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MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS
WITH FRACTIONAL LAPLACIAN

GUOWEI LIN, XIONGJUN ZHENG

ABSTRACT. This article is devoted to the study of the nonlocal fractional equa-
tion involving critical nonlinearities
(=AY 2y =+ \u|2:~72u in Q,
u=0 on 99,

where € is a smooth bounded domain of RV, N > 2a, a € (0,2), A € (0, A1)

and 2} = 1\?17\’& is critical exponent. We show the existence of at least catq (€2)

nontrivial solutions for this problem.

1. INTRODUCTION
This article concerns the critical elliptic problem with the fractional Laplacian
(=A)*%u = Mu+ [u]*>2u in Q,

1.1
u=0 on 09, (L.1)

where 2 is a smooth bounded domain of RY with N > a, a € (0,2) is fixed and
27, = 2 is the critical Sobolev exponent.

In a bounded domain 2 C R, the operator (—A)*/2 can be defined as in [3} ]
as follows. Let {(Ar, ¢r)}72; be the eigenvalues and corresponding eigenfunctions
of the Laplacian —A in  with zero Dirichlet boundary values on 02 normalized
by ||(p}g||L2(Q) = 1, i.e.

—App =Appr in Q@ =0 on .
We define the space Hy/?(Q) by

H3/2(Q) ={u= Zuk@k € L*(Q): Zui)\k% < oo},
k=1 k=1

which is equipped with the norm

ll o 20y = (D2 udAY)
k=1

N
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For u € HS/Z(Q), the fractional Laplacian (—A)®/? is defined by

o0
(—A)*/2y = Z uk)\zﬂgpk.
k=1

Problem is the Brézis-Nirenberg type problem with the fractional Laplacian.
Brézis and Nirenberg [4] considered the existence of positive solutions for problem
with a = 2. Such a problem involves the critical Sobolev exponent 2* = 28
for N > 3, and it is well known that the Sobolev embedding H}(Q) — L* ()
is not compact even if ) is bounded. Hence, the associated functional of problem
does not satisfy the Palais-Smale condition, and critical point theory cannot
be applied directly to find solutions of the problem. However, it is found in [4] that
the functional satisfies the (PS). condition for ¢ € (0, %S™/2), where S is the best
Sobolev constant and %S N/2 is the least level at which the Palais-Smale condition
fails. So a positive solution can be found if the mountain pass value corresponding
to problem is strictly less than —S™/2,

Problems with the fractional Laplacian have been extensively studied, see for
example [2 B B [6], [7, 9] 10, 12 13] and the references therein. In particular, the
Brézis-Nirenberg type problem was discussed in [I2] for the special case o = %, and
in [2] for the general case, 0 < a < 2, where existence of one positive solution was
proved. To use the idea in [4] to prove the existence of one positive solution for the
fractional Laplacian, the authors in [2, [12] used the following results in [10] (see
also [3]): for any u € H§ (), the solution v € H(},L (Cq) of the problem

—div(y'7*Vv) =0, inCq = Q x (0,00),
v=0, ondrCq =90 x (0,00), (1.2)
v=u, onx{0},

satisfies
ov
— lim koy' % — = (—A)%,
y_>0+ Oly ay ( )
where we use (z,y) = (z1,...,zn,y) € RV*L and

H(:)l,L(CQ) ={we L*(Cq) :w=0on 8LCQ,/ y' TVl dedy < 0o}, (1.3)
Ca

Therefore, the nonlocal problem (1.1]) can be reformulated as the local problem
—div(y'"*Vw) =0, in Cq,
v=0, on J.Cq,

(1.4)
0 .
Jim =5 = fu(w, 0)5 (e, 0) + duz,0), on @ x {0},
where % is the outward normal derivative of 9Cq. Hence, critical points of the
functional
1 1 .
J(w) = 7/ y1*a|Vw|2dx dy — - |w(x,0)|2a dx
2 Je, 2% Jax oy
\ (1.5)

—7/ lw(z, 0)[2 dz
2 Jaxqoy
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defined on Hg ;(Cq) correspond to solutions of (L.4), and the trace u = trw of
w is a solution of (LI)). A critical point of the functional J(u) at the mountain
pass level was found in [2| 12]. On the other hand, it can be shown by using the
Pohozaev type identity that the problem

(—A)O‘/Qu = |[ulP"'u  in Q,
u=0 on 0N

2N

has no nontrivial solution if p+1 > =

and [12].

It is well-known that if Q has a rich topology, with = 2, A = 0 has a
solution, see [Il 8, [14] etc. In this paper, we assume 0 < A < A;, where A; is the
first eigenvalue of the fractional Laplacian (fA)a/ 2. We investigate the existence
of multiple solutions of problem . Let A be a closed subset of a topology space
X. The category of A is the least integer n such that there exist n closed subsets
Ay, ..., Ap of X satistying A =U7_; A; and Ay,..., A, are contractible in X. Our
main result is as follows.

and ) is star-shaped, see for example [3]

Theorem 1.1. If Q is a smooth bounded domain of RN, N > 4,0 < a < 2 and
0 < A < Ay, problem (1.4) has at least catq(2) nontrivial solutions. Equivalently,
(1.1) possesses at least catq(€)) positive solutions.

We say that w € H{ (Cqo) is a solution to (L.4)) if for every function ¢ €
Hj 1(Ca), we have

ka/ y = (Vw, Vo) dr dy = /()\w—i—w%)gﬁdx. (1.6)
Co Q
We will find solutions of J at energy levels below a value related to the best Sobolev

constant S, n, where

. ko fCQ yl—a|vw|2 da dy
w’EH&,LH(lCQ%w#O (fQ |w(z,0)]% dx)Q/@Z) ’

San = (1.7)

which is not achieved in any bounded domain and is indeed achieved in the case
Q = RY™. We know from [2] that the trace u.(z) = w,(z,0) of the family of
minimizers w,e of S, n takes the form

N—«a

€ 2

w(@) = ue(r) = ———=—, (1.8)

(lz[* + €)=

with € > 0. Using this property, we are able to find critical values of J in a right
range.

In section 2, we prove the (PS). condition and the main result is shown in section
3.

2. PALAIS-SMALE CONDITION

In this section, we show that the functional J(w) satisfies (P.S). condition for ¢
in certain interval. By a (PS),. condition for the functional J(w) we mean that a
sequence {wy,} C Hy 1 (Ca) such that J(wy,) — ¢, J'(w,) — 0 contains a convergent
subsequence.
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Define on the space Hj ; (Cq) the functionals
vlw) = [ (W (2,0)% d.
Q

otw) = ko [ o VoPdedy -2 [ fu(e,0)Pd.
Ca Q
We may verify as in [I4] that on the manifold
V ={we Hg 1(Ca) : Y(w) = 1},
' (w) # 0 for every w € V. Hence, the tangent space of V at v is given by
T,V :={w € H} 1 (Cq) : (¢'(v),w) = 0},
and the norm of the derivative of vy (w) at v restricted to V' is defined by

[A@)l« = sup  [{p\(v), w)].
weT,V,||w|=1

It is well known that
[l (w)ll+ = min [} (w) — g’ (w)]].
HER
A critical point v € V' of ¢, is a point such that ||¢} (v)]/« = 0.

Since \; is the first eigenvalue of the fractional Laplacian (—A)®/2, it can be
characterized as

- - ko fcg Yyt =¥ Vw|? dz dy
! weH} ; (Ca),w#0 fQ |w(z,0)|? dz

If 0 < A < A1, we see that
1/2
lwlly = (ka/ yl‘“\Vdexdy—A/ (2,0 dz)
Ca Q

is an equivalent norm on H{ ; (Cq).

Lemma 2.1. Any sequence {v,} C Hy 1 (Ca) such that

(07

N
d:= st:LpJ(vn) <C* = ﬁSa7N,

J'(vn) — 0 in Hy 1 (Co)
contains a convergent subsequence.

Proof. 1t is easy to show from the assumptions that

1
d+1+lvally = J(vn) = 5 (T (vn), vn)

2
1 1 / 1— 2 / 2
=(=— — koy |V, | de dy — A v, |* dz
(= 5)( [, Kav1Venl [ fon? d)
11 )
= (5 = gl

that is, ||vp||1 is bounded. We may assume that
un(z,y) = v(z,y) in Hy 1 (Ca),
Un(7,0) — v(z,0) in L*(Q),

Un(2,0) = v(z,0) a.e. in Q.
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Therefore, for every ¢ € Hé, .(Ca),

(J'(vn), ) = (J'(v),0) =0
v)

as n — 4o00. We also have that J(v) > 0. By Brézis-Lieb’s lemma,

213/9(1)” - v)f’ dx = J(vn) +0(1) = C + o(1).

Since (J'(vy,),vn) — 0, we obtain

1
Tw)+ v — vl
* 27
Jow =0l =2, [ (0 = 0)% do
Q
* 27 27
= Il = ol =22 | (@)% =) do -+ o(1)
— ol +2; [ o do
Q

= —(J'(v),v) = 0.

Hence, there exist a constant b such that
v, —v||? — b, 2 /Q(vn)i“ dx — b, asn— +o0o.
It follows by v, — v in L?(2) that
/ koy' =%V (v, — v)|? dx dy — b.
Ca
The trace inequality

[ ot 190, = 0P dndy = Sov o = )00 o
Q

2 N
implies b > S, nyb?x . Hence, either b =0 or b > S;N.

If b = 0, then v, — v in Hol,L(CQ), and the proof is complete. If b > SEN, we
deduce that

* « a/N
C*=—8§
IN a,N
1 1
—— —)b
<G-g)
1 1
= (5~ go)llvn vl + o)
1 2 1 2
< J@) + gllen = vl = ol — vl +0(1)
1 1 o*
= J0)+ 5llon — ol = o [ (00 =0 +o(1)
2 2% Ja
=C0<d<(C*,
which is a contradiction. O

Alternatively, we have the following result.

Lemma 2.2. Every sequence {w,} € V satisfying ox(w,) — ¢ < Sa.n and
|5 (wn )]« — 0, as n — +oo, contains a convergent subsequence.
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Proof. Since
[0 (wn )l = glel]IR} 105 (wn) — g (w) |,

there exists a sequence {a,,} C R such that ||} (w,) — e’ (wy)|| — 0. It follows
that for every h € H&,L(Cg),

ka/ yl_“anVhdxdy—)\/ wnhdaz—un/(w:)%_lhdxao, (2.1)
Ca Q Q

an2

2 o Choosing h = w, in (2.1) and using the fact Y(wh) =1, we

where p, =
obtain

o) = o = [y Va3 [ = [ (w0,
Ca Q Q

N—a
Whence by ¢y (wy,) — ¢, by — ¢ as n — +o0. Setting vy, := un?* w,, we obtain

1 N-a 1 ~ «
Iwn) = gin™ ([ ka9 wa dody ~ A [ fonfde) - o [ )
2 Cq Q 2a Q
_ 1 e (wy,) N-a x
= QIML O (Wn, IN Un -
Thus,
o N o N
J(Un) — ﬁca < ﬁsa .
In the same way, for every h € Hy 1 (Cqo), by (2.1),
(J'(vn), h)
N—«a *
= [n>* (ka/ Yy = *Vw, Vhdx dy — )\/ wnhfun/(w:)zﬂflhdx) — 0.
Ca Q Q
Now, the assertion follows by Lemma [2.1] O

Let us define
Qx = inf py(w) = inf {ka/ yl‘a|Vw|2da:dy—)\/ lw(z,0)|* dz}.
weV weV Ca Q

Denote by no(t) € C*°(R4) a cut-off function, which is non-increasing and satisfies

1 ifo<et<y
t) = -
o (?) {0 ift> 1.

Assume 0 € €, for fixed p > 0 small enough such that B, C Cq, we define the
function n(z,y) = n,(x,y) = no(@). Then nuw, € Hy (Cq). Tt is standard to

establish the following estimates, see [2] for details.

Lemma 2.3. The family {nw.} C H&L(CQ) and its trace on y = 0 satisfy

lwe]|? = [lwel|* + OV ™), (2.2)
If N > 2aq,
Inwel|Z2 () = Ce® + O ™7), (2.3)
If N = 2q,
(0% 1 (03
Iwel72(q) = Ce*log() + O(e”) (2.4)

for e > 0 small enough and some C > 0.
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Lemma 2.4. Assume N > 2a, 0 < A < A\, then
Qx = inf pa(w) < Sa,nN- (2.5)

Moreover, there exists w € V' such that o (u) = Q.
Proof. We first show that (2.5)) holds if N > 2« and 0 < A < Ay. Since

. N N2N
/ |U/620‘d$:/ ﬁdl’g N GN,
o> 2 {loiz 5y ([21* +€%) P
we have

I 25 d:c>/ o2 i = [ %5, / e | da
/ (11} 2@ Jiazg)
> Jlucl>

2% (Q) + O(E )
By Lemma for N > 2a, we have
ka fcﬂ ylia|v(nwe)‘2 drdy — A fQ |7]ue|2 dx

2
(Jo, Inue|?s dz) =
ka fCQ y17a|VwE‘2 dx dy —\Ce~ + O(GNﬁO‘)

- Huelle* + O(eN)
ACe®
< San — 4OV < S
HUEHLT&(Q)

Similarly, for N = 2«, we find for € small enough such that
ACe* log(L)
||u6||L2g(Q>

Consequently, inequality holds.
Next, we show that @) is achieved if 0 < A < A;. Obviously, @ > 0. Now,

let {w,} C HO .(Ca) be a minimizing sequence of @ > 0 such that w, > 0 and
[lwn, (x, O)HL%(Q) = 1. The boundedness of {w, } implies that

Qx < Sa,N - + O(Ea) < SQVN.

wn(x,y) - w(z,y) in H&,L(Cﬂ)v
wp(2,0) — w(x,0) in L),
wp(2,0) — w(z,0) ae. in
where 1 < ¢ < 2¥. Since
[wn[? = lwn — w* + [Jw]|* + o(1),
by the Brezis-Lieb Lemma,
[wn]* = Allwn (2, 0)[|72 )
= [Jwn — w|* + lw]* = Nwn (2, 0)72q) + o(1)
> S0 (,0) — w(e,0) |2z ) + Qalo(a, 01255 ) + (1)
> (Saur — Q) (,0) — w(z,0)[%5, )+ @allwn(, 0)%, ) + (1)

= (San = @) [wn(,0) — w(z, 0|25, ) + @ + (1),
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Hence, we obtain
o(1) + Qx > (San — Q)|lwn(x,0) — w(z,0)] 7, () T @ Fo(l).

The Son > Qx implies wy,(z,0) — w(x,0) in L% () and |w(z, 0)|l 25 ) = 1.
This yields

Qx < [[wl® = Alw(@, 0)llZ2 () < lm_([[wall® = Allwn(z, 0)[[72(0)) < O

that is, w is a minimizer for Q). O

3. PROOF OF MAIN THEOREM

Taking into account the concentration-compactness principle in [I1], we may
derive the following result, its proof can be found in [2].

Lemma 3.1. Suppose w, — w in Hj;(Ca), and the sequence {y'~*|Vw,|*} is
tight, i.e. for any n > 0 there exists pg > 0 such that for all n,

/ / y Y|V, |2 da dy < 1.
{y>po} /Q

Let u,, = t,w, and u = t,w and let p, v be two non negative measures such that
YUY Vw,|? = and  ug|* — v (3.1)

in the sense of measures as n — oo. Then, there exist an at most countable set I
and points x; € Q with i € I such that

(1) V= \u|2; + Zkejukdmk_, v > 0,
(2) p= y17a|Vuzﬂ|2 + Zrertikbay, pir >0,

(3) mr > Sa v .

On the manifold V', we define the mapping 3: V — RN by
8w i= [ atw*(@.0))%
Q
which has the following properties.

Lemma 3.2. Let {w,} CV be a sequence such that
g o = [ Kot [Tl dody = So
’ Ca

as n — oo, then dist(f(wy),2) — 0, as n — oco.

Proof. Suppose by contradiction that dist(8(w,),Q) 4 0 as n — oco. We may
verify that {w,} is tight. By Lemma[3.1] there exist sequences {y,} and {v;,} such
that

Suy = Jim [l =k [ g OIVuPdedy+ S (32)
— Co
1= tim [ fun|? = / [l d + Spe v (3.3)

By the Sobolev inequality and Lemma from (3.2) we deduce that

2
Sa,N = ||wH§{é,L(CQ) + Xperpih > Sa,N||U||2Lz; ot Se, N (Zrervi) % .
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Hence,
2
lull 2, @ T Crermi)® <1 (3.4)
i i i 2; _
Bauations () and B3 imply either Mierme = 0 or [l o =0,
If Xperve = 0, that is ||u i‘;a (©2) = 1, the lower semi-continuity of norms yields
ko fo, '~ Vw|? dz dy

2
(Jo [uf? da) ==

2 —
Sa,N = ||wHH57L(CQ) =
While by the Sobolev trace inequality,
- ke, ch Yy~ Vw|? dz dy
= 2
(fQ |u|2Cx dr)

it then implies that S, n is achieved, which is a contradiction to the fact that

S,

a7

S..n is not achieved unless Co = Ry M. Thus, Hu||2L‘;E (©) # 1. Consequently,
Yrervry = 1 and u = 0. Furthermore, by the uniqueness of the extension of u, we
have w = 0. Now, it is standard to show that v is concentrated at a single x( of 2.
So we have

B(wy,) — / rdv(z) = z0 € Q,
Q
this is a contradiction. O

Since  is a smooth bounded domain of RY, we choose r > 0 small enough so
that

QF = {z e RY : dist(x,Q)) <7} and Q. = {z € Q:dist(z,09) > r}

are homotopically equivalent to 2. Moreover we assume that the ball B,.(0) C £,
and then Cp, (o) := B,(0) x (0, +00) C Cq. We define

Vor= (e HiplCou0): [ uf(@0)dr=1}c v
CB,(0)

as well as
Qo = inf pa(w).

Denote by ¢7° := {w € V : pr(w) < Qo} the level set below Qo. We may verify as
in Lemma [3.2] that Qo < Sa, -

Lemma 3.3. There exists a \*, 0 < A\* < Ay such that for 0 < A < \*, ifw € cp?o,
then B(w) € Q.

Proof. By Holder’s inequality, for every w € V,
2
[ e 0P do < ([ 0P dr) ol < e,
Q Q
Let A* = Iﬂl%/’v fo<A< A andwe (pgo, we have
w2 < A/ (i, 0)[2 d + Qo < N[N + Sy = Sun + 6.
Q

Therefore, we conclude by Lemma [3.2| that 8(w) € Q. O
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Now, we establish the relation of category between the domain € and the level
Qo
set py°.

Lemma 3.4. If N > 2a and 0 < X\ < A\*, then we have Cat(on ga?o > catq(Q).
A

Proof. Let wy € H&L(CB(O,T)) be a minimizer of Qy. Hence, we may assume that
wo > 0 is cylinder symmetric and [wol ;25 5, (o)) = 1,

Qo = / kayl_a|Vw0\2 dx dy — )\/ \wo(x,0)|2 dx.
Cp,.(0) B(0)

For z € 7, we define v : Q7 — gpgg by

¥(z) = {;"f(m = 2y), (2,9) € Br(2) x (0,+00),

Since wo(x, 0) is a radial function,

Bor(z) = / x(wo)f‘ (x —2,0))dx = / x(wo)f’ (z,0)dx + z = .
Br(z) Br(0)

Hence, o~y =1d.

Assume that cpgo = A UAU---UA,, where A;,j = 1,2...n, is closed and
contractible in @?D, i.e. there exists h; € C([0,1] x A, @?0) such that, for every u,
ORS Aj,

hi(0,u) =u, hj(l,u)=h;(1,v).

Let B := 7_1(Aj), 1 < j < n. Thesets B; are closed and Q. = B1{UB;---UB,,.
By Lemma we know ((h;(t,y(x))) € Q. Using the deformation g;(t,z) =
B(h;j(t,v(x))), we see that B; is contractible in Q. Indeed, for every z, y € Bj,
there exist y(z), v(y) € A; such that

95(0,2) = B(h;(0,7(x))) = B(v(2)) = =,
95 (1, 2) = B(h;(1,7(2))) = B(h;(1,7(y))) = g; (1, y).
(

It follows that cat_qo <p§° > catg+(2) = cato(). d
bY i

Lemma 3.5. If p)\|v is bounded from below and satisfies the (PS). condition for
any

ce [1521; ©x, Qol,

0 0

then px|v has a minimum and level set @3 critical

points of pi|v.

contains at least cat o, 4,0?
P

The proof of the above lemma can be found in [14].

Proof of Theorem[1.1. By Lemma for 0 < A < A*, the level set ¢Y° contains
at least m := CatgoQO @4 critical points wi, wa, ..., wn of Yx|v.
A

For j =1,2,...,m, there exist u; € R such that, for h € H&L(CQ>,

ka/ y' "*Vw;Vhdr dy — )\/ whdz — p; / (w;f)fo—lhdm =0.
Co Q Q
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Choosing h = w; ", we have

0= ka/ yl_a|Vw;|2dxdy - )\/ |w;|2dx.
Ca Q

Since 0 < A < Ay, it implies w; = 0 and

ka/ y17a|ij|2dxdyf)\/ \wj|2dx7uj/(w;')23 dr = 0.
Co Q Q

N—«o

Therefore, (1; = px(w;) and v; == ;> w; is a positive solution of (L.4), tra(v;) is

PO

il
[2
3
4

[5

6
[7

8

9

[10
[11
12
13
[14

DE
CH

DE
CH

a solution of (L.I). By Lemma [3.4] problems (L.4) and (L.I]) have at least catq(€2)
(I

sitive solutions.
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