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OPTIMAL MANAGEMENT AND SPATIAL PATTERNS IN A
DISTRIBUTED SHALLOW LAKE MODEL

DIETER GRASS, HANNES UECKER

Abstract. We present a numerical framework to treat infinite time horizon
spatially distributed optimal control problems via the associated canonical

system derived by Pontryagin’s maximum principle. The basic idea is to con-

sider the canonical system in two steps. First we perform a bifurcation anal-
ysis of canonical steady states using the continuation and bifurcation package

pde2path, yielding a number of so called flat and patterned canonical steady

states. In a second step we link pde2path to the two point boundary value
problem solver TOM to study time dependent canonical paths to steady states

having the so called saddle point property. As an example we consider a shal-

low lake model with diffusion.

1. Introduction

Many intertemporal optimization problems in applied science, specifically eco-
nomics, are described by optimal control (OC) problems with an infinite time hori-
zon where the state dynamics are given by some ordinary differential equation
(ODE) [10, 12, 19]. One central method of solution of such OC problems is Pon-
tryagin’s maximum principle [30], where the so called canonical system, consisting
of the state ODE and an associated adjoint ODE for the co–states, is derived as
a necessary optimality condition, and where for the infinite horizon case a crucial
point are the so called limiting transversality conditions for t→∞ [4, 5, 36].

For optimal control problems with the states fulfilling a partial differential equa-
tion (PDE), the theory is well developed in the stationary case, or for evolutionary
problems over finite time horizons [0, T ], where some conditions at the final time T
need to be imposed. See, e.g., [31, 32, 37], or [1, Chapter 5], and §2.2 for further ref-
erences. However, a strict mathematical proof of Pontryagin’s maximum principle
in the PDE setting over an infinite time horizon is still missing. Nevertheless, in [9]
this approach has been transfered to OC problems involving diffusion, and after the
formal derivation of the canonical systems for some example problems the authors
show the remarkable result that under certain conditions on the Hamiltonian there
occurs a Turing like bifurcation from flat to patterned steady states of the canonical
system, and call this phenomenon optimal diffusion-induced instability.

Here we present a numerical framework to (a) study such bifurcations of canon-
ical steady states numerically in a simple way, and (b) study their optimality by
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computing and evaluating time-dependent canonical paths to such canonical steady
states. As a model problem we consider one of the three examples presented in [9],
namely a version of the, in the field of ecological economics, well-known shallow
lake optimal control (SLOC) model, cf. [33, 26, 11].

We use the acronyms FCSS and PCSS for flat and patterned canonical steady
states, respectively. The SLOC model has up to three (branches of) FCSS in
relevant parameter regimes, and in these regimes we also find a large number of
(branches of) PCSS. In this situation of multiple canonical steady states a local sta-
bility analysis at a given canonical steady state is in general not sufficient to discuss
their optimality. Here, local stability analysis means that the stationary canonical
system is analyzed, analogous to a steady-state analysis of the canonical system in
the ODE setting. It is well known and shown for many models that the appearance
of multiple canonical steady states (even if these steady-states are saddle-points)
does not necessarily imply the appearance of multiple steady-states in the optimal
system, cf. [19, 21]. The reason is that there can exist non–constant extremal so-
lutions, i.e. canonical paths connecting the state values of a given canonical steady
state to some other canonical steady state, and yielding a higher objective value.
Therefore, to study whether a canonical steady state is optimal, the values of canon-
ical paths also have to be considered.

Here we numerically compute the bifurcation behavior of FCSS and PCSS for the
diffusive SLOC model in some detail, and study their optimality by evaluation of
their objective values J and comparison to time-dependent canonical paths. Such
a global analysis is inevitable and has to accompany the local stability analysis.
Since in general the pertinent ODEs or PDEs cannot be solved analytically we
have to use numerical methods for the calculation of FCSS and in particular PCSS,
and for the calculation of canonical paths. For the steady state problem we use
the continuation and bifurcation software pde2path [41], based on a spatial finite
element method discretization, which we then combine with the boundary value
problem (BVP) solver TOM to obtain canonical paths.

A standard reference on ecological economics or “Bioeconomics” is [12], which
also contains a very readable account, and applications, of Pontryagin’s maximum
principle in the context of ODE models, while [19] focuses more on socio–economical
ODE model applications. Besides in [9], and in [7], PDE models roughly similar to
our diffusive SLOC model are considered in, e.g., [22, 1, 13, 2, 3], partly including
numerical simulations. However, these works are in a finite time horizon setting,
and with control constraints, which altogether gives a rather different setting from
the one considered here. See Remark 2.2 for further comments.

In §2 we present the SLOC model. To give some background, in §2.1 we briefly
present the 0D (ODE) version, and some basic concepts of optimal control, in
particular Pontryagin’s maximum principle. In §2.2 we turn to the distributed case
and explain the associated canonical system. In §3 we explain the numerics to first
compute the bifurcation diagram of canonical steady states, and then find canonical
paths. We mostly focus on one spatial dimension (1D), but also give a short outlook
on the 2D case. It turns out that in the parameter regimes studied here the PCSS
are not optimal, but nevertheless they play a relevant role. Moreover, calculating
optimal canonical paths to FCSS yields interesting and to some extent counter–
intuitive information about the optimal control of the distributed SLOC model.
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In §4 we close with a short summary and discussion, and the Appendix contains
remarks about the saddle point property for canonical steady state in a PDE setting,
starting on the discretized level.

Our software, including demo files and a manual to run some of the simulations
in this paper, can be downloaded at [40]. In fact, the present paper is the first in a
series of four related works, the other three being [38, 18, 39]: [38] contains a Quick-
start guide and implementation details of the add on package p2poc to pde2path
used for the computations in this paper. Thus, the reader interested in these de-
tails should read (parts of) [38] in parallel. Next, [18] explains the usage of OCMat
to study 1D distributed OC problems based on spatial finite difference approxi-
mations, with the same SLOC model as in the present paper as an example, and
thus obtaining comparable results, but also studying a second parameter regime.
Finally, in [39] we apply p2poc to an OC problem for a reaction–diffusion sys-
tem modeling a vegetation-water-harvesting interaction. In contrast to the SLOC
model studied here, this yields dominant patterned optimal steady states in wide
parameter regimes, and thus interesting new results on spatial patterns in optimal
harvesting.

2. Model and background from optimal control

2.1. Shallow lake model without diffusion. A well known non–distributed or
0D version of the SLOC model, see e.g. [42], can be formulated in dimensionless
form as

V (P0) := max
k(·)≥0

J(P0, k(·)), (2.1a)

J(P0, k(·)) :=
∫ ∞

0

e−rtJc(P (t), k(t)) dt, (2.1b)

where
Jc(P, k) = ln k − γP 2 (2.1c)

is the current value objective function, and P satisfies the ODE initial value problem

Ṗ (t) = k(t)− bP (t) +
P (t)2

1 + P (t)2
, P (0) = P0 ≥ 0. (2.1d)

Here r, γ, b > 0 are parameters, P = P (t) is the phosphorus contamination of the
lake, which we want to keep low for ecological reasons, and k = k(t) is the phosphate
load, for instance from fertilizers used by farmers, which farmers want high for
economic reasons. The objective function consists of the concave increasing function
ln k, and the concave decreasing function −γP 2; b is the phosphorus degradation
rate in the lake, and r is the discount rate. The discounted time integral in (2.1b) is
typical for economic (or socio-political) problems, where “profits now” weight more
than mid or far future profits. More specifically, r often corresponds to a long-term
investment rate. Following [42] we focus on the parameter choice

r = 0.03, γ = 0.5, b ∈ (0.5, 0.8) (primary bifurcation parameter), (2.2)

which is mainly motivated by the fact that in this regime the model has so called
Skiba points, see §3.3.2. The max in (2.1b) runs over all admissible controls k and
(associated) states P ; for k we can take the space C0

b ([0,∞), [0,∞)), and for P the
space C1

b ([0,∞),R). In fact, we naturally have k(t) > 0 for all t as Jc(k, P )→ −∞
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as k ↘ 0 and the equilibrium P̂ = k̂ = 0 is not optimal, cf. [42]. Thus, one can
choose some ε > 0 and restrict the admissible controls to satisfy k(t) ≥ ε.

By Pontryagin’s maximum principle [30], see also [19], an optimal solution
(P ∗(·), k∗(·)) has to satisfy the first order optimality conditions

k∗(t) = argmaxkH(P (t), k, q(t), q0) for almost all t ≥ 0, (2.3a)

with the local current value Hamiltonian function

H(P, k, q, q0) := q0Jc(P, k) + q

(
k − bP +

P 2

1 + P 2

)
. (2.3b)

The state P (·) and costate q(·) paths are solutions of the canonical system

Ṗ (t) = ∂qH(P (t), k∗(t), q(t)) = k∗(t)− bP (t) +
P (t)2

1 + P (t)2
, (2.4a)

q̇(t) = rq(t)− ∂PH(P (t), k∗(t), q(t))

= 2γP (t) + q(t)
(
r + b− 2P (t)

(1 + P (t)2)2

)
,

(2.4b)

with P (0) = P0 > 0, additionally satisfying the transversality condition

lim
t→∞

e−rtP (t)q(t) = 0. (2.5)

It can be proved that the problem is normal, i.e. q0 > 0, and hence w.l.o.g. q0 = 1
can be assumed and is therefore subsequently omitted.

A solution (P (·), q(·)) of the canonical system (2.4) is called a canonical path,
and a steady state of (2.4) is called a canonical steady state. Because of the strict
concavity and continuous differentiability of the Hamiltonian function with respect
to the control k, and the absence of control constraints, the solution of (2.3a) is
given by

∂kH(P (t), k(t), q(t)) = 0, (2.6)
which yields k∗(t) = −1/q(t).

Consequently, for (P (·), q(·)) a canonical path, i.e., a solution of the canonical
system, with a slight abuse of notation we also call (P, k) with k = −1/q a canonical
path. In particular, if (P̂ , q̂) is a canonical steady state, so is (P̂ , k̂). Canonical
paths yield candidates for optimal solutions, defined as follows:

Definition 2.1. (P ∗(·), k∗(·, P0)) is called an optimal solution of (2.1a) if for every
admissible k(·) and associated P (·) we have

J(P0, k(·)) ≤ J(P0, k
∗(·, P0)) = V (P0).

Then k∗(·, P0) is called an optimal control, P ∗(·) is called the corresponding optimal
(state) path, and

Ṗ (t) = k∗(t, P0)− bP (t) +
P (t)2

1 + P (t)2
(2.7)

is called the optimal ODE. A constant solution (P ∗(·), k∗(·, P0)) ≡ (P̂ , k̂(P̂ )) of
(2.7) is called an optimal steady state.

It turns out that the long-run behavior of an optimal solution (P ∗(·), k∗(·)) can
be characterized completely, see, e.g., [42]. Each optimal solution converges to an
optimal steady state, and depending on the parameters (2.4) can have I = 1, 2, 3
canonical steady state (P̂ , q̂)i, i = 1, . . . , I. cf., e.g., the FCSS branches in Figure 1
for our specific parameter choice.
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For simplicity omitting the non-generic case I = 2, if I = 1 then the unique
canonical steady state is a globally stable optimal steady state, while for I = 3
two canonical steady state are locally stable optimal steady states, and the third
is unstable. Here, an optimal steady state (P̂ , q̂) is called globally (locally) stable
if for each P (0) (in a neighborhood of P̂ ) the associated optimal path converges to
(P̂ , q̂); see [21, 20] for a detailed discussion.

Setting
u := (P, q),

and letting û be a steady state of (2.4), the problem now is to compute a path, or
“connecting orbit”, with P (0) = P0 and limt→∞ u(t) = û. One standard approach,
see, e.g. [23, 15, 6] and in particular [19, Chapter 7], is to treat (2.4) on a finite
time interval [0, T ] and to require u(T ) ∈ Ws(û), where Ws(û) is the local stable
manifold of û. In practice we approximate Ws(û) by the stable eigenspace Es(û),
and thus require

u(T ) ∈ Es(û) and close to û. (2.8)
To obtain a well defined two point boundary value problem we need dimEs(û) = 1.
We now generalize this to distributed problems, and thus in §3 explain further
details on that level.

2.2. Shallow lake model with diffusion. Following [9] we consider the shallow
lake model with diffusion in a domain Ω ⊂ Rd, d = 1, 2, i.e.,

V (P0(·)) := max
k(·,·)≥0

J(P0(·), k(·, ·)),

J(P0(·), k(·, ·)) :=
∫ ∞

0

e−rtJca(P (t), k(t)) t,
(2.9a)

where
Jca(P (·, t), k(·, t)) =

1
|Ω|

∫
Ω

Jc(P (x, t), k(x, t)) dx (2.9b)

is the spatially averaged current value objective function (with Jc(P, k) = ln k−γP 2

as before), and P fulfills the initial boundary value problem

∂tP (x, t) = k(x, t)− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t), (2.9c)

∂νP (x, t)
∣∣
∂Ω

= 0, P (x, t)
∣∣
t=0

= P0(x), x ∈ Ω ⊂ Rd, (2.9d)

where ∆ = ∂2
x1

+ . . .+ ∂2
xd

, and ν is the outer normal of Ω.
We normalize Jca by the domain size |Ω| for easy comparison between the 0D,

1D, and 2D cases, and, more generally, between different domains. We mostly focus
on Ω = (−L,L) a real interval, but also give an outlook to 2D. In 2D the model
is somewhat less intuitive, as a controlled phosphate dumping in the “middle” of
the lake from farming appears difficult to motivate, and thus in 2D we rather think
of (2.9) as a general pollution model. Instead of the periodic boundary conditions
(BC) in 1D in [9] we require Neumann (zero flux) BC, which from a modeling point
of view we find more reasonable because a body of water with torus geometry is
somewhat unnatural, in particular in 2D.

Introducing the costate q : Ω × (0,∞) → RN and the (local current value)
Hamiltonian

H = H(P, q, k) = Jc(v, k) + q
[
k − bP +

P 2

1 + P 2
+D∆P

]
, (2.10)



6 D. GRASS, H. UECKER EJDE-2017/01

by techniques of optimal control for PDE from [25, 24], typically again called Pon-
tryagin’s maximum principle, one may formally (see Remark 2.2) derive a canonical
system for (2.9), which reads

∂tP (x, t) = [∂qH](x, t) = k(x, t)− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t), (2.11a)

∂tq(x, t) = rq(x, t)− [∂PH](x, t)

= 2γP (x, t) + q(x, t)
(
r + b− 2P (x, t)

(1 + P (x, t)2)2

)
−D∆q(x, t),

(2.11b)

∂νP (x, t)
∣∣
∂Ω

= 0, ∂νq(x, t)
∣∣
∂Ω

= 0, P (x, t)
∣∣
t=0

= P0(x), x ∈ Ω, (2.11c)

where k = argmaxk̃H(P, q, k̃), which similar to (2.6) is obtained from

∂kH(P, q, k) = 0 ⇔ k(x, t) = − 1
q(x, t)

. (2.11d)

The costate q also fulfills zero flux BC, and derivatives like ∂PH etc are taken
variationally, i.e., for

H(t) =
∫

Ω

H(P (x, t), p(x, t), k(x, t)) dx. (2.12)

For instance, for Φ(P, q) := q∆P we have Φ(P, q) =
∫

Ω
q∆P dx =

∫
Ω

(∆q)P dx by
Gauß’ theorem, hence δPΦ(P, q)[h] =

∫
(∆q)hdx, and by the Riesz representation

theorem we identify δPΦ(P, q) and hence ∂PΦ(P, q) with the multiplier ∆q.
Finally, we impose the transversality condition

lim
t→∞

e−rt
∫

Ω

q(x, t)P (x, t) dx = 0, (2.13)

which is needed for going from the Lagrangian (see [8, Appendix])

L(P, q, k) =
∫ ∞

0

e−rt
[ ∫

Ω

Jc(P, k)

− q
(
∂tP −

(
k − bP +

P 2

1 + P 2
+D∆P

))
dx
]

dt

to the Hamiltonian H̃ =
∫∞

0
e−rtH(t) dt, i.e., for integration by parts in t to obtain

−
∫ ∞

0

e−rt
∫

Ω

q(x, t)∂tP (x, t) dx dt

=
∫

Ω

q(x, 0)P (x, 0) dx+
∫ ∞

0

e−rt
∫

Ω

P (x, t)(∂tq(x, t)− rq(x, t)) dx dt.

We now give a definition analogous to Definition 2.1, which however is somewhat ad
hoc, because for instance we refrain from giving function spaces for (P, q), or (P, k),
and hence use “admissible” in a heuristic sense k(x, t) > 0 for all x ∈ Ω, t ∈ [0,∞).
In fact, ultimately we will only consider (2.11) as a system of ODEs after spatial
discretization, see also Remark 2.2.
Heuristic definition Let (P ∗(·, ·), k∗(·, ·, P0)) be an optimal solution of problem
(2.9), i.e. for every admissible k(·, ·) and associated P (·, ·) we have

J(P0, k(·, ·)) ≤ J(P0, k
∗(·, ·, P0)) = V (P0).
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Then k∗(·, ·, P0) is called a (distributed) optimal control, P ∗(·, ·) is called the asso-
ciated distributed optimal (state) path, and

∂tP (x, t) = k∗(x, t, P0(x))− bP (x, t) +
P (x, t)2

1 + P (x, t)2
+D∆P (x, t),

∂νP (x, t)
∣∣
∂Ω

= 0,
(2.14)

is called the optimal PDE. Again with a slight abuse of notation, (P ∗, k∗) is also
called an optimal path, and an optimal stationary solution (P̂ (·), k̂(·)) of (2.11) is
called an optimal steady state. If P̂ (·) ≡ P̂ then the optimal steady state is called
a flat optimal steady state, otherwise it is called a patterned optimal steady state.

For convenience we let u = (P, q), and call solutions u(·, ·) of (2.11) canonical
paths, and steady states û(·) of (2.11) canonical steady states. Moreover, we use
the acronyms FCSS for flat canonical steady states (û(·) ≡ û) and PCSS (patterned
canonical steady state) otherwise. Obviously, the FCSS correspond precisely to the
0D canonical steady state from §2.1. It was already indicated in [9] that (2.11) can
additionally have PCSS arising from Turing like bifurcations. Thus, we first calcu-
late bifurcation diagrams of steady states for (2.11), in 1D and 2D, recovering the
up to 3 branches of FCSS from §2.1, and many branches of PCSS. Next, analogous
to the 0D case, we expect a solution of (2.9) to converge to some canonical steady
state û. Thus, we only consider solutions u(·, ·) of (2.11) with limt→∞ u(·, t) = û(·),
where û(·) is a canonical steady state.

Remark 2.2. (a) As already said in the Introduction, a strict mathematical proof
of Pontryagin’s maximum principle for diffusion problems over infinite time horizons
is still missing, specifically for the transversality condition (2.13), which in the
Appendix of [8] was used to derive (2.11) from L by the above formal variational
argument. Alternatively, one could first discretize (2.9) in space and then for a
given discretization for instance apply the theory from [36] to obtain a spatially
discrete version of (2.11), and the transversality condition in [36, Corollary 4.1].
In the spatially discrete sense this is equivalent to (2.13). The crucial assumption
(A2) from [36] holds for k bounded away from zero, and as in the 0D case in §2.1 we
expect this to hold due to term ln k in the objective function, which in particular
yields that no optimal steady state with k(x) = 0 for some x ∈ Ω exists. Of course,
to obtain a rigorous argument from [36] for the PDE problem (2.9), the constants
in [36] must be controlled uniformly in the discretization, and we refrain from this
analysis here. Thus, at the moment apply Pontryagin’s maximum principle in an
ad hoc sense.

(b) See also [31, 32, 13, 2] and in particular [24, Chapter 4] and [1, Chapter 5]
for Pontryagin’s maximum principle for OC problems for semilinear parabolic state
evolutions. However, these works are in a finite time horizon setting, and often
the objective function is linear in the control and there are control constraints,
e.g., k(x, t) ∈ K with some bounded interval K. Therefore k is not obtained from
the analogue of (2.11d), but rather takes values from ∂K, which is usually called
bang–bang control. In, e.g., [29] and [14], stationary spatial OC problems for a
fishery model with (active) control constraints are considered, including numerical
simulations, which correspond to our calculation of canonical steady states for the
SLOC model. Here we do not (yet) consider explicit control or state constraints,
and have an objective function strictly concave in the control, and thus we have a
rather different setting than the above works.
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(c) We summarize that we do not aim at new theoretical PDE results, but rather
consider (2.11) after a spatial discretization as a (large) ODE problem. Moreover,
we specifically assume, based on the results for the 0D shallow lake model, that
canonical paths converge to canonical steady state s, and therefore make no use of
the “critical” transversality condition (2.13).1 Thus, we first compute a detailed
bifurcation diagram of canonical steady states, and then aim to find orbits connect-
ing general initial states to these steady states. This means that we take a broader
perspective than computing just one (possibly non–unique) optimal control, given
an initial condition P0. Instead, our method aims to give a somewhat global picture
by identifying the pertinent canonical steady states and their respective domains
of attraction.

3. Numerical algorithm and results

The general idea is to use a method of lines discretization of (2.11), i.e., to
approximate

u(x, t) := (P (x, t), q(x, t)) =
2n∑
i=1

ui(t)φi(x), (3.1)

where (φi)i=1,...,2n spans a subspace Xn of the phase space X of (2.11), e.g., here
X = [H1(Ω)]2, and (ui, un+i), i = 1, . . . , n, are the expansion coefficients of P, q,
respectively. This converts (2.11) into a (high dimensional) ODE

u̇(t) = −G(u(t)), ui(0) = u0,i, i = 1, . . . , n, (3.2a)

for the coefficient vector u = (ui)i=1,...,2n, where we have initial data for exactly
half of the expansion coefficients. We choose a truncation time T and augment
(3.2a) with the approximate transversality condition

u(T ) ∈ Es(û), and ‖u(T )− û‖ small, (3.2b)

where û is a steady state of (3.2a), and Es(û) is spanned by the eigenvectors of
−∂uG belonging to eigenvalues with negative real parts. To choose an arbitrary
initial point in the state space we then need

dimEs(û) = dimEu(û), (3.3)

which gives rise to the following definition.

Definition 3.1. A canonical steady state û ∈ R2n with ns := dimEs(û) = n
is called a saddle point canonical steady state. The number d(û) := n − ns is
called the defect of û, and a canonical steady state û with defect d(û) > 0 is called
defective.

In Section 5 we show that always d(û) ≥ 0, explain that d(û) is mesh-independent
for well resolved meshes, and discuss possible extension of the saddle point property
d(û) = 0 to PDEs, which is not straightforward since Es(û) (and Ws(û)) and Eu(û)
(and Wu(û)) are infinite dimensional for the PDE case. Here we first continue with
the discretized system (3.2a). Arguably, the simplest discretization for (3.1), at
least in 1D, is a finite difference scheme, which has the advantage that we can

1As noted in §2.1, for the 0D SLOC problem (2.1a) all canonical paths converge to a steady

state; in particular, (2.4) has no periodic orbits, and this can be proven analytically via Poincaré–

Bendixon, see [42]. For the distributed model (2.11), or its high-dimensional ODE counterpart via
spatial discretization, we cannot rule out periodic orbits a priori, but we found no Hopf bifurcations

in the (numerical) bifurcation analysis in §3.
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directly use OCMat for (3.2a), (3.2b), see [18]. However, here we opt for a finite
element ansatz for (3.1), using the setting of pde2path [41, 16] for two reasons:

(1) We want to consider (2.9) and hence (2.11) also on general 2D domains, and
for more general models where the state variables may be vector valued functions
already, see §4, again in 1D or 2D. In all these cases, finite differences and the
coding of the respective spatially discrete systems may become rather cumbersome,
while pde2path provides convenient interfaces precisely for such systems. Moreover,
for more complicated systems adaptive meshes may become important, which are
more easily handled in a finite element discretization, and are already an integral
part of pde2path. (2) As explained above, the canonical system may have many
stationary states; it is thus desirable to use a continuation and bifurcation package
to find canonical steady state s. The goal then is to “seamlessly” link the setting
of pde2path for stationary problems with boundary value problem (BVP) solvers
for (3.2).

On the other hand, a drawback of spatial finite element discretizations is that
the associated evolutionary problems have the natural form

Mu̇(t) = −Ku(t) +MF (u(t)) =: −G(u(t)), (3.4)

where u corresponds to the nodal values, M,K ∈ R2n×2n are called the mass matrix
and the stiffness matrix, respectively, and F : R2n → R2n is the nonlinearity. The
“-” signs in (3.4) comes from the convention that pde2path discretizes −∆ as K
(positive definite).

The occurrence of M on the left hand side of (3.4) creates problems for the usage
of standard BVP solvers. Thus we modified routines from the BVP solver TOM
[28, 27] to handle M on the left hand side. For speedup it is advisable to avoid
numerical differentiation and hence to pass a Jacobian function ∂uG = fjac(t, u)
to TOM, additionally to the right side G from (3.4). This is generically very easy
as pde2path already provides a fast and easy way to assemble Jacobians. See [38]
for implementation details.

3.1. Computing paths to saddle point canonical steady state s. To cal-
culate canonical paths from a given state P0 that connect to some saddle point
canonical steady state û we want to solve the two-point BVP

Mu̇(t) = −G(u(t)), t ∈ (0, T ), (3.5a)

Pi(0) = P0,i, i = 1, . . . , n, (n left BC), (3.5b)

Ψ(u(T )− û) = 0 ∈ Rn (n right BC), (3.5c)

where Ψ ∈ Rn×2n encodes the projection onto the unstable eigenspace, i.e. Ψ(u −
û) = 0 for u ∈ Es(û), and where T is the chosen truncation time. The calculation
of Ψ at startup, which for large n turns out to be one of the bottlenecks of the
algorithm, also gives a lower bound for the time scale T via T ≥ 1

−<µ1
, where µ1

is the eigenvalue with largest negative real part, i.e., gives the slowest direction of
the stable eigenspace of û. In our simulations we typically use T between 50 and
100.

In general, a BVP solver needs a good initial guess of t 7→ u(t) to solve problem
(3.5). Therefore we embed problem (3.5) into a family of problems replacing (3.5b)
by

P (0) = αP0 + (1− α)P̂ , α ∈ [0, 1], (3.5d)
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where we assume that for some α the solution is known: this holds for instance for
α = 0 with the trivial solution u ≡ û. We may then gradually increase α, using
the last solution as the new initial guess. This is implemented in the algorithm
summarized in Table 1.

There are more sophisticated variants of the simple continuation in Step 2 of
Table 1 (some of which are implemented in tt OCMat), but the simple version in
general works well for the problems we considered. Nevertheless, it may be that no
solution of (3.5a), (3.5c) and (3.5d) is found for α > α0 for some α0 < 1, i.e., that
the continuation to the intended initial point fails. In that case usually the BVP
problem undergoes a fold bifurcation. We then use an adapted continuation step
2′ that allows us to continue solutions around the fold.

Step 0 (selection of û and implementation of (3.5c)). Given û we solve the gen-
eralized adjoint eigenvalue problem ∂uG(û)TΦ = ΛMΦ for the eigen-
values Λ and (adjoint) eigenvectors Φ, which also gives the defect d(û).
If d(û) = 0, then from Φ ∈ C2n×2n we generate a real base of Eu(û)
which we sort into the matrix Ψ ∈ Rn×2n.

Step 1 (selection of initial mesh and initial guess). To start the BVP solver we
choose the initial guess u(t) ≡ û on a suitable initial grid 0 = t0 < t1 <
. . . < tm = T . Typically, we choose m = 20 at startup, and afterwards
TOM uses its own mesh-adaption strategy.

Step 2 (solution and continuation). Using (3.5d) we try to increase α in small
steps δ to α = 1, in each step using the previous solution as the new
initial guess, often trying δ = 1/4. After thus having computed the
first two solutions we may use a secant predictor for the subsequent
steps.

Step 2’ (arclength continuation). If the continuation fails for α > α0 with
α0 < 1, then we use a pseudo–arclength continuation for a modified
BVP, letting α be a free parameter.

Table 1: The continuation–algorithm iscont (Initial State Continuation); Steps
0,1 are preparatory, Step 2 or 2′ is repeated. See [38] for implementation details,
and for remarks on performance.

Remark 3.2. (a) For some applications it is useful to rescale the time t = Tτ
and hence consider Mu̇(τ) = TG(u(τ))) on the normalized time interval τ ∈ [0, 1],
which turns the truncation time T into a free parameter. This is for instance
implemented in OCMat, but for simplicity not used here.

(b) Similarly to the normalized normalized objective value Jca in (2.9b), in the
bifurcation diagrams we use the normalized L2 norm for comparison between dif-
ferent domains and space dimensions, i.e., henceforth, ‖P‖2 := ‖P‖L2/

√
|Ω|, and

in the table in Figure 1 we present averaged values, i.e.,

〈P 〉 :=
1
|Ω|

∫
Ω

P (x) dx, 〈k〉 :=
1
|Ω|

∫
Ω

k(x) dx. (3.6)
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To take the finite truncation time T into account we let

J̃(k(·), T ) := J(P0(·), k(·, ·)) +
e−rT

r
Jca(P (T ), k(T )). (3.7)

Obviously, for T � 1
r

the last term can be made arbitrarily small, while for canon-

ical steady state it yields the exact (discounted) objective value. In the following
we drop the tilde in (3.7), and write, e.g., Jû for the objective value of a canonical
steady state û, and, e.g., JP0→û for the canonical path which connects P0 to û.

3.2. 1D canonical steady states. Recall that first we use tt pde2path to study
the steady state problem for (3.2a), i.e.,

0 = − 1
q(x)

− bP (x) +
P (x)2

1 + P (x)2
+D∆P (x), (3.8a)

0 = 2cP (x) + q(x)
(
r + b− 2P (x)

(1 + P (x)2)2

)
−D∆q(x), (3.8b)

∂νP (x)
∣∣
∂Ω

= 0, ∂νq(x)
∣∣
∂Ω

= 0. (3.8c)

where additionally to (2.2) we choose the diffusion constant D = 0.5 as in [9],
and Ω = (−L,L) in 1D. The steady states of the canonical system for the 0D
model (2.1a) are FCSS of (3.8), and for easy reference we introduce the acronyms
in Table 2. The FCSS are of course independent of the domain, but to search for
PCSS bifurcating from FCSS, the domain size 2L should be close to a multiple of
2π/kc, where kc is the wave number of a Turing like bifurcation. The parameters
in (2.2), with b near 0.7, yield kc ≈ 0.44 [9], and for simplicity we then choose
L = 2π/0.44 ≈ 14.28.

name description
FSM Flat State Muddy, the upper FCSS branch with a high phosphor load P
FSI Flat State Intermediate, the upper half of the second FCSS branch,

intermediate P
FSC Flat State Clean, the lower half of the second FCSS branch, low P

Table 2: Classification of the FCSS branches, see also Figure 1. The high P state
is also called eutrophic, and our “muddy” refers to the fact that under eutrophic
conditions there are a lot of algae and other organic matter in the lake, while the
low P regime is called oligotrophic conditions, and typically gives much “cleaner”
water.

Continuing the FSI branch in b we find a number of Turing like bifurcations to
PCSS, and follow four of these; see Figure 1a,b for the bifurcation diagram (s),
and (c) for example solutions. The notation, e.g., p1/pt16 follows the pde2path
scheme, e.g.: continuation step 16 on the branch p1 is stored in folder p1 and file
pt16.mat.

On the branches p1, p2, and p3 there are secondary bifurcations, not further
considered here. For the subsequent examples we focus on b = 0.75 and b = 0.65,
compute the defects d(û) for all canonical steady state, and find d(û) = 0 only for
the FSM, for the FSC, and for some points on the p1 branch, e.g. at point 71
between the folds (see Figure 1).
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(a) bifurcation diagram,
(normalized) L2 norm
over b

(b) current values
Jc,a over b

(c) sample canonical
steady state s

(d) Characteristics of points in (a)-(c).
name 〈P 〉 〈k〉 J d name 〈P 〉 〈k〉 J d
FSM/pt20 1.22 0.32 -63.11 0 p1/pt16 0.61 0.14 -74.83 1
FSM/pt11 1.44 0.26 -79.28 0 p1/pt71 1.24 0.22 -78.93 0
FSI/pt36 0.87 0.13 -79.47 5 p2/pt16 0.76 0.15 -76.70 2
FSC/pt12 0.45 0.12 -72.95 0 p3/pt19 1.02 0.17 -79.48 3

Figure 1: Basic bifurcation diagrams (a) and (b), example plots (c), and character-
istic values of selected canonical steady state (d). In (a), the blue and black lines
represent the FCSS, and for instance the red line p1 contains patterned canonical
steady state with one “interface” between high and low P . The numbered points
on all these lines correspond to selected solutions plotted in (c), and character-
ized in (d). The small circles in (a) denote bifurcation points. The values Jca
and J = Jca/r of the canonical steady state are all negative, but this is merely a
question of offset.

3.3. 1D canonical paths. For b = 0.75, the only canonical steady state is the
FSM (FSM/pt20). It has d(û) = 0, we can reach it from an arbitrary initial state
P0, and thus it is a globally stable flat optimal steady state. Therefore, this regime
is not very interesting, and we immediately turn to the case b = 0.65 with multiple
canonical steady state.

For b = 0.65 seven canonical steady state s are marked in Figure 1a, and charac-
terized in the table, where only three are saddle points. These are the FSC (which
has the maximal value among these canonical steady state s), the FSM, and the
PCSS p1/pt71, subsequently denoted as ûPS. Next we numerically analyze which
of these canonical steady state s belong to optimal paths.

3.3.1. PCSS with d(û) > 0. From the analysis of non-distributed optimal control
problems we know that canonical steady state s with d(û) > 0 can nevertheless be
optimal. To illustrate that this is at least not typical in the SLOC model, we first
compare the objective value of some (arbitrary chosen) canonical steady state s, e.g.,
the PCSS ûPS−(·) p3/pt19 with d(û) = 3, with that of the t–dependent canonical
paths ui(·, ·) which connect to ûi(·), i ∈ {FSC,FSM,PS}. For the objective values
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we write JPS− for the canonical steady state, and, e.g., JPS−→FSC for the canonical
path which goes from PPS− to ûFSC. The optimal solution for P0 = P̂−PS has to
satisfy

V (P̂−PS) = max{JPS− , JP̂−PS→FSC, JP̂−PS→FSM, JP̂−PS→PS}. (3.9)

The canonical paths are given in Figure 2a–c, while (d) presents some norms along
the path in (a), which show that and how fast u(t) (including the co–states q)
converges to û. In all cases we find without problems canonical paths to both
FCSS and to the PCSS ; in particular the path to the FSM is rather quick.

For the objective values we find, up to 2 significant digits,

JPS− = −79.48 < JPS−→FSC = −78.24
< JPS−→PS = −78.19 < JPS−→FSM = −77.5.

(3.10)

Thus, the optimal path is the one converging to ûFSM. Repeating these steps
for every PCSS with d(û) > 0 we find that these are always dominated by paths
converging to one of the FCSS. Therefore, only ûFSC, ûFSM and ûPS remain as
candidates for optimal steady state.

Before we turn to determining optimal steady states we briefly discuss the canon-
ical paths in Figure 2. We focus on (a), but similar remarks apply to (b,c) as well.
In (a), the initial P (·, 0) is above the target P̂FSC, so naively we may expect that the
control k should start below the target k̂FSC and slowly increase to k̂FSC. However,
such a control would not be optimal. Instead, k is initially similar to k̂PS− , and in
particular k(·, 0) is large where P0(·) is already large. Only after a short transient
k drops below k̂FSC and then behaves as expected.

At first sight, this startup behavior of k may appear rather counter–intuitive.
However, the reason is that we do not want to drive the system to ûFSC “as quickly
as possible”, which essentially would amount to choosing k “as small as possible” at
startup. Instead, we want to maximize J , and for this it pays off to have, for a short
transient, k large near the maxima of P (·, 0). To illustrate this point, in Figure
2(e) we choose the naive control k(t) ≡ kFSC for all t and numerically integrate the
initial value problem (2.9c). While this does take us to ûFSC, the first observation
is that this needs a rather long time. Secondly, for the value of this solution we
obtain J = −80.1, which is even worse than the starting canonical steady state
with JPS−=− 79.48.

3.3.2. Determining optimal steady states. We return to the question whether one
or more of the saddle point canonical steady state s at b = 0.65 are optimal, and
proceed in three steps. First we search for a canonical path starting at P̂PS and
connecting to ûFSC. In the second step we repeat that for ûFSM, and in the last
step we check if both or only one of the FCSS are optimal. The second step reveals
that the first step is superfluous, but this we do not know a priori.
Paths between P̂PS and ûFSC – a Skiba candidate. Using iscont to get a
canonical path starting at P̂PS and converging to the FSC it turns out that the
continuation (3.5d), i.e.,

Pα(0) := αPPS + (1− α)PFSC, (3.11)

yields a fold around α ≈ 0.6, see the blue curve in Figure 3a), and that no canonical
path connecting P̂PS to ûFSC exists. Instead, multiple solutions that converge to
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(a) canonical path: p3/pt19 to FSC (b) canonical path: p3/pt19 to FSM

(c) canonical path: p3/pt19 to PS (d) diagnost. (a) (e) P naive control

Figure 2: Canonical paths from the (state values of) PCSS nspp p3/pt19 to FSC
(a), FSM (b), and PS (c) at b = 0.65, and typical path diagnostics (d). For
comparison, (e) shows the solution P of the initial value problem (2.9c) with P (0)
as in (a) and the externally chosen control k(t) ≡ kFSC for all t.

ûFSC exist for initial distributions of the form (3.5d) with α ∈ [0.6, 0.71]; two
examples are shown in Figure 3b, and their diagnostics in (c).

Similarly, trying to continue to a path that connects P̂FSC and ûPS yields a fold
(green curve in (a)), and no such path exists. However, the solutions returned
during the continuation process allow us to determine and compare the respective
objective values. This yields that there exists a specific initial distribution PS where
the objective values are equal, given by the intersection of the green and blue curves
in Figure 3a. Thus, from an economic point of view both solutions are equal. This
suggests that PS is a Skiba or indifference threshold point (distribution), well known
from non-distributed optimal control problems, see, e.g., [42, 21]. However, taking
into account also the FSM solution, below we identify PS as only a Skiba candidate.

The paths u starting at PS (red curve) are depicted in Figure 3d: P (·, 0) is the
same for both solutions, but the controls k(·, 0) are different. In any case, to assure
that these solutions are optimal we have to prove that no other dominating solution
exists. Thus in a last step we calculate the objective values of the paths converging
to ûFSM.
From P̂PS to ûFSM. Here the continuation is successful and we find a path con-
necting P̂PS to ûFSM. Comparing the objective values reveals that ûPS is dominated
by this path, see Figure 3e and 3f. Thus, the ûPS is ruled out as an optimal steady
state, and therefore we a posteriori identify PS as only a Skiba candidate as it does
not separate two optimal steady states.
A Skiba manifold between P̂FSM and P̂FSC. It is well known that in 0D the FSC
and FSM are only locally stable with regions of attractions separated by a Skiba
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Figure 3: Canonical paths to various canonical steady state for b = 0.65, and
illustration of some Skiba points; see text for details.

manifold (parametrized by, e.g., b) of homogeneous solutions, [21], see Figure 3g
for our case b = 0.65. Of course, this also yields a homogeneous Skiba distribution
in 1D, see Figure 3h. More generally, we may expect the domains of attraction
of the FSC and the FSM to be separated by a Skiba manifold MS , which in the
continuum limit becomes infinite dimensional.

A continuation process, analogous to the non-distributed case, see [17], could
be used to approximate this manifold MS . However, to find a non homogeneous
example point on that manifold, here we can readily combine Figure 3a and 3e, to
find a Skiba distribution of the form

PSkiba = αP̂FSC + (1− α)P̂PS; (3.12)

see Figure 3i for paths to the FSC and the FSM yielding the same J = −76.3.
Summary for 1D. The picture that emerges is as follows: for b > bfold ≈ 0.727
the FSM as the only canonical steady state is the globally stable optimal steady
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state, while for b < bfold there exist multiple canonical steady state. Specifically for
b = 0.65, ûFSC, ûFSM and one of the PCSS are saddle points, but only ûFSC and
ûFSM are optimal, and in particular no patterned optimal steady state s exist. The
flat optimal steady state s FSC and FSM are separated by a (presumably rather
complicated) Skiba manifold MS , and Figure 3h and 3i show just two examples of
points on MS .

3.4. Outlook: 2D results. As a 2D example we consider (2.11) on the domain
Ω = (−L,L) × (−L/2, L/2), L = 2π/0.44 as before, with a rather coarse mesh of
40 × 20 points, hence approximately 1600 DoF. The FCSS branches are of course
the same as in 1D (or 0D), and again at the end of the FSI branch we find a number
of Turing like bifurcations. In Figure 4(a),(b) we only present the “new” patterned
branches, i.e., those with a genuine x and y dependence.

(a) Two 2D PCSS branches

(b) some example plots

Figure 4: New patterned branches in 2D; (x, y) ∈ (−L,L)× (−L2 ,
L
2 ).

These new bifurcating PCSS have d(û) > 0. As an example for a canonical path,
in Figure 5 we present snapshots from a path from P̂ of the PCSS h2/pt17 to the
FSC, which yields a higher J than the PCSS , i.e.,

J(PCSS) = −77.53 < J(PCSS→ FSC) = −76.23 < J(FSC) = −72.97. (3.13)

Thus, this PCSS is not optimal, and neither is any other one we checked. Using the
methods from §3.2 it is now of course also possible to find points with a genuine
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x and y dependence on the Skiba manifold separating FSC and FSM, but here we
skip this presentation.

Figure 5: Solutions on the canonical path to FSC

The behavior and economic interpretation of the path from the PCSS to FSC
in Figure 5 is rather similar to the convergence to FSC in Figure 2a. After a short
transient the optimal strategy is to give a high phosphate load k where P is below
the limit value P̂FSC (south-west and north-east corners of the domain), but initially
there also is a high k at high P values (north-west and south-east corners).

4. Discussion

We have presented a numerical framework to treat infinite time horizon spatially
distributed optimal control problems. First we derive the canonical PDE systems,
which we then discretize in space and thus approximate by large systems of ODEs.
For these we can resort to the theory and experience with non-distributed optimal
control problems. Thus our results are intrinsically numerical; however, we believe
that they can help to develop the theoretical concepts for distributed optimal control
problems.

From the economic point of view, the computation of canonical paths to the
flat optimal steady state s yields nontrivial and interesting results. Even more
interesting would be locally stable patterned optimal steady state s, but there is
strong evidence that these do not exist for the shallow lake model (2.9), at least in
the parameter regimes we considered so far. See however “Scenario 2” in [18] for
some locally stable patterned optimal steady state s.

On the other hand, in [39] we use our method to study the vegetation system
from [7], and find that patterned optimal steady state s dominate in large parameter
regimes. We believe that the same happens in many other important systems.
Natural candidates, i.e., systems with natural objective functions and controls, are
related vegetation systems as in [34, 43], fishery models as in [29, 17], or “crimo-
taxis” systems as in [35].
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5. Appendix: Saddle point property for PDEs

In this appendix we discuss the saddle point property (Definition 3.1) in a some-
what more general situation, tailored to canonical systems coming from spatial
discretizations of PDEs. Let û = (p̂, q̂) ∈ R2N be a stationary state of a (non–
distributed) canonical system of the form

d
dt

(
p
q

)
= F (p, q) :=

(
f(p, q)

rq −Hp(p, q))

)
, (5.1)

where f = Hq, and let J = DuF (û) be the Jacobian at û. In [19, Thm 7.10] it is
explained that the eigenvalues of J are symmetric around r/2, i.e., that there exist
N complex numbers ξi such that

σ(J) =
{r

2
± ξi : i = 1, . . . , N

}
. (5.2)

In detail, since det(J − ξ) = det(Jr − (ξ − r
2 )) where

Jr := J − r

2
=
(
Hpq − r

2 Hqq

−Hpp −Hpq + r
2

)
, (5.3)

we have that r
2 + ξi ∈ C is an eigenvalue of J if and only if ξi is an eigenvalue of

Jr. But Jr has the structure
(
A B
C −A

)
with symmetric matrices B,C ∈ RN×N ,

and as a consequence the eigenvalues of Jr are ξi = ±
√
ξ̃i, i = 1, . . . , N .

Now we consider the distributed canonical system

∂t

(
p(x, t)
q(x, t)

)
= F (p(x, t), q(x, t)) +

(
D∆p(x, t)
−D∆q(x, t)

)
, (5.4)

where D ∈ RN×N is a diffusion matrix, i.e., positive definite. Let

d
dt
u(t) = G(u(t)), u ∈ R2nN , (5.5)

be the associated spatially discretized system with n spatial points, where u =
(p(x1), . . . , p(xn), q(x1), . . . , q(xn)) ∈ R2nN , and let û ∈ R2nN be a steady state of
(5.5). Then J = DuG(û) has the structure J = −K + Jlocal, where Jlocal has the
block structure

Jlocal =



H1
pq 0 . . . 0 H1

qq 0 . . . 0
0 H2

pq . . . 0 0 H2
qq . . . 0

...
...

. . . . . .
...

...
. . .

...
0 0 . . . Hn

qq 0 0 . . . Hn
qq

−H1
pp 0 . . . 0 r −H1

qp 0 . . . 0
0 −H2

pp . . . 0 0 r −H2
qp . . . 0

...
...

. . . . . .
...

...
. . .

...
0 0 . . . −Hn

pp 0 0 . . . r −Hn
qp


,

composed of local matrices Hj
pq := Hpq(p(xj), q(xj)), Hj

qq, H
j
pp ∈ RN×N , and K =(

L 0
0 −L

)
with L ∈ RnN coming from the discretization of D∆. The notation K

of course reflects the finite element background of the present paper, but the same
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structure
(
L 0
0 −L

)
occurs for any discretization, in any space dimension, and for

any D not necessarily diagonal, i.e., containing cross diffusion.
It follows that again r

2 + ξi is an eigenvalue of J if and only if ξ is an eigenvalue
of Jr := J − r

2 , where Jr has the structure

Jr =
(
A B
C −A

)
,

with symmetric matrices B,C ∈ RnN . Applying [19, Lemma B.2, Lemma B.3] we
obtain the following result.

Theorem 5.1. Let û be a steady state of the spatially discretized distributed system
(5.5), and let J be the associated Jacobian. Then there exist ξi ∈ C, i = 1, . . . , nN ,
such that

σ(J) =
{r

2
± ξi : i = 1, . . . , nN

}
. (5.6)

As a consequence, dimEs(û) ≤ Nn, and the only candidates û for right BC in
(3.5c) are those with d(û) = 0. As a corollary we find a property that, on the
discretized level, is equivalent to d(û) = 0.

Corollary 5.2. Let û ∈ R2nN be an equilibrium of the spatially discretized dis-
tributed system (5.5) and r > 0. Then d(û) = 0 if and only if every eigenvalue ξ of
the Jacobian J(û) satisfies

‖<ξ − r

2
‖ > r

2
. (5.7)

Theorem 5.1 is formulated on the discretized level, and the question is how it
ultimately relates to the PDE. As a first step one can ask: Let a steady state
û ∈ R2nN of (5.5) be an approximation of a PDE steady state (p̂, q̂) ∈ X for
(5.4), with X ⊂ {(p, q) : Ω → R2N} some function space, e.g., X = [H1(Ω)]2N . If
˜̂u ∈ R2ñN is an approximation of (p̂, q̂) on a finer mesh ñ > n, or just a different
mesh, do we have

nN − dimEs(û) = ñN − dimEs(˜̂u) ? (5.8)

Heuristically, if Ec(û) = ∅, i.e., σ(J)∩{Reξ = 0} = ∅, then (5.8) is true, for large
enough n, ñ. Given some û, this can be easily tested numerically, and it is also clear
from an analytical point of view. Refining û to ˜̂u we essentially add high frequency
modes to the mesh. These introduce the same number of additional eigenvalues at
large positive and negative ξ for the linearization J̃ , because JF (p, q) : X → X is
relatively compact with respect to the Laplacian, i.e., w.r.t. (p, q) 7→ (D∆p,−D∆q).
On the other hand, the small eigenvalues µi, |µi| < R for some fixed R, are only
slightly perturbed, i.e., |µi − µ̃i| ≤ C‖û∗ − ˜̂u‖, where û∗ is suitably defined, for
instance by interpolating û to the mesh of ˜̂u. But ‖û∗− ˜̂u‖ → 0 as n, ñ→∞, which
yields a positive answer to (5.8).

To make this rigorous, we need to define appropriate function spaces and study
the approximation properties of the spatial discretization. This is easy, as the
stationary problem for (5.4) can be written as an elliptic system, and hence (p, q)
is arbitrary smooth, but we omit the details here.

Importantly, (5.7) can also be formulated on the PDE level and might there-
fore replace the saddle point property from Definition 3.1 for spatially distributed
models. However, we also postpone an in depth analysis of this to future work.
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