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STABILITY OF THE BASIS PROPERTY OF EIGENVALUE
SYSTEMS OF STURM-LIOUVILLE OPERATORS WITH

INTEGRAL BOUNDARY CONDITION

NURLAN S. IMANBAEV

Abstract. We study a question on stability and instability of the basis prop-

erty of a system of eigenfunctions of the Sturm - Liouville operator, with an
integral perturbation of anti-periodic type on the boundary conditions.

1. Introduction

Spectral theory of non-self-adjoint boundary value problems for ordinary differ-
ential equations on a finite interval goes back to the classical works of Birkhoff [3]
and Tamarkin [29]. They introduced the concept of regular boundary conditions
and investigated asymptotic behavior of eigenvalues and eigenfunctions of such
problems. In their works Malamud and Oridoroga [18, 19] proved completeness of
eigenfunctions and associated functions for a wide class of boundary value prob-
lems which includes regular boundary conditions. In space L2(0, 1) we consider an
operator L0, generated by the following ordinary differential expression:

L0(u) ≡ −u′′(x) + q(x)u(x), q(x) ∈ C[0, 1], 0 < x < 1 (1.1)

and the boundary value conditions of the form

Uj(u) = aj1u
′(0) + aj2u

′(1) + aj3u(0) + aj4u(1) = 0, j = 1, 2. (1.2)

When the boundary conditions (1.2) are strongly regular, the results by Dunford
[6, 7], Mikhailov [20] and Kesel’man [15] provide the Riesz basis property in L2(0, 1)
of the eigenfunctions and associated functions (E and AF ) system of the problem.
In the case when the boundary conditions are regular but not strongly regular, the
question on basis property of E and AF system is not yet completely resolved. We
introduce the matrix of coefficients of the boundary conditions (1.2):

A =
(
a11 a12 a13 a14

a21 a22 a23 a24

)
.

By A(ij) we denote the matrix composed of the i-th and j-th columns of the
matrix A, Aij = detA(ij). Let the boundary conditions (1.2) be regular but not
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strongly regular. According to [26, p. 73], if the following conditions hold:

A12 = 0, A14 +A23 6= 0, A14 +A23 = ∓(A13 +A24), (1.3)

then the boundary conditions (1.2) are regular, but not strongly regular boundary
conditions.

Makin [21] suggested dividing all regular, but not strongly regular, boundary
conditions into four types:

I A14 = A23, A34 = 0;
II A14 = A23, A34 6= 0;

III A14 6= A23, A34 = 0;
IV A14 6= A23, A34 6= 0.

For example, periodical or antiperiodical boundary conditions form the type I, and
can be determined in the following form:

A14 = A23, A34 = 0,

That is, a11 = −a12,a13 = a14 = a21 = a22 = 0 and a23 = −a24.
These conditions will be equivalent to matrix A, where the following two options

are possible:

A =
(

1 −1 0 0
0 0 1 −1

)
are periodical or

A =
(

1 1 0 0
0 0 1 1

)
are antiperiodical, and the same boundary conditions with “the lowest coefficients”
form the type II. The boundary value conditions defined as A14 6= A23, A34 = 0
form the type III. These conditions are always equivalent to boundary conditions
given by the matrix A:

A =
(

1 −1 0 0
0 0 1 0

)
.

This case will be the aim of our research in this paper. Moreover, Makin [21]
allocated the one type of non-strongly regular boundary value conditions, when E
and AF systems of the spectral problem

L0(u) ≡ −u′′(x) + q(x)u(x) = λu(x), q(x) ∈ C[0, 1], 0 < x < 1, (1.4)

with boundary conditions of the form (1.2) forms Riesz basis for any potentials
q(x). When q(x) ≡ 0, the problem about basis property of E and AF system of the
problem with general regular boundary conditions has been completely resolved in
[17]. In [4, 5] questions on convergence of eigenfunctions expansion of the Dirac
operator in vector - matrix form and the Hill operator, forming Riesz basis in
L2(0, 1), with regular, but not strongly regular, boundary value conditions have
been considered. For Dirac operators Mityagin [23] proved that periodic (or anti-
periodic) boundary conditions give a rise to a Riesz system of 2D projections.

2. Statement of the problem

The spectral problem (1.4)-(1.2) with boundary conditions of the type I when
q(x) ≡ 0 is self-adjoint; the system of its eigenfunctions is the usual trigonometric
system, forming an orthonormal basis in L2(0, 1). For the case of non-self-adjoint
initial operator the question about preservation of the basis properties with some
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(weak in a certain sense) perturbation was shown in the type of several examples
in [8].

Riesz basis property of eigenfunctions and associated functions of periodic and
antiperiodic Sturm-Liouville problems was considered in [30]. In [12, 27] questions
on stability of basis properties of the periodic problem for (1.4) were investigated
with integral perturbation of the boundary conditions (1.2), when j = 2, of the type
I; that is, A14 = A23, A34 = 0. Moreover, in [22] similar issues at q(x) ≡ 0 have
been studied. In the present paper we consider a spectral problem close to research
of [22] when q(x) ≡ 0, with integral perturbation of the boundary conditions (1.2)
when j = 2, which belong to type I:

L1(u) ≡ −u′′(x) = λu(x), 0 < x < 1, (2.1)

U1(u) ≡ u(0) + u(1) =
∫ 1

0

p(x)u(x)dx, p(x) ∈ L1(0, 1), (2.2)

U2(u) ≡ u′(0) + u′(1) = 0. (2.3)

From [28] it follows that the E and AF system of the problem (2.1)-(2.3) is complete
and minimal in L2(0, 1). Moreover, the E and AF system for any p(x) forms Riesz
basis with brackets. Our aim is to show that the basis property in L2(0, 1) of the
E and AF system of problem (2.1)-(2.3) is unstable with respect to small changes
of kernel p(x) of integral perturbation. In [13] the method of constructing the
characteristic determinant of the spectral problem with integral perturbation of
the boundary conditions has been suggested.

The basis properties in Lp(−1, 1) of root functions of the nonlocal problem for
the equations with involution have been studied in [16]. Instability of basis prop-
erties of root functions of the Schrodinger operator with nonlocal perturbation of
the boundary condition has been investigated in [10]. In [9] they studied the ques-
tion of stability and instability of basis property of system of eigenfunctions and
associated functions of the double differentiation operator with an integral pertur-
bation of Samarskii - Ionkin type boundary conditions. In [24] they considered the
eigenfunction expansion for Sturm-Liouville problems with transmission conditions
at one interior point. Boundary value problems with transmission conditions were
investigated extensively in the recent years (see, for example, [1, 2, 14, 25]).

3. Characteristic determinant of a spectral problem

In this section we use the method in [13] to construct the characteristic determi-
nant of the problem with integral perturbation of the boundary condition. Applying
integration by parts, for smooth enough complex-valued functions u(x) and v(x)
we obtain the Lagrange formula:∫ 1

0

L0(u)υ(x) dx−
∫ 1

0

u(x)L∗0(υ)dx

= [u′(0) + u′(1)]υ(0) + u′(1)[υ(0) + υ(1)]

− [u(0) + u(1)]υ′(0)− u(1)[υ′(0) + υ′(1)].

(3.1)

Here L∗0(υ) is the adjoint differential expression

L∗0υ = −υ′′(x) + q(x)υ(x), 0 < x < 1. (3.2)
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Consequently the operator L∗0 corresponding to the operator L0 is given by
differential expression (3.2) and the boundary conditions

V1(υ) = υ(0) + υ(1) = 0, V2(υ) = υ′(0) + υ′(1) = 0. (3.3)

Also the operator L∗1 corresponding to the operator L1 is given by the loaded
differential expression

L∗1(υ) = −υ′′(x) + q(x)υ(x) + p(x)υ′(0), 0 < x < 1, (3.4)

and antiperiodic boundary conditions (3.3). One of the aspects of this problem
is the fact that the adjoint problem to (2.1)-(2.3) is the spectral problem for the
loaded differential equation

L∗1(υ) = −υ′′(x) + p(x)υ′(0) = λυ(x),

V1(υ) = υ(0) + υ(1) = 0,

V2(υ) = υ′(0) + υ′(1) = 0.

(3.5)

First, we construct the characteristic determinant of the spectral problem (2.1)-
(2.3). Presenting the general solution of the equation (2.1) by the formula

u(x, λ) = C1 cos
√
λx+ C2 sin

√
λx,

and with respect to the boundary conditions (2.2)-(2.3), we obtain the following
linear system for the coefficients Ck:

C1

[
1 + cos

√
λ−

∫ 1

0

p(x) cos
√
λx dx

]
+ C2

[
sin
√
λ−

∫ 1

0

p(x) sin
√
λx dx

]
= 0,

C1

[
− sin

√
λ
]

+ C2

[
1 + cos

√
λ
]

= 0.

Its determinant will be the characteristic determinant of the spectral problem (2.1)-
(2.3):

∆1(λ) =
∣∣∣∣1 + cos

√
λ−

∫ 1

0
p(x) cos

√
λx dx sin

√
λ−

∫ 1

0
p(x) sin

√
λx dx

− sin
√
λ 1 + cos

√
λ

∣∣∣∣ . (3.6)

When p(x) = 0 we obtain the characteristic determinant of the unperturbed
problem (2.1)-(2.3). It is de denote by ∆0(λ) = 2(1 + cos

√
λ). The number λ0

k =
((2k − 1)π)2 is the eigenvalue of the unperturbed antiperiodic problem, and u0

k0 =√
2 cos((2k − 1)πx), u0

k1 =
√

2 sin((2k − 1)πx) are eigenfunctions. We represent the
function p(x) in the Fourier series form by the trigonometric system

p(x) =
∞∑

k=1

[ak cos((2k − 1)πx) + bk sin((2k − 1)πx)]. (3.7)

Using (3.7), we find more convenient representation for the determinant ∆1(λ).
To do this, first, we calculate integrals in (3.6). Simple calculations show that∫ 1

0

p(x) cos(
√
λx)dx =

∞∑
k=1

[āk

√
λ sin

√
λ+ b̄k((2k − 1)π)(cos

√
λ+ 1)]

λ− ((2k − 1)π)2
,

∫ 1

0

p(x) sin(
√
λx)dx =

∞∑
k=1

[āk

√
λ(1 + cos

√
λ) + b̄k((2k − 1)π) sin

√
λ]

λ− ((2k − 1)π)2
.
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Using these results and standard transformations, the determinant (3.6) is re-
duced to the form

∆1(λ) = ∆0(λ) ·A(λ),
where

A(λ) =
[
1 +

∞∑
k=1

b̄k
(2k − 1)π

λ− ((2k − 1)π)2
]
. (3.8)

Hence, the following theorem is proved.

Theorem 3.1. The characteristic determinant of the spectral problem (2.1)-(2.3)
with the perturbed boundary value conditions can be represented in the form (3.8),
where ∆0(λ) is the characteristic determinant of the unperturbed antiperiodic spec-
tral problem, bk are coefficients of the expansion (3.7) of the function p(x) into
trigonometric Fourier series.

The function A(λ) in (3.8) has a first-order pole at the points λ = λ0
k, and

the function ∆0(λ) has a second order zero at these points. Therefore, the function
∆1(λ), represented by the formula (3.8), is an entire analytic function of the variable
λ. The characteristic determinant, which is an entire analytical function, related
with the problem on eigenvalues of differential operator of the third order with
nonlocal boundary conditions has been studied in [11].

4. Particular cases of the characteristic determinant

The characteristic determinant (3.8) looks simpler when

p(x) =
N∑

k=1

[
ak cos((2k − 1)πx) + bk sin((2k − 1)πx)

]
.

That is, there exists such a number N such that ak = bk = 0 for all k > N . In this
case, formula (3.8) takes the form

∆1(λ) = ∆0(λ)
[
1 +

N∑
k=1

b̄k
(2k − 1)π

λ− ((2k − 1)π)2
]
. (4.1)

From this particular case of formula (3.8), the we have the following corollary.

Corollary 4.1. For any preassigned numbers - a complex λ̂ and a positive integer m̂
there always exists a function p(x) such that λ̂ will be an eigenvalue of the problem
(2.1)-(2.3) of multiplicity m̂.

From the analysis of formula (4.1) it is easy to see that ∆1(λ0
k) = 0 for all k > N .

That is, all eigenvalues λ0
k, k > N , of the unperturbed periodic problem are the

eigenvalues of the perturbed spectral problem (2.1)-(2.3). It is also not difficult to
show that the multiplicity of the eigenvalues λ0

k, k > N is also preserved. Moreover,
from the condition of orthogonality of the trigonometric system it follows that in
this case: ∫ 1

0

p(x)u0
kj(x)dx = 0, j = 0, 1, k > N.

Thus, the eigenfunctions u0
kj(x) of the antiperiodic problem when k > N satisfy

the boundary value conditions (2.2)-(2.3) and, therefore, they are eigenfunctions
of the perturbed problem (2.1)-(2.3). Hence, in this case the system of eigenfunc-
tions of (2.1)-(2.3) and the system of eigenfunctions of the periodic problem (an
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orthonormal basis) differ from each other only in a finite number of the first mem-
bers. Consequently, the system of eigenfunctions of (2.1)-(2.3) also forms a Riesz
basis in L2(0, 1). The set of functions p(x), that can be represented as a finite series
(3.7), is dense in L1(0, 1). Thus, we have proved the following result.

Theorem 4.2. Let A14 = A23, A34 = 0; that is, the boundary conditions (2.2)-(2.3)
belong to type I with integral perturbation. Then the set of functions p(x) ∈ L1(0, 1),
such that the system of eigenfunctions of the perturbed problem (2.1)-(2.3) forms
Riesz basis in L2(0, 1), is dense in L1(0, 1).

5. Instability of the basis property

Now we show that basis properties of eigenfunctions system of the perturbed
problem (2.1)-(2.3) is unstable for an arbitrarily small integral perturbation of the
boundary-value condition (2.2).

Theorem 5.1. Suppose that A14 = A23, A34 = 0; that is, the boundary-value
conditions (2.2)-(2.3) belong to type I. Then the set of functions p(x) ∈ L1(0, 1),
such that the system of eigenfunctions of the perturbed problem (2.1)-(2.3) does not
form even a normal basis in L2(0, 1), is dense in L1(0, 1).

Proof. Let in (3.7) the coefficients bk 6= 0 for all sufficiently large k. Then from
(3.8) we note that λ = λ0

k is a simple eigenvalue of problem (2.1)-(2.3). By
direct calculation we get that u1

k = bk cos((2k − 1)π)x − ak sin((2k − 1)π)x are
eigenfunctions of (2.1)-(2.3), corresponding to λ0

k = ((2k − 1)π)2. Moreover, the
eigenfunction of the dual problem (3.5), corresponding to the eigenvalue λ0

k, is
v1

k(x) = ck cos((2k − 1)π)x.
Since the eigenfunctions of the dual problems form biorthogonal system, then

we have the equality of the scalar product (u1
k, v

1
k) = 1. Hence, it is easy to obtain

bk c̄k = 2. Therefore,

‖u1
k‖ · ‖v1

k‖ =
√

1 + |ak

bk
|2. (5.1)

Denote by σN (x) partial sum of the Fourier series (3.7). It is obvious, that the
set of functions, which can be represented as the infinite series

p̃(x) = σN (x) +
∞∑

k=N+1

[ãk cos((2k − 1)πx) + b̃k sin((2k − 1)πx)],

where ãk = 2−k, b̃k = 2−k/k, k > N , is dense in L1(0, 1). However, from (5.1)
it follows that for such kind of functions p̃(x) for the corresponding eigenfunctions
systems of the direct and conjugate problems there holds: limk→∞ ‖u1

k‖‖v1
k‖ =∞.

That is, the condition of uniform minimal property (see [8] and references in
it) of the system does not hold, and therefore, it does not form even a basis in
L2(0, 1). �

Since adjoint operators possess the Riesz basis property of the root functions,
we obtain the corollary.

Corollary 5.2. Suppose that A14 = A23, A34 = 0, that is boundary value conditions
(2.2)-(2.3) belongs to type I. Then the set P of functions p(x) ∈ L1(0, 1), such that
the system of eigenfunctions of (3.5) for the loaded differential equations forms
Riesz basis in L2(0, 1), is everywhere dense in L1(0, 1). The set L1(0, 1)\P is also
everywhere dense in L1(0, 1).
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The results of this paper, in contrast to [28], demonstrate instability of basis
properties of the root functions of the problem with an integral perturbation of the
boundary value conditions of type I, which are regular, but not strongly regular.
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