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MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS
WITH FRACTIONAL LAPLACIAN

GUOWEI LIN, XIONGJUN ZHENG

Abstract. This article is devoted to the study of the nonlocal fractional equa-

tion involving critical nonlinearities

(−∆)α/2u = λu+ |u|2
∗
α−2u in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN , N ≥ 2α, α ∈ (0, 2), λ ∈ (0, λ1)

and 2∗α = 2N
N−α is critical exponent. We show the existence of at least catΩ(Ω)

nontrivial solutions for this problem.

1. Introduction

This article concerns the critical elliptic problem with the fractional Laplacian

(−∆)α/2u = λu+ |u|2
∗
α−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain of RN with N > α, α ∈ (0, 2) is fixed and
2∗α = 2N

N−α is the critical Sobolev exponent.
In a bounded domain Ω ⊂ RN , the operator (−∆)α/2 can be defined as in [3, 6]

as follows. Let {(λk, ϕk)}∞k=1 be the eigenvalues and corresponding eigenfunctions
of the Laplacian −∆ in Ω with zero Dirichlet boundary values on ∂Ω normalized
by ‖ϕk‖L2(Ω) = 1, i.e.

−∆ϕk = λkϕk in Ω; ϕk = 0 on ∂Ω.

We define the space Hα/2
0 (Ω) by

H
α/2
0 (Ω) = {u =

∞∑
k=1

ukϕk ∈ L2(Ω) :
∞∑
k=1

u2
kλ

α
2
k <∞},

which is equipped with the norm

‖u‖
H
α/2
0 (Ω)

=
( ∞∑
k=1

u2
kλ

α
2
k

) 1
2
.
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For u ∈ Hα/2
0 (Ω), the fractional Laplacian (−∆)α/2 is defined by

(−∆)α/2u =
∞∑
k=1

ukλ
α/2
k ϕk.

Problem (1.1) is the Brézis-Nirenberg type problem with the fractional Laplacian.
Brézis and Nirenberg [4] considered the existence of positive solutions for problem
(1.1) with α = 2. Such a problem involves the critical Sobolev exponent 2∗ = 2N

N−2

for N ≥ 3, and it is well known that the Sobolev embedding H1
0 (Ω) ↪→ L2∗(Ω)

is not compact even if Ω is bounded. Hence, the associated functional of problem
(1.1) does not satisfy the Palais-Smale condition, and critical point theory cannot
be applied directly to find solutions of the problem. However, it is found in [4] that
the functional satisfies the (PS)c condition for c ∈ (0, 1

N S
N/2), where S is the best

Sobolev constant and 1
N S

N/2 is the least level at which the Palais-Smale condition
fails. So a positive solution can be found if the mountain pass value corresponding
to problem (1.1) is strictly less than 1

N S
N/2.

Problems with the fractional Laplacian have been extensively studied, see for
example [2, 3, 5, 6, 7, 9, 10, 12, 13] and the references therein. In particular, the
Brézis-Nirenberg type problem was discussed in [12] for the special case α = 1

2 , and
in [2] for the general case, 0 < α < 2, where existence of one positive solution was
proved. To use the idea in [4] to prove the existence of one positive solution for the
fractional Laplacian, the authors in [2, 12] used the following results in [10] (see
also [3]): for any u ∈ Hα

0 (Ω), the solution v ∈ H1
0,L(CΩ) of the problem

−div(y1−α∇v) = 0, in CΩ = Ω× (0,∞),

v = 0, on ∂LCΩ = ∂Ω× (0,∞),

v = u, on Ω× {0},
(1.2)

satisfies

− lim
y→0+

kαy
1−α ∂v

∂y
= (−∆)αu,

where we use (x, y) = (x1, . . . , xN , y) ∈ RN+1, and

H1
0,L(CΩ) =

{
w ∈ L2(CΩ) : w = 0 on ∂LCΩ,

∫
CΩ
y1−α|∇w|2 dx dy <∞

}
. (1.3)

Therefore, the nonlocal problem (1.1) can be reformulated as the local problem

−div(y1−α∇w) = 0, in CΩ,
v = 0, on ∂LCΩ,

lim
y→0+

y1−α ∂w

∂ν
= |w(x, 0)|2

∗
α−2w(x, 0) + λw(x, 0), on Ω× {0},

(1.4)

where ∂
∂ν is the outward normal derivative of ∂CΩ. Hence, critical points of the

functional

J(w) =
1
2

∫
CΩ
y1−α|∇w|2 dx dy − 1

2∗α

∫
Ω×{0}

|w(x, 0)|2
∗
α dx

− λ

2

∫
Ω×{0}

|w(x, 0)|2 dx
(1.5)
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defined on H1
0,L(CΩ) correspond to solutions of (1.4), and the trace u = tr w of

w is a solution of (1.1). A critical point of the functional J(u) at the mountain
pass level was found in [2, 12]. On the other hand, it can be shown by using the
Pohozaev type identity that the problem

(−∆)α/2u = |u|p−1u in Ω,
u = 0 on ∂Ω

has no nontrivial solution if p+ 1 ≥ 2N
N−α and Ω is star-shaped, see for example [3]

and [12].
It is well-known that if Ω has a rich topology, (1.1) with α = 2, λ = 0 has a

solution, see [1, 8, 14] etc. In this paper, we assume 0 < λ < λ1, where λ1 is the
first eigenvalue of the fractional Laplacian (−∆)α/2. We investigate the existence
of multiple solutions of problem (1.1). Let A be a closed subset of a topology space
X. The category of A is the least integer n such that there exist n closed subsets
A1, . . . , An of X satisfying A = ∪nj=1Aj and A1, . . . , An are contractible in X. Our
main result is as follows.

Theorem 1.1. If Ω is a smooth bounded domain of RN, N ≥ 4, 0 < α < 2 and
0 < λ < λ1, problem (1.4) has at least catΩ(Ω) nontrivial solutions. Equivalently,
(1.1) possesses at least catΩ(Ω) positive solutions.

We say that w ∈ H1
0,L(CΩ) is a solution to (1.4) if for every function ϕ ∈

H1
0,L(CΩ), we have

kα

∫
CΩ
y1−α〈∇w,∇ϕ〉 dx dy =

∫
Ω

(λw + w
N+α
N−α )ϕdx. (1.6)

We will find solutions of J at energy levels below a value related to the best Sobolev
constant Sα,N , where

Sα,N = inf
w∈H1

0,L(CΩ),w 6=0

kα
∫
CΩ y

1−α|∇w|2 dx dy
(
∫

Ω
|w(x, 0)|2∗α dx)2/(2∗α)

, (1.7)

which is not achieved in any bounded domain and is indeed achieved in the case
Ω = RN+1

+ . We know from [2] that the trace uε(x) = wε(x, 0) of the family of
minimizers wε of Sα,N takes the form

u(x) = uε(x) =
ε
N−α

2

(|x|2 + ε2)
N−α

2

, (1.8)

with ε > 0. Using this property, we are able to find critical values of J in a right
range.

In section 2, we prove the (PS)c condition and the main result is shown in section
3.

2. Palais-Smale condition

In this section, we show that the functional J(w) satisfies (PS)c condition for c
in certain interval. By a (PS)c condition for the functional J(w) we mean that a
sequence {wn} ⊂ H1

0,L(CΩ) such that J(wn)→ c, J ′(wn)→ 0 contains a convergent
subsequence.



4 G. LIN, X. ZHENG EJDE-2016/97

Define on the space H1
0,L(CΩ) the functionals

ψ(w) =
∫

Ω

(w+(x, 0))2∗α dx,

ϕλ(w) = kα

∫
CΩ

y1−α|∇w|2dx dy − λ
∫

Ω

|w(x, 0)|2dx.

We may verify as in [14] that on the manifold

V = {w ∈ H1
0,L(CΩ) : ψ(w) = 1},

ψ′(w) 6= 0 for every w ∈ V . Hence, the tangent space of V at v is given by

TvV := {w ∈ H1
0,L(CΩ) : 〈ψ′(v), w〉 = 0},

and the norm of the derivative of ϕλ(w) at v restricted to V is defined by

‖ϕ′λ(v)‖∗ = sup
w∈TvV,‖w‖=1

|〈ϕ′λ(v), w〉|.

It is well known that

‖ϕ′λ(w)‖∗ = min
µ∈R
‖ϕ′λ(w)− µψ′(w)‖.

A critical point v ∈ V of ϕλ is a point such that ‖ϕ′λ(v)‖∗ = 0.
Since λ1 is the first eigenvalue of the fractional Laplacian (−∆)α/2, it can be

characterized as

λ1 = inf
w∈H1

0,L(CΩ),w 6=0

kα
∫
CΩ

y1−α|∇w|2 dx dy∫
Ω
|w(x, 0)|2 dx

.

If 0 < λ < λ1, we see that

‖w‖1 :=
(
kα

∫
CΩ
y1−α|∇w|2 dx dy − λ

∫
Ω

w2(x, 0) dx
)1/2

is an equivalent norm on H1
0,L(CΩ).

Lemma 2.1. Any sequence {vn} ⊂ H1
0,L(CΩ) such that

d := sup
n
J(vn) < C∗ :=

α

2N
S
N
α

α,N , J ′(vn)→ 0 in H−1
0,L(CΩ)

contains a convergent subsequence.

Proof. It is easy to show from the assumptions that

d+ 1 + ‖vn‖1 ≥ J(vn)− 1
2∗α
〈J ′(vn), vn〉

= (
1
2
− 1

2∗α
)
(∫
CΩ
kαy

1−α|∇vn|2 dx dy − λ
∫

Ω

|vn|2 dx
)

= (
1
2
− 1

2∗α
)‖vn‖21;

that is, ‖vn‖1 is bounded. We may assume that

vn(x, y) ⇀ v(x, y) in H1
0,L(CΩ),

vn(x, 0)→ v(x, 0) in L2(Ω),

vn(x, 0)→ v(x, 0) a.e. in Ω.
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Therefore, for every ϕ ∈ H1
0,L(CΩ),

〈J ′(vn), ϕ〉 → 〈J ′(v), ϕ〉 = 0

as n→ +∞. We also have that J(v) ≥ 0. By Brézis-Lieb’s lemma,

J(v) +
1
2
‖vn − v‖21 −

1
2∗α

∫
Ω

(vn − v)2∗α
+ dx = J(vn) + o(1) = C + o(1).

Since 〈J ′(vn), vn〉 → 0, we obtain

‖vn − v‖21 − 2∗α

∫
Ω

(vn − v)2∗α
+ dx

= ‖vn‖21 − ‖v‖21 − 2∗α

∫
Ω

(
(vn)2∗α

+ − v
2∗α
+

)
dx+ o(1)

= −‖v‖21 + 2∗α

∫
Ω

v
2∗α
+ dx

= −〈J ′(v), v〉 = 0.

Hence, there exist a constant b such that

‖vn − v‖21 → b, 2∗α

∫
Ω

(vn)2∗α
+ dx→ b, as n→ +∞.

It follows by vn → v in L2(Ω) that∫
CΩ
kαy

1−α|∇(vn − v)|2 dx dy → b.

The trace inequality∫
CΩ
kαy

1−α|∇(vn − v)|2 dx dy ≥ Sα,N‖(vn − v)(x, 0)‖2
L2∗α (Ω)

implies b ≥ Sα,Nb
2

2∗α . Hence, either b = 0 or b ≥ S
N
α

α,N .

If b = 0, then vn → v in H1
0,L(CΩ), and the proof is complete. If b ≥ S

N
α

α,N , we
deduce that

C∗ =
α

2N
S
α/N
α,N

≤ (
1
2
− 1

2∗α
)b

= (
1
2
− 1

2∗α
)‖vn − v‖21 + o(1)

≤ J(v) +
1
2
‖vn − v‖21 −

1
2∗α
‖vn − v‖21 + o(1)

= J(v) +
1
2
‖vn − v‖21 −

1
2∗α

∫
Ω

(vn − v)2∗α
+ + o(1)

= C ≤ d < C∗,

which is a contradiction. �

Alternatively, we have the following result.

Lemma 2.2. Every sequence {wn} ∈ V satisfying ϕλ(wn) → c < Sα,N and
‖ϕ′λ(wn)‖∗ → 0, as n→ +∞, contains a convergent subsequence.
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Proof. Since
‖ϕ′λ(wn)‖∗ = min

µ∈R
‖ϕ′λ(wn)− µψ′(wn)‖,

there exists a sequence {αn} ⊂ R such that ‖ϕ′λ(wn)− αnψ′(wn)‖ → 0. It follows
that for every h ∈ H1

0,L(CΩ),

kα

∫
CΩ

y1−α∇wn∇h dx dy − λ
∫

Ω

wnh dx− µn
∫

Ω

(w+
n )2∗α−1h dx→ 0, (2.1)

where µn = αn2∗α
2 . Choosing h = wn in (2.1) and using the fact ψ(w+

n ) = 1, we
obtain

ϕλ(wn)− µn = kα

∫
CΩ

y1−α|∇wn|2 − λ
∫

Ω

|wn|2 − µn
∫

Ω

(w+
n )2∗α → 0.

Whence by ϕλ(wn)→ c, µn → c as n→ +∞. Setting vn := µ
N−α
2α
n wn, we obtain

J(vn) =
1
2
µ
N−α
α

n

(∫
CΩ

kαy
1−α|∇wn|2 dx dy − λ

∫
Ω

|wn|2 dx
)
− 1

2∗α
µ
N
α
n

∫
Ω

(w+
n )2∗α

=
1
2
µ
N−α
α

n ϕλ(wn)− N − α
2N

µ
N
α
n .

Thus,
J(vn)→ α

2N
c
N
α <

α

2N
S
N
α .

In the same way, for every h ∈ H1
0,L(CΩ), by (2.1),

〈J ′(vn), h〉

= µ
N−α
2α
n

(
kα

∫
CΩ
y1−α∇wn∇h dx dy − λ

∫
Ω

wnh− µn
∫

Ω

(w+
n )2∗α−1h dx

)
→ 0.

Now, the assertion follows by Lemma 2.1. �

Let us define

Qλ = inf
w∈V

ϕλ(w) = inf
w∈V

{
kα

∫
CΩ
y1−α|∇w|2dx dy − λ

∫
Ω

|w(x, 0)|2 dx
}
.

Denote by η0(t) ∈ C∞(R+) a cut-off function, which is non-increasing and satisfies

η0(t) =

{
1 if 0 ≤ t ≤ 1

2 ,

0 if t ≥ 1.

Assume 0 ∈ Ω, for fixed ρ > 0 small enough such that Bρ ⊆ CΩ, we define the
function η(x, y) = ηρ(x, y) = η0( |(x,y)|

ρ ). Then ηwε ∈ H1
0,L(CΩ). It is standard to

establish the following estimates, see [2] for details.

Lemma 2.3. The family {ηwε} ⊂ H1
0,L(CΩ) and its trace on y = 0 satisfy

‖ηwε‖2 = ‖wε‖2 +O(εN−α), (2.2)

If N > 2α,
‖ηwε‖2L2(Ω) = Cεα +O(εN−α), (2.3)

If N = 2α,

‖ηwε‖2L2(Ω) = Cεα log(
1
ε

) +O(εα) (2.4)

for ε > 0 small enough and some C > 0.
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Lemma 2.4. Assume N ≥ 2α, 0 < λ < λ1, then

Qλ = inf
w∈V

ϕλ(w) < Sα,N . (2.5)

Moreover, there exists u ∈ V such that ϕλ(u) = Qλ.

Proof. We first show that (2.5) holds if N ≥ 2α and 0 < λ < λ1. Since∫
|x|> ρ

2

|uε|2
∗
α dx =

∫
{|x|≥ ρ2 }

εN

(|x|2 + ε2)N
dx ≤ N2N

ρN
εN ,

we have ∫
Ω

|ηuε|2
∗
α dx ≥

∫
{|x|≤ ρ2 }

|uε|2
∗
αdx = ‖uε‖

2∗α
L2∗α (Ω)

−
∫
{|x|≥ ρ2 }

|uε|2
∗
αdx

≥ ‖uε‖
2∗α
L2∗α (Ω)

+O(εN ).

By Lemma 2.3, for N > 2α, we have

kα
∫
CΩ y

1−α|∇(ηwε)|2 dx dy − λ
∫

Ω
|ηuε|2 dx

(
∫

Ω
|ηuε|2∗α dx)

2
2∗α

≤
kα
∫
CΩ y

1−α|∇wε|2 dx dy − λCεα +O(εN−α)

‖uε‖2L2∗α (Ω)
+O(εN )

≤ Sα,N −
λCεα

‖uε‖2L2∗α(Ω)

+O(εN−α) < Sα,N .

Similarly, for N = 2α, we find for ε small enough such that

Qλ ≤ Sα,N −
λCεα log( 1

ε )
‖uε‖2L2∗α(Ω)

+O(εα) < Sα,N .

Consequently, inequality (2.5) holds.
Next, we show that Qλ is achieved if 0 < λ < λ1. Obviously, Qλ > 0. Now,

let {wn} ⊂ H1
0,L(CΩ) be a minimizing sequence of Qλ > 0 such that wn ≥ 0 and

‖wn(x, 0)‖L2∗α (Ω) = 1. The boundedness of {wn} implies that

wn(x, y) ⇀ w(x, y) in H1
0,L(CΩ),

wn(x, 0)→ w(x, 0) in Lq(Ω),

wn(x, 0)→ w(x, 0) a.e. in Ω,

where 1 ≤ q ≤ 2∗α. Since

‖wn‖2 = ‖wn − w‖2 + ‖w‖2 + o(1),

by the Brezis-Lieb Lemma,

‖wn‖2 − λ‖wn(x, 0)‖2L2(Ω)

= ‖wn − w‖2 + ‖w‖2 − λ‖wn(x, 0)‖2L2(Ω) + o(1)

≥ Sα,N‖wn(x, 0)− w(x, 0)‖2
L2∗α (Ω)

+Qλ‖w(x, 0)‖2
L2∗α (Ω)

+ o(1)

≥ (Sα,N −Qλ)‖wn(x, 0)− w(x, 0)‖2
∗
α

L2∗α (Ω)
+Qλ‖wn(x, 0)‖2

∗
α

L2∗α (Ω)
+ o(1)

= (Sα,N −Qλ)‖wn(x, 0)− w(x, 0)‖2
∗
α

L2∗α (Ω)
+Qλ + o(1).
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Hence, we obtain

o(1) +Qλ ≥ (Sα,N −Qλ)‖wn(x, 0)− w(x, 0)‖2
∗
α

L2∗α (Ω)
+Qλ + o(1).

The Sα,N > Qλ implies wn(x, 0) → w(x, 0) in L2∗α(Ω) and ‖w(x, 0)‖L2∗α (Ω) = 1.
This yields

Qλ ≤ ‖w‖2 − λ‖w(x, 0)‖2L2(Ω) ≤ lim
n→+∞

(‖wn‖2 − λ‖wn(x, 0)‖2L2(Ω)) ≤ Qλ;

that is, w is a minimizer for Qλ. �

3. Proof of main theorem

Taking into account the concentration-compactness principle in [11], we may
derive the following result, its proof can be found in [2].

Lemma 3.1. Suppose wn ⇀ w in H1
0,L(CΩ), and the sequence {y1−α|∇wn|2} is

tight, i.e. for any η > 0 there exists ρ0 > 0 such that for all n,∫
{y>ρ0}

∫
Ω

y1−α|∇wn|2 dx dy < η.

Let un = trwn and u = trw and let µ, ν be two non negative measures such that

y1−α|∇wn|2 → µ and |un|2
∗
α → ν (3.1)

in the sense of measures as n → ∞. Then, there exist an at most countable set I
and points xi ∈ Ω with i ∈ I such that

(1) ν = |u|2∗α + Σk∈Iνkδxk , νk > 0,
(2) µ = y1−α|∇w|2 + Σk∈Iµkδxk , µk > 0,

(3) µk ≥ Sα,Nν
2

2∗α
k .

On the manifold V , we define the mapping β : V → RN by

β(w) :=
∫

Ω

x(w+(x, 0))2∗α dx,

which has the following properties.

Lemma 3.2. Let {wn} ⊂ V be a sequence such that

‖wn‖2H1
0,L(CΩ) =

∫
CΩ
kαy

1−α|∇wn|2 dx dy → Sα,N

as n→∞, then dist(β(wn),Ω)→ 0, as n→∞.

Proof. Suppose by contradiction that dist(β(wn),Ω) 6→ 0 as n → ∞. We may
verify that {wn} is tight. By Lemma 3.1, there exist sequences {µk} and {νk} such
that

Sα,N = lim
n→∞

‖wn‖2 = kα

∫
CΩ
y1−α|∇w|2 dx dy + Σk∈Iµk, (3.2)

1 = lim
n→∞

∫
Ω

‖un‖2 =
∫

Ω

|u|2
∗
α dx+ Σk∈Iνk. (3.3)

By the Sobolev inequality and Lemma 3.1, from (3.2) we deduce that

Sα,N = ‖w‖2H1
0,L(CΩ) + Σk∈Iµk ≥ Sα,N‖u‖2L2∗α (Ω)

+ Sα,N (Σk∈Iνk)
2

2∗α .
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Hence,

‖u‖2
L2∗α (Ω)

+ (Σk∈Iνk)
2

2∗α ≤ 1. (3.4)

Equations (3.3) and (3.4) imply either Σk∈Iνk = 0 or ‖u‖2
∗
α

L2∗α (Ω)
= 0.

If Σk∈Iνk = 0, that is ‖u‖2
∗
α

L2∗α
(Ω) = 1, the lower semi-continuity of norms yields

Sα,N ≥ ‖w‖2H1
0,L(CΩ) =

kα
∫
CΩ y

1−α|∇w|2 dx dy

(
∫

Ω
|u|2∗α dx)

2
2∗α

.

While by the Sobolev trace inequality,

Sα,N ≤
kα
∫
CΩ y

1−α|∇w|2 dx dy

(
∫

Ω
|u|2∗α dx)

2
2∗α

,

it then implies that Sα,N is achieved, which is a contradiction to the fact that
Sα,N is not achieved unless CΩ = R+

N+1. Thus, ‖u‖2
∗
α

L2∗α
(Ω) 6= 1. Consequently,

Σk∈Iνk = 1 and u = 0. Furthermore, by the uniqueness of the extension of u, we
have w = 0. Now, it is standard to show that ν is concentrated at a single x0 of Ω̄.
So we have

β(wn)→
∫

Ω

x dν(x) = x0 ∈ Ω̄,

this is a contradiction. �

Since Ω is a smooth bounded domain of RN, we choose r > 0 small enough so
that

Ω+
r = {x ∈ RN : dist(x,Ω)) < r} and Ω−r = {x ∈ Ω : dist(x, ∂Ω) > r}

are homotopically equivalent to Ω. Moreover we assume that the ball Br(0) ⊂ Ω,
and then CBr(0) := Br(0)× (0,+∞) ⊂ CΩ. We define

V0 := {w ∈ H1
0,L(CBr(0)) :

∫
CBr(0)

w
2∗α
+ (x, 0) dx = 1} ⊂ V

as well as
Q0 = inf

w∈V0
ϕλ(w).

Denote by ϕQ0
λ := {w ∈ V : ϕλ(w) < Q0} the level set below Q0. We may verify as

in Lemma 3.2 that Q0 < Sα,N .

Lemma 3.3. There exists a λ∗, 0 < λ∗ < λ1 such that for 0 < λ < λ∗, if w ∈ ϕQ0
λ ,

then β(w) ∈ Ω+
r .

Proof. By Hölder’s inequality, for every w ∈ V ,∫
Ω

|w(x, 0)|2 dx ≤
(∫

Ω

|w(x, 0)|2
∗
α dx

) 2
2∗α |Ω|α/N = |Ω|α/N .

Let λ∗ = ε
|Ω|α/N . If 0 < λ < λ∗ and w ∈ ϕQ0

λ , we have

‖w‖2 ≤ λ
∫

Ω

|w(x, 0)|2 dx+Q0 ≤ λ∗|Ω|α/N + Sα,N = Sα,N + ε.

Therefore, we conclude by Lemma 3.2 that β(w) ∈ Ω+
r . �
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Now, we establish the relation of category between the domain Ω and the level
set ϕQ0

λ .

Lemma 3.4. If N ≥ 2α and 0 < λ < λ∗, then we have cat
ϕ
Q0
λ

ϕQ0
λ ≥ catΩ(Ω).

Proof. Let w0 ∈ H1
0,L(CB(0,r)) be a minimizer of Q0. Hence, we may assume that

w0 > 0 is cylinder symmetric and ‖w0‖L2∗α (Br(0)) = 1,

Q0 =
∫
CBr(0)

kαy
1−α|∇w0|2 dx dy − λ

∫
Br(0)

|w0(x, 0)|2 dx.

For z ∈ Ω−r , we define γ : Ω−r → ϕQ0
λ by

γ(z) =

{
w0(x− z, y), (x, y) ∈ Br(z)× (0,+∞),
0, (x, y) /∈ Br(z)× (0,+∞).

Since w0(x, 0) is a radial function,

β ◦ γ(z) =
∫
Br(z)

x(w0)2∗α
+ (x− z, 0)) dx =

∫
Br(0)

x(w0)2∗α
+ (x, 0) dx+ z = z.

Hence, β ◦ γ = id.
Assume that ϕQ0

λ = A1 ∪ A2 ∪ · · · ∪ An, where Aj , j = 1, 2 . . . n, is closed and
contractible in ϕQ0

λ , i.e. there exists hj ∈ C([0, 1]×Aj , ϕQ0
λ ) such that, for every u,

v ∈ Aj ,
hj(0, u) = u, hj(1, u) = hj(1, v).

Let Bj := γ−1(Aj), 1 ≤ j ≤ n. The sets Bj are closed and Ω−r = B1∪B2 · · ·∪Bn.
By Lemma 3.3, we know β(hj(t, γ(x))) ∈ Ω+

r . Using the deformation gj(t, x) =
β(hj(t, γ(x))), we see that Bj is contractible in Ω+

r . Indeed, for every x, y ∈ Bj ,
there exist γ(x), γ(y) ∈ Aj such that

gj(0, x) = β(hj(0, γ(x))) = β(γ(x)) = x,

gj(1, x) = β(hj(1, γ(x))) = β(hj(1, γ(y))) = gj(1, y).

It follows that cat
ϕ
Q0
λ

ϕQ0
λ ≥ catΩ+

r
(Ω−r ) = catΩ(Ω). �

Lemma 3.5. If ϕλ|V is bounded from below and satisfies the (PS)c condition for
any

c ∈ [ inf
w∈V

ϕλ, Q0],

then ϕλ|V has a minimum and level set ϕQ0
λ contains at least cat

ϕ
Q0
λ

ϕQ0
λ critical

points of ϕλ|V .

The proof of the above lemma can be found in [14].

Proof of Theorem 1.1. By Lemma 3.5, for 0 < λ < λ∗, the level set ϕQ0
λ contains

at least m := cat
ϕ
Q0
λ

ϕ0
λ critical points w1, w2, . . . , wm of ϕλ|V .

For j = 1, 2, . . . ,m, there exist µj ∈ R such that, for h ∈ H1
0,L(CΩ),

kα

∫
CΩ
y1−α∇wj∇h dx dy − λ

∫
Ω

whdx− µj
∫

Ω

(w+
j )2∗α−1h dx = 0.



EJDE-2016/97 CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN 11

Choosing h = w−j , we have

0 = kα

∫
CΩ

y1−α|∇w−j |
2dx dy − λ

∫
Ω

|w−j |
2dx.

Since 0 < λ < λ1, it implies w−j = 0 and

kα

∫
CΩ
y1−α|∇wj |2 dx dy − λ

∫
Ω

|wj |2 dx− µj
∫

Ω

(w+
j )2∗α dx = 0.

Therefore, µj = ϕλ(wj) and vj := µ
N−α
2α
j wj is a positive solution of (1.4), trΩ(vj) is

a solution of (1.1). By Lemma 3.4, problems (1.4) and (1.1) have at least catΩ(Ω)
positive solutions. �
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