
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 03, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF PERIODIC SOLUTIONS IN A

PREDATOR-PREY MODEL

NESLIHAN NESLIYE PELEN, MEHMET EMIR KOKSAL

Abstract. Liu et al [14] found necessary and sufficient conditions for the

existence of periodic solutions of the predator-prey dynamical systems with

semi-ratio dependent generalized functional response. In this work, we obtain
a globally attractive or globally asymptotically stable periodic solution for the

time scale T is taken as R, with a small change on the condition over generalized
functional response on the prey.

1. Introduction

In this study, we study the important notions of global attractive and permanent
solutions for predator-prey systems. In a predator-prey dynamic system, global
stability is the particular interest of the wildlife managers. If it is known that
a system exhibits such global stability, then ecological planning based on a fixed
eventual population can be carried out. Global stability of predator-prey dynamic
systems have been studied in publications such as [1, 2, 5, 8, 9, 11, 16]. Let us
give some information about these studies. [9] presents existence of the solutions of
non-authonomous impulsive predator-prey system with Beddington-DeAngelis type
functional response on time scales. [16] shows the existence and global attractivity
of the solutions of non-authonomous predator-prey system with generalized func-
tional response. [5] presents one of the early studies about population dynamics;
there a general form of a population system with single species was studied. A very
general form of a predator-prey system was studied in [1] with a time delay and a
a periodic environment. In [2], another general form of a predator-prey system was
studied. Nevertheless, in that study, not a constant time delay, but time varying
delay system was used. The Lotka-Volterra competition model was used with a
time delay which includes delay kernels in the functional response part was studied
in [8]. In addition to these, one of the two-stage predator-prey interaction model
was studied and again with a time delay, the analysis of that system was done in
[11].

Additionally, permanence of the solution is another important notion. Perma-
nence of a predator-prey system explains whether the prey or predator goes to
extinction or not. In other words, if a system is permanent then the solution of
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prey and predator does not become extinct; this also helps the wildlife managers.
About the permanence of the predator-prey system, there are also many studies:
[3, 4, 6, 7, 10]. Some information about these studies can be given as follows. First
of all, in [10], the main idea is about obtaining the persistant solutions in infinite
dimensional systems and as an application a predator-prey system was used. Three
dimensional Kolmogorov system was investigated in [7]. In that study, there are two
competing predators with single prey. Uniform persistent solutions of functional
differential equations are investigated and by using the results of this study, some
applications to different systems are possible in [6]. In [3, 4], necessary and suffi-
cient conditions were found for the persistent solution of the predator-prey system
with Beddington-DeAngelis type functional response and Holling type functional
response. These studies are different from the above cited studies, since they can be
able to found a necessary and sufficient condition, not only a necessary condition.
Therefore, these two studies are very important for our study. Also, inspire us to
investigate the necessary and sufficient condition for the w-periodic, persistant and
global attractive solutions of the considered system.

In [14], necessary and sufficient condition for the existence of w-periodic solution
of the following system were found,

x∆(t) = a(t)− b(t) exp(x(t))− φ(t, exp(x(t)), exp(y(t))) exp(y(t)− x(t)),

y∆(t) = d(t)− β(t) exp(y(t)− x(t)),

∆x(t) = ln(1 + c1k), t = tk, k ∈ N,
∆y(t) = ln(1 + c2k), t = tk, k ∈ N.

Additionally, assume that a is the logistic growth rate of the prey and in the absence
of predator, a/b is the carrying capacity. φ(t, x, y) is the functional response which
shows the effect of predator on prey. The predator also grow logistically with growth
rate d and carrying capacity x/β proportional to the population size of prey (or
prey abundance). The parameter β is a measure of the food quality that the prey
provides for conversion into predator birth.

This investigation has remarkable importance for further developments of dy-
namical systems in predator-prey problems in theory of time scale calculus. In the
study [14], it should be emphasized that this result only guaranties to find at least
one w-periodic solution under the condition that is given in Theorem 2.6.

In the present study, when the time scale T is taken as R, then one can find
globally asymptotic w-periodic solution of System [14, system (1.1)] which can be
found by performing a small change on the generalized functional response on prey.

Necessary and sufficient conditions for the existence of a permanent solution of
the system is found in the next chapter. Then, in section 4, by applying Theorem
4.1, we give necessary and sufficient condition for the global attractivity of w-
periodic solutions. In chapter 4, theoretical statements are supported by the results
of two numerical examples as an application. The executions in examples are carried
out by Mathlab 9.01 and obtained by a PC pentium (R) 2CPV, 2.00 6 Hz, 2.87 GB
of RUN. As a last, conclusion is given as a final section.
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2. Preliminaries

Definition 2.1 ([18]). Solutions of an w-periodic system generate an w-periodic
semiflow T (t) : X → X (X is the initial value space) in the sense that T (t)x is
continuous in (t, x) ∈ [0,+∞)×X, T (0) = I and T (t+w) = T (t)T (w) for all t > 0.

Definition 2.2 ([17, Defn. 4.2]). The periodic semi-flow T (t) is said to be uni-
formly persistent with respect to (X0, ∂X0) if there exists η > 0 such that for any
x ∈ X0, lim inft→∞ d(T (t)x, ∂X0) ≥ η.

Definition 2.3 ([10]). Let T : Rn → Rn. The map T is point dissipative if there
exists a bounded set B such that, for each x ∈ Rn, there is an integer n0 = n0(x,B)
such that Tn(x) ∈ B for each n ≥ n0.

Lemma 2.4 ([17, Lemma 4.3]). Let S : X → X be a continuous map with S(X0) ⊂
X0 Assume that S is point dissipative, compact and uniformly persistent with respect
to (X0, δX0). Then, there exists a global attractor A0 for S in X0 relative to strongly
bounded sets in X0, and S has coexistence state x0 ∈ A0.

Lemma 2.5 ([17, Lemma 2.2]). There is at least l0 ∈ 1, . . . , l such that βl0 > 0,
then [17, system (2.1)] admits a unique positive w-periodic solution if only if∫ w

0

α(t)dt+
q∑
i=1

ln(1 + h1) > 0,

which, moreover, is globally asymptotically stable.

Theorem 2.6 ([14, Theorem 3.1]). Assume that the following conditions hold.
(H1) a(t), b(t), d(t) and β(t) are non-negative w-periodic rd-continuous real func-

tions and â > 0, d̂ > 0;
(H2) The functional response φ : T × R + ×R+ → R+ is rd-continuous and w-

periodic with respect to t, φ(t, 0, y) = 0 for any t ∈ T, y ≥ 0. In addition,
there exist m ∈ N and w-periodic rd-continuous functions ai : T → R+,
i = 0, . . . ,m such that

φ(t, x, y) ≤ a0(t)xm + + m1(t)x,

for t ∈ T, x ≥ 0, y ≥ 0.
Then, [14, system (1.1)] has at least one w-periodic solution if and only if

âw +
p∑
k=1

ln(1 + c1k) > 0,

d̂w +
p∑
k=1

ln(1 + c2k) > 0.

Theorem 2.7 ([12, Theorem 1.6.1]). Assume that
(i) m ∈ PC[R+,R] with points of discontinuity at t = tk and t̄k, m(t) is left

continuous at t = tk for k = 1, 2, . . . .

D+m(t) ≤ g(t,m(t)), t /∈ [tk, t̄k]

m(t̄+k ) ≤ Gk(m(tk)),

m(t0 ≤ u0,

where g ∈ C[R+ × R,R], Gk ∈ C[R,R] and Gk(u) is non-decreasing in u;
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(ii) r(t, t0, u0) is the maximal solution of [12, system (1.6.1)] existing on J where

J = [t0,∞)\ ∪∞k=1 (tk, t̄k],

Then m(t) ≤ r(t, t0, u0) on J .

Theorem 2.8 ([12, Theorem 2.2.1]). Assume that f ∈ C[R0,Rn], g ∈ C[[t0, t0 +
a]× [0, 2b],R+] and for (t, x), (t, y) ∈ R0,

|f(t, x)− f(t, y)| ≤ g(t, |x− y|)

where R0 = [(t, x) : t0 ≤ t ≤ t0 + a and |x− x0 ≤ b]. Suppose further that for any
t0 ≤ t∗ < t0 + a, the IVP

u′ = g(t, u), u(t∗) = 0,
has the unique solution u(t) = 0 on [t∗, t0 + a]. Then problem [12, system (2.2.1)]
possesses at most one solution on [t0, t0 + a].

3. Necessary and sufficient condition for the permanence of the
semi-ratio dependent predator-prey dynamic system

We consider [14, system (1.1)] in the case T = R. The following system [14,
system (1.3)] is obtained under the same conditions in (3.1) except the condition
over φ where φ is the generalized functional response on the prey:

x′(t) = a(t)x(t)− b(t)x2(t)− φ(t, x(t), y(t))y(t),

y′(t) = y(t)[d(t)− β(t)y(t)
x(t)

],

∆x(t) = c1kx(t), t = tk, k ∈ N,
∆y(t) = c2ky(t), t = tk, k ∈ N.

(3.1)

In [14], φ(t, x, y) ≤ α0(t)xm + · · ·+ αm−2(t)x2 + αm−1(t)x in the present study
it is taken as follows:

φ(t, x, y) ≤ α0(t)xm + · · ·+ αm−2(t)x2. (3.2)

In system (3.1), all of the coefficient a(t), b(t), d(t), β(t) and α0(t), . . . ., αm−2(t)
are positive, continuous and w-periodic.

Theorem 3.1. System (3.1) has permanent solution if and only if∫ w

0

a(t)dt+
p∑
k1

ln(1 + c1k) > 0, (3.3)

∫ w

0

d(t)dt+
p∑
k1

ln(1 + c2k) > 0. (3.4)

Proof. First of all, it is obvious that

x′(t) ≤ a(t)x(t)− b(t)x2(t),

∆x(t) = c1kx(t), t = tk, k ∈ N.

The following equalities are considered:

u′(t) = a(t)u(t)− b(t)u2(t),

∆x(t) = c1ku(t), t = tk, k ∈ N.
(3.5)
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If Theorem 2.7 which is the comparison theorem for impulsive differential equations
from [12] is used, then, x(t) ≤ u(t) is found. System (3.5) has unique globally
asymptotically stable w-periodic solution by Lemma 2.5. Therefore, for sufficiently
large t,

x(t) ≤ u(t) ≤ ū(t) + 1,
where ū(t) is the unique globally attractive or globally asymptotically stable w-
periodic solution of System (3.5). This shows that the solution of the prey is
bounded from above. Therefore, let us say that x(t) ≤M1.

Since x(t) is bounded from above, we can obtain the following:

y′(t) ≤ y(t)
[
d(t)− β(t)y(t)

M1

]
,

∆y(t) = c2ky(t), t = tk, k ∈ N.
Then, we consider the system

v′(t) = v(t)
[
d(t)− β(t)v(t)

M1

]
,

∆v(t) = c2kv(t), t = tk, k ∈ N.
(3.6)

From Theorem 2.7, y(t) ≤ v(t) is obtained. Again from Lemma 2.5, system (3.6) has
a unique globally attractive or globally asymptotically stable w-periodic solution.
Let us denote this solution as v̄(t). Therefore, for sufficiently large t, y(t) ≤ v(t) ≤
v̄(t) + 1. Hence, the solution of the predator is also bounded from above and let us
take y(t) ≤M2.

By using the condition on the functional response φ and boundedness of y(t)
from below, we obtain

x′(t) ≥ a(t)x(t)− b(t)x2(t)−
[
α0(t)xm(t) + · · ·+ αm−2(t)x2(t)

]
M2,

∆x(t) = c1kx(t), t = tk, k ∈ N.
We can write the above system as

x′(t) ≥ x(t)
[
a(t)−

m−1∑
i=1

bi(t)xi(t)
]
,

∆x(t) = c1kx(t), t = tk, k ∈ N.

Here b1(t) = M2αm−2(t)+b(t), b2(t) = M2αm−1(t), . . . , bm−1(t) = M2α0(t). Then,
we consider

u1
′(t) = u1[a(t)−

m−1∑
i=1

bi(t)u1
i(t)],

∆u1(t) = c1ku1(t), t = tk, k ∈ N.
(3.7)

where b1(t) = M2αm−2(t) + b(t), b2(t) = M2αm−1(t), . . . , bm−1(t) = M2α0(t).
By the comparison theorem for impulsive differential equations x(t) ≥ u1(t) and

from Lemma 2.5, this system has unique globally attractive or globally asymptoti-
cally stable w-periodic solution. Let us say this solution ū1(t). Then, for sufficiently
large t, x(t) ≥ u1(t) ≥ ū1(t)− 1, which shows solution of the prey is bounded from
below and denote it as x(t) ≥ m1.

By using the boundedness of the solutions of prey from below, we obtain

y′(t) ≥ y(t)
[
d(t)− β(t)y(t)

m1

]
,
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∆y(t) = c2ky(t), t = tk, k ∈ N.

Then, we consider the system

v1
′(t) = v1(t)

[
d(t)− β(t)v1(t)

m1

]
,

∆v1(t) = c2kv1(t), t = tk, k ∈ N.
(3.8)

From Theorem 2.7, y(t) ≥ v1(t) is obtained. From Lemma 2.5, System (3.6) has
a unique globally asymptotically stable w-periodic solution. Let us denote this
solution as v̄1(t). Then, for sufficiently large t, y(t) ≥ v1(t) ≥ v̄1(t)− 1. Thus, the
solution of the predator is also bounded from below. By taking y(t) ≥ m2, it is
shown that solution of System (3.1) is bounded from both above and below. �

4. Necessary and sufficient condition for globally attractivity of
the w-periodic solution

Theorem 4.1. Assume System (3.1) satisfies (3.3) and (3.4). Then the w-periodic
solution of the system is globally asymptotically stable.

Proof. We apply Lemma 2.4. Let us consider the ordinary differential equation

z′(t) = F (t, z(t)),

z(t+k )− z(tk) = Ik(z(tk)),

z(0) = φ.

(4.1)

Here, F ∈ C([0,∞) × R2,R2), φ ∈ R2, F (t + w, u) = F (t, u), Ik ∈ C(R2,R2) and
there exists an integer q such that Ik+q = Ik, tk+q = tk + w. Then, the operator
that solves system (4.1) can be written as

T̂ (t)z = ze−λt +
∫ t

0

e−λ(t−s)[F (s, T̂ (s)z) + λT̂ (s)z]ds+
∑

0<tk<t

e−λ(t−tk)Ik(T̂ (tk)z).

In the above equation λ is a positive constant. It is obvious that T (0) = I. Also,
we can verify that the equation

u(s) =

{
T (s)z, 0 ≤ s ≤ w,
T (s− w)T (w)z, w ≤ s ≤ t+ w,

where s ∈ [0, t+ w] is the solution of System (4.1) with the initial value u(0) = z.
By using Theorem 2.8 which is the uniqueness theorem, System (4.1) has a unique
solution, therefore T (t + w)z = u(t + w) = T (t)T (w)z. This is true when t 6= tk.
For t = tk,

T (t+k + w)z = T (tk + w)z + Ik(T (tk + w)z)

= T (tk)T (w)z + Ik(T (tk)T (w)z) = T (t+k )T (w)z.

To apply Lemma 2.4, let S = T (w), S2 = SoS = T (w)oT (w) = T (2w). Here
System (4.1) is a periodic system, therefore, we can apply Arzela-Ascoli theorem for
impulsive differential equations. By this way, it is obtained that T (t) is a compact
operator.

If we take X+
i = {zi : zi ∈ R, zi ≥ 0} for i = 1, 2 and X+

i0
= {zi : zi ∈ R, zi > 0}

for i = 1, 2, then X = X+
1 ×X

+
2 , X = X+

10
×X+

20
and δX0 = X/X0. When system

(3.1) satisfies inequalities (3.3) and (3.4), the system becomes permanent system
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from Theorem 3.1. Therefore, S satisfies the conditions of Lemma 2.4. Therefore,
S admits a global attractor which means the system has globally asymptotically
stable w-periodic solution. Similar proof was also made in [15]. �

Corollary 4.2. For system (3.1), there exist globally attractive w-periodic solution
if and only if inequalities (3.3) and (3.4) are satisfied.

5. Application

The system in the following examples are written appropriate to [14, system
(1.01)] which is equivalent to system (3.1) in that study and [14, system (1.3)].

Example 5.1. As a first example, the following system is considered for testing the
permanence and periodicity of the solutions to support the theoretical statement
in [14, Theorem 3.1] and Theorem 3.1 in the previous sections.

x′ = (0.2 sin(2πt) + 0.3)− (0.2 sin(2πt) + 0.2) exp(x)

− (0.1 + 0.1 cos(2πt)) exp(2x)
(0.5 sin(2πt) + 0.7) + (1 + 0.5 cos(2πt)) exp(x) + exp(y)

exp(y − x), t 6= tk

y′(t) = (0.3sin(2πt) + 1)− (4 cos(2πt) + 6.5)
(1 + 0.5 cos(2πt)

exp(y − x), t 6= tk

∆x(tk) = ln(1 + c1k)

∆y(tk) = ln(1 + c2k)

Impulse points: t1 = 2k + 1/4, t2 = 2k + 3/4 and p = 2.

c11 = e−0.01 − 1, c12 = e−0.01 − 1, c21 = e0.1 − 1, c22 = e0.1 − 1 .

It is clear that φ(x, y, t) = (0.1+0.1 cos(2πt))x2

(0.5 sin(2πt)+0.7)+(1+0.5 cos(2πt))x+y . φ(x, y, t) should sat-
isfy inequality (3.2) and with some simple calculations, we obtain that φ(x, y, t) ≤
(0.1 + 0.1cos(2πt))x2. Therefore the conditions of System (3.1) is satisfied by this
example.

Now, another important point is to observe that the permanent and w-periodic
solution of the system in Example 5.1 numerically satisfies the theoretical results in
Theorem 4.1; in other words, this solution satisfies the global attractivity property.
To show that the solution of the system in Example 5.1 satisfies this condition, we
should change the initial conditions. In Figure 2, although we change the initial
conditions of the same system, still we obtain the same solution after sufficiently
large t which means the result of Theorem 4.1 is numerically satisfied.

In the following figure, since Example 5.1 satisfies the condition of Corollary 4.2,
we would like to show that the solutions of the same system with different initial
conditions have the same solutions after a while and we try to show this numerically
by the displacement of the Figure 1 and 2 and another plot with same system and
different initial conditions in a single figure.

Example 5.2. As a second example, we consider the following one to observe that
although the periodicity of the system is changed, still the results of the Theorems
2.6 and 3.1 is numerically satisfied.

x′ = 0.5− (0.3 cos(t) + 0.6) exp(x)

− (0.15 + 0.5 sin(t)) exp(2x)
0.4 + (1.3 + 0.5 sin(t)) exp(x) + 0.9 exp(y)

exp(y − x), t 6= tk,
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Figure 1. Solution when x(0) = 0.4 and y(0) = 0.3.
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Figure 2. Solution when x(0) = 0.9 and y(0) = 0.75.

y′(t) = 1.1− 4.5
(1.3 + 0.5 sin(t)

exp(y − x), t 6= tk,

∆x(tk) = ln(1 + c1k),

∆y(tk) = ln(1 + c2k).
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Figure 3. Solution when x(0) = 0.4, y(0) = 0.3; x(0) = 0.9,
y(0) = 0.75; x(0) = 1.5, y(0) = 1.75. Blue, black, green lines
expresses the solution y(t); black, blue, red lines expresses respec-
tively the solution x(t); red, green, black lines expresses respec-
tively the solution e(y); green, red, blue lines expresses respectively
the solution e(x).

Impulse points: t1 = 2k + 1/4, t2 = 2k + 3/4 and p = 2.

c11 = e−0.03 − 1, c12 = e−0.03 − 1, c21 = e0.15 − 1, c22 = e0.15 − 1 .

It is clear that φ(x, y, t) = (0.15+0.5 sin(t))x2

0.4+(1.3+0.5 sin(t))x+0.9y . φ(x, y, t) should satisfy inequal-
ity (3.2) and with some simple calculations, we obtain that φ(x, y, t) ≤ (0.15 +
0.5 sin(t)/0.4)x2. Therefore the conditions of System (3.1) is satisfied by this ex-
ample.

Here, we should make the observation about the global attractivity of the per-
manent and w-periodic solutions of the system in Example 5.2. In other words,
we can obtain that the theoretical results in Theorem 4.1 is numerically satisfied
by the Figure 5. To show that the solution of the system in Example 5.2 is glob-
ally attractive, we should change the initial conditions. Now, although we change
the initial conditions of the same system, still we obtain the same solution after
sufficiently large t which means the result of Theorem 4.1 is numerically satisfied.

In the following figure, since Example 5.2 satisfies the condition of Corollary
4.2, we would like to show that the solutions of the same system with different
initial conditions have the same solutions after a while and we try to show this
numerically by the displacement of the Figure 5 and two other plots with same
system and different initial conditions in a single figure.
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Figure 4. Solution when x(0) = 0.3 and y(0) = 0.4.
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Figure 5. Solution when x(0) = 0.5 and y(0) = 0.6.

6. Conclusion

In this study, two important things are achieved. The first one is to find a
necessary and sufficient condition for the permanent solution of the predator-prey
system with generalized semi-ratio type functional response for the continuous case.
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Figure 6. Solution when x(0) = 0.5, y(0) = 0.6; x(0) = 1.2,
y(0) = 0.9; x(0) = 5, y(0) = 4. Blue, red and pink lines expresses
respectively the solution y(t); red, blue, green lines expresses the
solution x(t); pink, black, blue lines expresses the solution e(y) for
the system; black, pink, red lines expresses the solution e(x) for the
system.

The second significant achievement is to be able to find a necessary and sufficient
condition for the globally attractive periodic solution of the same predator-prey
model.

More concretely, the contribution of our study to [14] and literature is to be able
to shown that when φ(t, x, y) ≤ α0(t)xm+· · ·+αm−2(t)x2 and T = R, then, System
(3.1) has globally attractive w-periodic solution if and only if the inequalities (3.3)
and (3.4) are satisfied. Also, it is shown that this significant result is supported by
the numerical examples.

The suggested problem for the future works is to find the necessary and sufficient
condition for the globally attractive periodic solution of the discrete predator-prey
dynamic systems. To obtain the globally attractive periodic solution of the con-
tinuous system, semi-group theory has been used. For the discrete case, it should
be investigated how one can obtain the result that is related with the global at-
tractivity of the system. Necessary and sufficient condition for the permanent and
periodic solution of the considered system can be found by the help of time scale
calculus in the discrete case of the considered system. However, the question that
is about to find a necessary and sufficient condition for the global attractivity of
the system still does not have satisfactory answer.
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