass M as that of ug; see
also [10} [13].
This result means that if 0 < ug € L'(RY), then the w-limit set of rescaled solu-

tions t/?u(t?z,t) with pu = % and 3 = contains one point; that

1
N(m—1) N(m—1)+2

is, the rescaled solutions tN(m]*le?u(t N<mi1>+2z,t) possess the simple asymptotic
behavior (KV point in Figure [1)). However, for ug € L>®(RY), in 2002, Vazquez
and Zuazua [14] found that the w-limit set of the rescaled solutions #*/2u(t%x,t)
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of problem — with 4 = 0 and 8 = 1/2 may contain infinite points, i.e.,
u(tl/ 2..t) (VZ point in Figure [1)) possess complicated asymptotic behavior.

Such phenomena that the different exponents of rescaled solutions t+/ 2u(tPa,t)
show different asymptotic behaviors for the porous medium equation have been
studied in [2] 14 [I5] 20l 2], for other evolution equations, one can see [3] 4} 5] 6]
7, [11].

For the w-limit set of the rescaled solutions t*/2u(t?-,t) of problem (T.1] * in
Co(R™), we showed in our previous paper [20] that if (11, 8) € 1 (0 < u < mQ 1)+2
and 8 > B(pn) = W, then there exists ug € Cgf (RY) such that this w-limit
set contains infinite points; see Figure . In another paper [21I], we revealed that
if 4 and § in the line segment B(u) = W 0<p< N(%ﬂ)ﬁ’ see Figure
, then there also exists ug € Cg (RY) such that this w-limit set contains infinite
points. While in this paper, we will reveal the different fact that if (u,5) € II
(n > N(meNl)H, B > 0, then for any ug € Cy (RY), this w-limit set contains at
most one point, see Figure , i.e., the complicated asymptotic behavior of the
rescaled solutions cannot happen.

Ié]

| I1
(0,3) (VZ)s ,
S—Aw™) =0
u(z,0) = up(x)
N2 p(KV)
Remain Problems Without Complexity

— N
0 He = Nim—1)+2

F1GURE 1. The p-3 Parameters Plane

Remark 1.1. From the above results, we can find that pu. = 2N/(N(m — 1) + 2)
is the critical exponent of p on the asymptotic behavior of the rescaled solu-
tions t*/2u(t?z,t). Tt is not clear whether the rescaled solutions t"/?u(t°x, t) with
(m, ) € II (0 < pp < 2N/(N(m — 1) +2) and 0 < 3 < (2 — pu(m — 1))/4, see
Figure [1)) possess complicated asymptotic behavior, so the problem of the critical
exponent for § still has not been solved.

The rest of this article is organized as following. In the next section, we introduce
some definitions and concepts to give a series of lemmas. In the last of this paper,
we give and prove our results.



EJDE-2017/10 CRITICAL EXPONENT FOR ASYMPTOTIC BEHAVIOR 3

2. PRELIMINARIES

Before introducing the main results of this paper, we give some concepts as in
[1, 16, 17]. For f € LL (RY) and r > 0, let

loc

N(m—1)+2

171l = sup R [ (e
R>r le|<R

Then we define the space X = X (RY) by
X ={f € Lipe ®); I flll1 < o0},

and equip this space with the norm ||| - |||;. Hence it is a Banach space, and any
norm ||| - |||, 7 > 0, is an equivalent norm. For f € X, we define

() = tim (|71l
The space Xg = Xo(RY) is defined by

Xo={f € X;{(f) =0}.
Notice that L*(RY) ¢ Xy ¢ X c L _(RY) with continuous inclusions. Similarly,

loc
L>(RY) C X, with continuous inclusion. We now give the definition of solutions

for problem (1.1)—(L.2) with the initial value uy € Xj.

Definition 2.1. A nonnegative measurable function u = u(z,t) defined in Sy =
[0,T) x RN, T > 0, is a solution of (L.I)-(L.2) if
(I) u € C([0, T); L, (RY)) N L>(0, T X);
(I) u™ € L*((0,T) x B.(0)) for any B,.(0) = {x € RN;|z| <r, r > 0};
(ITT) for every test function ¢ € C21(S7), it holds

// (ugy + u™Ap) dx dt + / uo(z)p(x, 0)dx = 0.
St RN

For any uy € Xy, the existence and uniqueness of the solution is well estab-
lished in [T}, 16l 1'7]. Moreover, problem (|1.1))—(1.2)) generates a bounded continuous
semigroup in the space X given by

S(t) : ug — u(x,t); (2.1)
that is, S(t)up € C([0,0); Xo), see [16, 17]. We now introduce the definitions of
scalings and present the commutative relations between the semigroup operators
and the dilation operators as in [20, 2I]. For A\, u, f > 0 and ug € Xp, the
space-time dilation I‘ﬁ’ﬁ is defined as following;:

T4 Tug) () = DEPIS(N2t)ue(z)] = Mu(A2Px, N2t),
where the dilation Dﬁ’ﬁ is defined as
DY Pu(x) = Mw(\x)

and S(t) is the PME semigroup given by (2.1). From the definitions of Df\“ﬁ and
S(t), we can get the following commutative relations between the semigroup oper-
ators S(t) and the dilation operators D’;\L’B,

T Pug(x) = DYPIS(\t)ug ()] = SN0 D) DY P ().

In particular,
2—4B—p(m—1)
T ug(w) = S( 2
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see details in [20, 2I]. The set of functions

wB(ug) = {f € CF (RY); 3t,, — o0 s.t. D%[S(tn)uo](«) InZ2, fin L®°(RN)}

is called €2-limit set. We also introduce the following symbol to denote the positive
set of u(z,t) at time ¢,

Qt) = {x € RY; u(x,t) > 0}.
The p-neighborhood of the set (t) is defined as
Q,(t) = {z € RY; d(z,0(1)) < p},

where d(x, Q(t)) is the distance from z to Q(¢). We now list some important prop-
erties of the solutions.

Lemma 2.2 ([16]). If 0 < uy € LYRY), then the solution u(z,t) satisfies the
L'-L> smoothing effect: for everyt >0,

2 N
(e, )l vy < Clluol a4 o7,

where C1 is a constant dependent on m and N.

The following lemma was proved in [20], we give here a different proof for the
sake of completeness.

Lemma 2.3 ([20]). Let u(z,t) be a nonnegative solution of (L.1)—(1.2) with the
initial value ug such that 0 < uy € L*(RYN). Then for any 0 < t; < to < 00,

Q(tg) C Qp(bftl)(tl),

where

m—1

S R Py
plt2 — t1) = Ca(ta — t1) "m0 [lug| 1y

and Cy is a constant dependent on m and N.

Proof. To prove this lemma, we need the fact that if u(z,t) is a nonnegative solution
of 7 with the initial data ug satisfying
0 < up € L=®(RY),

then

Q(t2) C Qpry—ty(t1) for 0 <ty <t < o0, (2.3)
where

plta —t1) = C(tz — t1)1/2||u0H£1T?2]RN)'

In fact, for any given xg € RY with d(zo) > 0, if R > d(z), then

_ N(m-1)+2 N(m—1)+2

= / wo(y)dy < Cllugl| oy R~ 525 RN
Br(wo)

__2
= Clluol| oo rvyR™ =T
__2
< Clluol| poo mrvyd(zo) ™ ™15
or if R < d(xg), then

/ uo(y)dy = 0,
Br(zo)
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where Br(zo) = {y; |zo —y| < R}. So
_ N(m-—1)+2 2
B(xzg)= sup R m—1 uo(y)dy < C’||u0||Loo(RN)d(m0) mT,  (2.4)
R>d(z0) Br(zo)

The condition 0 < uy € L>®(RY) C X, implies that if |z| < R and r < R, then

w(z, ) < Ot~ ¥ Rt [[ug [T 77 for 0 < £ < oo,
see [I, [16]. This result and (2.4)) imply that
(o, t) =0 for all 0 < ¢ < Clugl| ;" RN)d( 0).
This implies Q(t) C Q,)(0), where

mol 1/2
From this, we can get the desired result.
We now discuss the case that 0 < ug € L'(R”) to complete the proof. Without
loss of generality, we can restrict our consideration to the case of t; = 0. For any
0 <t < oo, we select a sequence of times

th=2"% >0 ask— oc.

We then consider the evolution in the time intervals I}, = [tx,tr—1]; that is, we
will estimate the increase of the support in these time intervals. From the L'-L>®
smoothing effect, at each initial time ¢ = ¢;, we have

N
[u(tr) oo rry < Clp, )||UO||31('M)”2 ty T (2.5)
Therefore, we can deduce from (2.3)) that
Qtk—1) C Loty —t5) ()5
where p(tp—1 — tg) = C||u(tk)||Loo

Q(t) < Q) (0),

RN)(tk 11— tk)1/2 Iterating, we have

where
1
CZ Hu t HLoo ]RN)(tk} - tk)l/Q < CZ HUOHgl(EEgNlHZt}i\’<7”71)+2
k=1 k=1
m—1 m—1
= C||u0||£vl(wﬂzwl)>+2tw(m n+2 ZQ NGnoTTE < C||u0||gl(’%]v1)>+2tmm;il)rz.
k=1
Here we have used the estimates (2.5). The proof is complete. (]

The next lemma is called Aleksandrov’s reflection (see [16]). We introduce some
notation to give this principle. Any H, hyperplane of RY, divides R into two half
spaces Q0 (H) and Q9 (H). We denote by m = m the specular symmetry that maps
a point & € Oy (H) into its symmetric image with respect to H, my(z) € Qo(H).

Lemma 2.4 (Aleksandrov’s Reflection Principle [16]). Let u > 0 be a solution of
problem (1.1)—(1.2]) with initial value uy € Xo. Suppose that for a given hyperplane
H and all z € Q1 (H),

uo(mr () < uo(@).
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Then, for all times 0 <t < oo,
u(mg(x),t) <u(z,t), =€ Q(H).
The following lemma depends on Lemma [2.3] and

Lemma 2.5. Suppose u(x,t) is a non-negative solution of (1.1)—(1.2) with initial-
value ug € Cf (RY) and ug £ 0. Let

M(t) = / C up(w)da.
ja <t 2N T

Then there exists a 0 < tg < oo such that for t > tg,

U(O, t) > Ct N(mljl)+2 M(t) N(mil)+2 .

Proof. Since the nonnegative initial value ug % 0 and up € C(RY), then there exist
constants t1, C3 > 0 such that

/ uo(x)dx > Cs.
B

t1

Now let

2
_ v Nm-D+2 ~—2m+2
ty =C, C;

)

2N(m—1)+4

tg —_ (2N+1CI|BI|)7N C§2m+2
where C, Cy are the constants given in Lemma [2.2] and Lemma [2.3] respectively.
Let tg = max (t1,t2,t3). Then for any ¢ > tg, using comparison principle, we can
1
suppose that ug is supported in the ball B; = {z;|z| < t2¥m-D+i}, In fact, for

general ug, suppose 7;(x) is a cut-off function compactly supported in B; and less
than one with

| m@us(a)de = 3uc)
By

then wugmn: is lesser than ug. Therefore, if v is the solution with initial data wgmn:,
then

v(z,s) <wu(x,s) forall s>0.

Hence, if this lemma holds for v(z,t), then

1 _
u(0,1) 2 v(0,1) > C(GM(1)) NG N T
Therefore, in the next part of this proof, we assume that suppug C B;. So,
M(t) = / uo(x)dx > Cs.
]RN

The L'-L> smoothing effect implies that for any s > 0,

0 < u(z,s) < C1 M (t) Non-D78 g~ NGr-172

The conservation of mass means that for all s > 0,

/]RN ug(z)dx = /RN u(zx, s)dx

:/ L u(x,s)dx—i—/ L u(z, s)dz,
|z|>2t PN (m—T)F4 || <2t PN m—T)F4
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the last term can be estimated as

/ L (e, s)dr < 2V O By M(t) Ve T g NG e N TR (2.6)
|| <2t ZNCm—DF1

where |Bi| is the measure of the unit ball By in RY. Since suppug C By, then
Lemma [2.3] indicates that for all s > 0,

supp u(x, S) C BR1(5)7

m—1
where Ry (s) = 2171 4 Cy M (t) Non- 1772 g ¥ D72 . Let s = ¢ and

R(t) = 4Co M (t) N ¢ NG T
2
Notice that ¢ > tg > to = C, " 772 C5 22 and M(t) > Cs. So

R(t) > 2Ry (t) > 4?0171, (2.7)

The hypothesis suppug C B; implies, via the Aleksandrov reflection principle
1
(Lemma , that for all |z| > 2¢2¥m-D+4 and s > 0,

u(0,8) > u(z, s).
So, from ([2.7)), we have
w(0, ) RN > u(0,t)(R(t)N — 2V 7ve 1)
1

= — L u(0,t)dz
|B1| Jas2non 74 <o) <R(t)
1
> — L u(x,t)dx
|Bl| 2¢2N(m—1)+4 §|m|§R(t)
1
= — u(x,t)dx
|Bl| |z|>2t 2N (m—1)+4 ( )
1
= — u(z,t)de — = u(z,t)dz.
ITD R A

Now using estimate (2.6 and ¢ > ¢y > 3, we obtain

u(0,t)R(t)N > IJ;T[M“) — N OBy | M (t) Voo T ¢ I | > 2|%MM(t).
It follows from the definition of R(¢) that
u(0,t) > Ot~ NGw-DF2 M (t) NG D72
The proof is complete. O

3. RESULTS AND THEIR PROOFS

Theorem 3.1. Let ug € Cg (RY), ug # 0. If there exist 0 Z v € Co(RY),

o > m, Bo > 0 and a sequence {t,}2; with lim,,_, o t, = +00 such that
T 0uy = b [S(tuol (1) 2= v in Co(RY), (3.1)

then

2N

uo € LARY), o = me
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2 — po[m —1] 1
Bo = - .
4 Nm—1)+2
: 2N P 2N 1
In other words, if p > Non—n73 O if = Non—173 and [ # N3 then
w(ug) =0, or w(ug)={0}.
Proof. It follows from (3.1) and Lemma that if n sufficiently large, then

2N
HO™ Nm-—1D+2

0(0) + 1> [[92uq)(0) = £ [S(t)uo)(0) > Clu  * M(t,)T772. (3.2)

Here M (t) is given by Lemma[2.5] Letting n — oo, we conclude that
2N

N(im—1)+2

and ug € Ll(RN). Notice also that ug > 0. This gives

Ho =

2N 1
D%71L71)+27N<m71)+2 S(t)uo(x) — tN(m,]Xl)+2 u(tw(milwz x,t) — Uy (337 1) (3.3)

uniformly on RY as t — co. Here Uys(x,t) is the source-type solution with the
same mass as that of ug, where M = [,y uo(x)dz, see [10, [13]. Therefore,

___oN S S
Djéimfnﬂ 7605(15")’(10(1‘) _ UM(mtio N(m-1)+2 ’ 1) 27000 (3.4)

uniformly on RY. The expression of the source-type solution clearly means
m—1
supp(Uns (2,1)) C {a;[a] < CM V=072 },

so that if Gy > then

1
N(m-1)+2°

N T
Uni (" 0072 1) 0 for all & # 0
as t, — oco. Notice also that v Z 0, so (3.4) is compatible with (3.1]) only if

1
fo < N(m—1)+2

On the other hand, from (3.1)) and (3.3)) we deduce that

2N 1 1 —
D\I;t(lt—l)+2’N(m—1)+2 S(tn)UO(Z‘) _ U<tTJL\f(m—1)+2 ﬁox) N 0 (35)

uniformly on RY as t,, — oo. The hypothesis that v € Co(RY) clearly implies that
if ﬂo < m, then
N S
vty "I 601‘) —0 forallz#0

as t, — o0o. Recall that ug # 0, so Up; # 0. Therefore, (3.5) is compatible with
(B:3) only if

S 1
SR ()
Hence
B 1
Bo = m
So that w”f(ug) = 0 if u > ﬁ, or if u = N(%Nl)—ﬂ and [ # m

This completes the proof.
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Theorem 3.2. Let
2N 1
= d B
R Nm—n12 ™ = Nmon12
If ug € Cf (RY), then
WP (ug) =0, or whP(ug) = {Un(x,1)},
where Upg(x,t) is source-type solution with the same mass M as that of ug.

Proof. Ifug € Cf (RY), then ug € L*(RN), or else ug € Ll (RY) with [Jugl| 1@y =
oo. If ug € LY(RY), then

lim N0 092 (¢ N 092 4, ¢) = Upg(z, 1) in L°(RY). (3.6)

t—00
So

whB(ug) = {Ups(x,1)}.
If ug € L (RY) and [ug || L1(RN) = 00, approximating ug by an increasing sequence

of integrable data wg,, applying (3.6) and passing to the limit, we have

tlim R u(tN(miWr2 z,t) =00 in L®(RM).
— 00
Hence w"?(ug) = (). The proof is complete. (]

Remark 3.3. As we had showed in [20, 21] that for 0 < u < 2N/(N(m — 1) + 2),
if 3 = (2 — p(m — 1))/4, then there exists an initial value ug € Cy (RY) such that
the Q-limit set w?(ug) contains the set

S(MCF (RY) = {S(1)g; ¢ € Cg (RY)},

orif g > W7 then there also exists an initial value uy € Cy (RY) such that
the Q-limit set w"*?(ug) contains the set

Co "(RY) = {p € Cff (RY); 9(0) = 0}.
Therefore,
2N
N(m—1)+2
is the critical exponent of u on the asymptotic behavior of the rescaled solutions
tH2u(tB- ).
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