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GLOBAL REGULARITY CRITERIA FOR THE n-DIMENSIONAL
BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

ZUJIN ZHANG

Abstract. We consider the n-dimensional Boussinesq equations with frac-
tional dissipation, and establish a regularity criterion in terms of the velocity

gradient in Besov spaces with negative order.

1. Introduction

In this article, we study the n-dimensional Boussinesq equations with fractional
dissipation,

∂tu + (u · ∇)u + Λ2αu +∇Π = ϑen,

∂tϑ+ (u · ∇)ϑ = 0,
∇ · u = 0,

u(0) = u0, ϑ(0) = ϑ0,

(1.1)

where u : R+×Rn → Rn is the velocity field; ϑ : R+×Rn → R is a scalar function
representing the temperature in the content of thermal convection (see [8]) and the
density in the modeling of geophysical fluids (see [9]); Π is the the fluid pressure;
en is the unit vector in the xn direction; and Λ := (−∆)

1
2 , α ≥ 0 is a real number.

When α = 1, Equation (1.1) reduces to the classical Boussinesq equations, which
are frequently used in the atmospheric sciences and oceanographic turbulence where
rotation and stratification are important (see [8, 9]). If ϑ = 0, then (1.1) becomes
the generalized Navier-Stokes equation, which was first considered by Lions [7],
where he showed the global regularity once α ≥ 1

2 + n
4 . One may refer the reader

to [5, 10] for recent advances. Xiang-Yan [12], Yamazaki [13] and Ye [14] were
able to extend Lions’s result to system (1.1), where there is no diffusion in the ϑ
equation. And it remains an open problem for the global-in-time smooth for (1.1)
with 0 < α < 1

2 + n
4 . The purpose of the present paper is to establish a blow-up

criterion as follows.

Theorem 1.1. Let 0 < α < 1
2 + n

4 , (u0, ϑ0) ∈ Hs(Rn) with s > 1+ n
2 and ∇·u0 = 0.

Assume that (u, ϑ) be the smooth local unique solution pair to (1.1) with initial data
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(u0, ϑ0). If additionally,

∇u ∈ L
2α

2α−γ (0, T ; Ḃ−γ∞,∞(Rn)) (1.2)

for some 0 < γ < 2α, then the solution (u, ϑ) can be extended smoothly beyond T .

Here, Ḃ−γ∞,∞(Rn) is the homogeneous Besov space with negative order, which
contains classical Lebesgue space L

n
γ (Rn), see [1, Chapter 2]. In the proof of

Theorem 1.1 in Section 2, we shall frequently use the following refined Gagliardo-
Nirenberg inequality.

Lemma 1.2 ([1, Theorem 2.42]). Let 2 < q <∞ and γ be a positive real number.
Then a constant C exists such that

‖f‖Lq ≤ C‖f‖
1− 2

q

Ḃ−γ∞,∞
‖f‖2/q

Ḣγ(
q
2−1) . (1.3)

Remark 1.3. Our result extends that of Kozono-Shimada [6]. Indeed, the Navier-
Stokes equations corresponds to (1.1) with ϑ = 0 and α = 1.

Remark 1.4. In [3] (see also the end-point smallness condition in [2]), Geng-Fan
proved a regularity criterion

u ∈ L
2

1−r (0, T ; Ḃ−r∞,∞(R3)) (−1 < r < 1, r 6= 0) (1.4)

for system (1.1) with α = 1 and n = 3. Thus our result generalizes (1.4) also, in
view of the fact that

C1‖∇f‖Ḃ−1−r
∞,∞

≤ ‖f‖Ḃ−r∞,∞ ≤ C2‖∇f‖Ḃ−1−r
∞,∞

.

Moreover, our result (1.2) is valid for (1.1) with arbitrarily large n and arbitrarily
small α.

Interested readers are referred to [11] for blow-up criterion for (1.1) without
diffusion in the u equation.

2. Proof of Theorem 1.1

It is not difficult to prove that there exists a T0 > 0 and a unique smooth solution
(u, ϑ) to (1.1) on [0, T0]. We only need to establish the a priori estimates. There-
fore, in the following calculations, we assume that the solution (u, ϑ) is sufficiently
smooth on [0, T ].

First, taking the inner product of (1.1)1 and (1.1)2 with u, ϑ in L2(Rn) respec-
tively, we obtain

1
2

d
dt
‖(u, ϑ)‖2L2 + ‖Λαu‖2L2 =

∫
Rn
ϑen · u dx ≤ 1

2
‖(u, ϑ)‖2L2 .

Applying Gronwall inequality, we deduce

‖(u, ϑ)‖L∞(0,t;L2(Rn)) + ‖Λαu‖L2(0,t;L2(Rn)) ≤ C. (2.1)
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For k > 0, applying Λk to (1.1)1, and testing the resulting equations by Λku
respectively, we obtain

1
2

d
dt
‖Λku‖2L2 + ‖Λk+αu‖2L2

= −
∫

Rn
Λk[(u · ∇)u] · Λku dx+

∫
Rn
Λk(ϑen) · Λku dx

= −
∫

R3

{
Λk[(u · ∇)u]− (u · ∇)(Λku)

}
· Λku dx+

∫
Rn
Λk(ϑen) · Λku dx

≡ Ik1 + Ik2 .

(2.2)

We may use the following commutator estimates of Kato-Ponce [4]:

‖Λk(fg)− fΛkg‖Lp ≤ C
[
‖∇f‖Lp1‖Λk−1g‖Lp2 + ‖Λkf‖Lp3 ‖g‖Lp4

]
(2.3)

with

1 < p, p2, p3 <∞, 1 ≤ p1, p4 ≤ ∞,
1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

to bound Ik1 as

Ik1 ≤ C‖Λk[(u · ∇)u]− (u · ∇)(Λku)‖
L

4(k+γ+α−1)
2k+3γ+2α−2

‖Λku‖
L

4(k+γ+α−1)
2k+γ+2α−2

≤ C‖∇u‖
L

2(k+γ+α−1)
γ

‖Λku‖
L

4(k+γ+α−1)
2k+γ+2α−2

· ‖Λku‖
L

4(k+γ+α−1)
2k+γ+2α−2

≤ C‖∇u‖
k+α−1
k+γ+α−1

Ḃ−γ∞,∞
‖∇u‖

γ
k+γ+α−1

Ḣk+α−1

(
‖Λku‖

γ
2(k+γ+α−1)

Ḃ
−(k−1+γ)
∞,∞

‖Λku‖
2k+γ+2α−2
2(k+γ+α−1)

Ḣ
γ(k+γ−1)

2k+γ+2α−2

)2

≤ C‖∇u‖
k+α−1
k+γ+α−1

Ḃ−γ∞,∞
‖Λk+αu‖

γ
k+γ+α−1

L2 ‖∇u‖
γ

k+γ+α−1

Ḃ−γ∞,∞
‖Λku‖

2k+γ+2α−2
k+γ+α−1

Ḣ
γ(k+γ−1)

2k+γ+2α−2

≤ C‖∇u‖Ḃ−γ∞,∞‖Λ
k+αu‖

γ
k+γ+α−1

L2

×
(
‖Λku‖

1− γ(k+γ−1)
α(2k+γ+2α−2)

L2 ‖Λk+αu‖
γ(k+γ−1)

α(2k+γ+2α−2)

L2

) 2k+γ+2α−2
k+γ+α−1

≤ C‖∇u‖Ḃ−γ∞,∞‖Λ
ku‖

2α−γ
α

L2 ‖Λk+αu‖
γ
α

L2

≤ C‖∇u‖
2α

2α−γ

Ḃ−γ∞,∞
‖Λku‖2L2 +

1
2
‖Λk+αu‖2L2 .

(2.4)

Substituting (2.4) in (2.2), we find

d
dt
‖Λku‖2L2 + ‖Λk+αu‖2L2 ≤ C‖∇u‖

2α
2α−γ

Ḃ−γ∞,∞
‖Λku‖2L2 + 2Ik2 . (2.5)

Now, we treat 2Ik2 step by step. If 0 < k ≤ α, then

2Ik2 = 2
∫

Rn
ϑen · Λ2ku dx

≤ 2‖ϑ‖L2‖Λ2ku‖L2

≤ C‖ϑ‖L2

(
‖u‖L2 + ‖Λk+αu‖L2

) (
Hk+α(Rn) ⊂ Ḣ2k(Rn)

)
≤ C +

1
2
‖Λk+αu‖2L2 (by (2.1)).

(2.6)

Substituting (2.6) into (2.5), we apply Gronwall inequality to deduce

‖Λk(u, ϑ)‖L∞(0,t;L2(Rn)) + ‖Λk+αu‖L2(0,t;L2(Rn)) ≤ C (0 < k ≤ α). (2.7)
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Suppose we have already the statement for some 0 ≤ l ∈ N,

‖Λk(u, ϑ)‖L∞(0,t;L2(Rn)) +‖Λk+αu‖L2(0,t;L2(Rn)) ≤ C (∀ lα < k ≤ (l+1)α), (2.8)

we wish to deduce higher-order estimate

‖Λk+α(u, ϑ)‖L∞(0,t;L2(Rn)) + ‖Λk+2αu‖L2(0,t;L2(Rn)) ≤ C. (2.9)

Indeed, as long as (2.8) holds, we may dominate 2Ik+α2 as

2Ik+α2 = 2
∫

Rn
Λk+α(ϑen) · Λk+αu dx

= 2
∫

Rn
Λk(ϑen) · Λk+2αu dx

≤ 2‖Λkϑ‖L2‖Λk+2αu‖L2

≤ 2‖Λkϑ‖2L2 +
1
2
‖Λk+2αu‖2L2 .

(2.10)

Putting (2.10) into (2.5) with k replaced by k+α, and using (2.8), we deduce (2.9)
as desired.

Now prove that (2.7) and (2.8) imply (2.9), we see readily that

‖Λsu‖L∞(0,t;L2(Rn)) + ‖Λs+αu‖L2(0,t;L2(Rn)) ≤ C. (2.11)

With this good estimate of the velocity field, we are now in a position to treat that
of ϑ. Applying Λs to (1.1)2, and testing the resultant equation by Λsϑ, we obtain

1
2

d
dt
‖Λsϑ‖2L2

= −
∫

Rn
Λs[(u · ∇)ϑ] · Λsϑ dx

= −
∫

Rn
{Λs[(u · ∇)ϑ]− (u · ∇)Λsϑ} · Λsϑ dx

≤ C
(
‖∇u‖L∞‖Λsϑ‖L2 + ‖∇ϑ‖L∞‖Λsu‖L2

)
‖Λsϑ‖L2 (by (2.3))

≤ C
(
‖u‖L2 + ‖Λsu‖L2

)
‖Λsϑ‖2L2 +

(
‖ϑ‖L2 + ‖Λsϑ‖L2

)
‖Λsu‖L2‖Λsϑ‖L2

(by Hs(Rn) ⊂W 1,∞(Rn))

≤ C + C‖Λsϑ‖2L2 (by (2.1) and (2.11)).

(2.12)

Applying Gronwall inequality, we obtain

‖Λsϑ‖L∞(0,t;L2(Rn)) ≤ C.

With this estimate and (2.11), we complete the proof.
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[5] N. H. Katz, N. Pavlović; A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes

equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355–379.

[6] H. Kozono, Y. Shimada; Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the
Navier-Stokes equations, Math. Nachr., 276 (2004), 63–74.
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