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BASIC EXISTENCE AND A PRIORI BOUND RESULTS FOR
SOLUTIONS TO SYSTEMS OF BOUNDARY VALUE PROBLEMS

FOR FRACTIONAL DIFFERENTIAL EQUATIONS

CHRISTOPHER C. TISDELL

Abstract. This article examines the qualitative properties of solutions to sys-
tems of boundary value problems involving fractional differential equations.

Our primary interest is in forming new results that involve sufficient condi-

tions for the existence of solutions. To do this, we formulate some new ideas
concerning a priori bounds on solutions, which are then applied to produce

the novel existence results. The main techniques of the paper involve the in-
troduction of novel fractional differential inequalities and the application of

the fixed-point theorem of Schäfer. We conclude the work with several new

results that link the number of solutions to our problem with a fractional ini-
tial value problem, akin to an abstract shooting method. A YouTube video

from the author that is designed to complement this research is available at

www.youtube.com/watch?v=cDUrLsQLGvA

1. Introduction

“Although fractional differential equations are centuries old, it is surprising to
discover that much of the basic qualitative and quantitative foundational theory is
yet to be fully developed” [18]. Motivated by the above, in this work, our discussion
is centred around the following system of boundary value problems (BVPs) for
fractional differential equations of arbitrary order 0 < q < 1

Dq (x− x(0)) = f(t,x); (1.1)

Mx(0) +Nx(a) = b. (1.2)

Above: Dq represents the Riemann-Liouville fractional differentiation operator of
arbitrary order 0 < q < 1 (a precise definition is found in (2.1) a little later);
f : [0, a]×Rn → Rn; a > 0; the M and N are constant matrices in Rn×n; and b is
a constant vector in Rn.

In particular, this work addresses the following questions:

• What are sufficient conditions under which (1.1), (1.2) will have bounds on
its solutions?
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• What are sufficient conditions under which (1.1), (1.2) will have at least
one solution?

Investigations into these kinds of questions shed light on the basic theory that
supports advanced studies and applications of fractional differential equations to
nonlinear phenomena – and thus are of significant interest.

Recent articles that have examined existence and uniqueness of solutions to
fractional BVPs include [3, 5, 14, 16, 17, 27] where a variety of important methods
have been used, including differential inequalities and fixed-point techniques. The
approach herein differs from theirs in the sense that we formulate distinct differential
inequalities and use different sufficient conditions in our theorems.

This work is organised as follows: In Section 2 the preliminary notation is pre-
sented. Section 3 contains new a priori bound results for solutions to (1.1), (1.2).
The ideas rely on new differential inequalities applied to a particular Liapunov
function. Our results are novel for the vector (n > 1) and scalar cases (n = 1).
In Section 4, the a priori bound results from Section 3 are applied to provide new
existence results for solutions to (1.1), (1.2). The method employs the fixed-point
theorem of Schäfer [13, pp. 70–71]. Our results are new for both the vector and
scalar cases and we include several example that illustrates how to apply the new
ideas. Finally, Section 5 contains several new results that connect the number of
solutions to our problem with a fractional initial value problem, akin to an ab-
stract shooting method. For more recent and related research on qualitative and
quantitative properties of solutions to fractional differential equations, the reader
is referred to [6, 10, 11, 12, 18, 21, 22, 23, 24, 25] and the books [8, 9, 15].

2. Preliminaries

To understand the notation used in this work we now present some preliminary
ideas and definitions. Define the Riemann-Liouville fractional derivative and inte-
gral of order 0 < q < 1 of a vector-valued function y at a point t > 0, respectively,
by:

Dqy(t) :=
d

dt

1
Γ(1− q)

∫ t

0

(t− s)−qy(s) ds;

Iqy(t) :=
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds.
(2.1)

A solution to (1.1), (1.2) on the interval [0, a] is defined to be a function x : [0, a]→
Rn such that x(t) satisfies: (1.1) for all t ∈ [0, a]; and (1.2).

For u ∈ Rn we define the inner product as

〈u,u〉 := ‖u‖2

where ‖ · ‖ is the usual Euclidean norm, that is, ‖u‖ := (u2
1 + u2

2 + · · ·+ u2
n)1/2.

If A is a matrix, then we understand ‖A‖ to represent any norm that is compat-
ible with the above Euclidean norm.

We now provide a theorem on the equivalence between the fractional BVP (1.1),
(1.2) and a particular integral equation. The integral equation is of a more tractable
nature than the original problem (1.1), (1.2) and will be used in latter sections.
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Theorem 2.1. Let f : [0, a] × Rn → Rn be continuous. If the matrix (M + N) is
invertible then the fractional BVP (1.1), (1.2) is equivalent to the integral equation

x(t) = (M +N)−1b +
1

Γ(q)

∫ t

0

(t− s)q−1f(s,x(s)) ds

− (M +N)−1N
1

Γ(q)

∫ a

0

(a− s)q−1f(s,x(s)) ds.
(2.2)

Proof. For completeness, we provide a proof. An application of the fractional inte-
gral operator Iq to both sides of (1.1) and then an application of the Fundamental
Theorem of Fractional Calculus yields

x(t) = x(0) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s,x(s)) ds, t ∈ [0, a] (2.3)

and so substituting t = a into (2.3) we obtain

x(a) = x(0) +
1

Γ(q)

∫ a

0

(a− s)q−1f(s,x(s)) ds.

From the boundary conditions (1.2) we then obtain

Mx(0) +N

[
x(0) +

1
Γ(q)

∫ a

0

(a− s)q−1f(s,x(s)) ds
]

= b

which can be rearranged to form

x(0) = (M +N)−1b− (M +N)−1N
1

Γ(q)

∫ a

0

(a− s)q−1f(s,x(s)) ds.

Back-substitution into (2.3) then yields (2.2) as required. �

3. A priori bounds on solutions

We now examine a priori bounds on solutions for (1.1), (1.2). These results give
us geometric insight into potential solutions (1.1), (1.2) by providing us with an
estimate on their size and location without having explicit knowledge of solutions.
The ideas will be applied to prove the existence of solutions in the following section.
Our new a priori bound result for (1.1), (1.2) is now presented.

Theorem 3.1. Let f : [0, a]×Rn → Rn be continuous and let the matrices M and
(M +N) be invertible. If there exist non-negative constants β and L such that

‖f(t,u)‖ ≤ −2β〈u, f(t,u)〉+ L, for all (t,u) ∈ [0, a]× Rn; (3.1)

2‖M−1N‖2(1 + ‖(M +N)−1N‖) ≤ ‖(M +N)−1N‖ (3.2)

then all solutions x to (1.1), (1.2) satisfy the a priori bound

‖x(t)− (M +N)−1b‖ ≤ 2β‖M−1b‖2(1 + ‖(M +N)−1N‖)
+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1),

(3.3)

for all t ∈ [0, a].

Proof. Let x be a solution to (1.1), (1.2) on [0, a] and define the Liapunov function

r(t) := ‖x(t)‖2, t ∈ [0, a].

Now, by [2, Lemma 1], for all t ∈ [0, a], we have

Dq(r(t)− r(0)) ≤ 2〈x(t), Dq(x(t)− x(0))〉
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and so
Dq(r(t)− r(0)) ≤ 2〈x(t), f(t,x(t))〉. (3.4)

From Theorem 2.1 the equivalent integral representation for (1.1), (1.2) is given in
(2.2). Thus, for all t ∈ [0, a] we have

‖x(t)− (M +N)−1b‖

≤ 1
Γ(q)

∫ t

0

(t− s)q−1‖f(s,x(s))‖ ds

+ ‖(M +N)−1N‖ 1
Γ(q)

∫ a

0

(a− s)q−1‖f(s,x(s))‖ ds

≤ 1
Γ(q)

∫ t

0

(t− s)q−1 [−2β〈x(s), f(s,x(s))〉+ L] ds

+ ‖(M +N)−1N‖ 1
Γ(q)

∫ a

0

(a− s)q−1 [−2β〈x(s), f(s,x(s))〉+ L] ds

=
1

Γ(q)

∫ t

0

(t− s)q−1 [−2β〈x(s), Dq(x(s)− x(0))〉+ L] ds

+ ‖(M +N)−1N‖ 1
Γ(q)

∫ a

0

(a− s)q−1 [−2β〈x(s), Dq(x(s)− x(0))〉+ L] ds

≤ 1
Γ(q)

∫ t

0

(t− s)q−1 [−βDq(r(s)− r(0))] ds+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1)

+ ‖(M +N)−1N‖ 1
Γ(q)

∫ a

0

(a− s)q−1 [−βDq(r(s)− r(0))] ds

= −βIq[Dq(r(t)− r(0))] + ‖(M +N)−1N‖(−βIq[Dq(r(a)− r(0))])

+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1).

Where we have applied (3.1) and (3.4).
Applying the Fundamental Theorem of Fractional Calculus, we see

‖x(t)− (M +N)−1b‖
≤ β[r(0)− r(t)] + β‖(M +N)−1N‖[r(0)− r(a)]

+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1)

≤ β‖x(0)‖2 + β‖(M +N)−1N‖[‖x(0)‖2 − ‖x(a)‖2]

+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1).

Using the boundary conditions (1.2) in the previous line we have

‖x(t)− (M +N)−1b‖
≤ β‖M−1(b−Nx(a))‖2 + β‖(M +N)−1N‖[‖M−1(b−Nx(a))‖2 − ‖x(a)‖2]

+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1).

Now, using the inequality

‖M−1(b−Nx(a))‖2 ≤ 2‖M−1b‖2 + 2‖M−1Nx(a)‖2

we obtain

‖x(t)− (M +N)−1b‖
≤ 2β‖M−1b‖2(1 + ‖(M +N)−1N‖)
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+ β‖x(a)‖2(2‖M−1N‖2 + ‖(M +N)−1N‖(2‖M−1N‖2 − 1)))

+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1)

≤ 2β‖M−1b‖2(1 + ‖(M +N)−1N‖) + L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1).

Above, we have employed (3.2).
Thus, the a priori bound (3.3) holds for all solutions to (1.1), (1.2). �

In the scalar case (n = 1) in (1.1), (1.2) we have the following new result as a
corollary of Theorem 3.1.

Corollary 3.2. Let f : [0, a]×R→ R be continuous and with (the numbers) M 6= 0
and M +N 6= 0. If there exist non-negative constants β and L such that

|f(t, u)| ≤ −2βuf(t, u) + L, for all (t, u) ∈ [0, a]× R,
2|N/M |2(1 + |N/(M +N)|) ≤ |N/(M +N)|

then all solutions x to (1.1), (1.2) satisfy the a priori bound

|x(t)− b/(M +N)| ≤ 2β|b/M |2(1 + |N/(M +N)|)
+ L(1 + |N/(M +N)|)aq/Γ(q + 1), for all t ∈ [0, a].

Remark 3.3. If (3.1) holds with β = 0 then we enter the classically-important ter-
ritory of fractional differential equations with uniformly bounded right-hand sides,
with the bound on solutions simplified accordingly in (3.3).

4. Existence of solutions

We now apply the results of Section 3 to generate new existence results for
solutions to (1.1), (1.2). Our main existence results employs the ideas of Theorem
3.1.

Theorem 4.1. If the conditions of Theorem 3.1 hold, then the fractional boundary
value problem (1.1), (1.2) has at least one solution.

Proof. We apply Schäfer’s fixed-point theorem [13, pp.70–71]. Consider the normed
space

(C([0, a]; Rn), ‖ · ‖0)
which consists of the space of continuous, vector-valued functions on [0, a] and the
maximum norm

‖x‖0 := max
t∈[0,a]

‖x(t)‖.

Also consider the family of equations

x = λFx, λ ∈ [0, 1) (4.1)

where F : C([0, a]; Rn)→ C([0, a]; Rn) is defined by

[Fx](t) : = (M +N)−1b +
1

Γ(q)

∫ t

0

(t− s)q−1f(s,x(s)) ds

− (M +N)−1N
1

Γ(q)

∫ a

0

(a− s)q−1f(s,x(s)) ds.

Now, showing there is an x ∈ C([0, a]; Rn) such that x = Fx is equivalent to
showing (1.1), (1.2) has at least one solution.
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To apply Schäfer’s theorem, we note that F is continuous and compact, see, for
example, [18]. In addition, we show that the set of solutions to the family (4.1) is
bounded. This is equivalent to showing that, for each λ ∈ [0, 1), solutions to the
following family of boundary value problems

Dq (x− x(0)) = λf(t,x), (4.2)

Mx(0) +Nx(a) = λb (4.3)

are bounded, with the bound independent of λ. Let xλ be a solution to (4.2), (4.3)
for fixed λ ∈ [0, 1). We show that λf satisfies the conditions of Theorem 3.1. If
(3.1) holds then we multiply both sides by λ ∈ [0, 1) to obtain

‖λf(t,u)‖ ≤ −2β〈u, λf(t,u)〉+ λL ≤ −2β〈u, λf(t,u)〉+ L

and so λf satisfies the conditions of Theorem 3.1. Thus,

‖xλ(t)− (M +N)−1b‖ ≤ 2β‖M−1N‖2(1 + ‖(M +N)−1N‖)
+ L(1 + ‖(M +N)−1N‖)aq/Γ(q + 1), for all t ∈ [0, a].

with the bound independent of λ.
Schäfer’s theorem now can be applied to yield the existence of at least one

x ∈ C([0, a]; Rn) such that x = Fx – equivalently showing (1.1), (1.2) has at least
one solution. �

Remark 4.2. If the conditions of Theorem 3.1 hold with β = 0 then we obtain a
result of classical importance: if f is continuous and bounded (by L) on [0, a]×Rn
then the system of fractional BVPs (1.1), (1.2) has at least one solution.

We now present some examples of vector-valued f that satisfy the conditions of
Theorem 4.1.

Example 4.3. Let f be defined on [0, 1]× R2 by

f(t, x1, x2) :=
(
−x1 − x2

−x2 + x1

)
.

This f satisfies the conditions of Theorem 4.1 with β = 1/
√

2 and L = 2.

Proof. We show that (3.1) holds with β = 1 and L = 2. We have

‖f(t, x1, x2)‖ =
√

2x2
1 + 2x2

2 ≤
√

2(|x1|+ |x2|).

Also,

−2β〈(x1, x2), f(t, x1, x2)〉+ L = −2β(−x2
1 − x2

2) + L ≥
√

2(|x1|+ |x2|)
for the choices β = 1/

√
2 and L = 2. �

Example 4.4. Let f be defined on [0, 1]× R2 by

f(t, x1, x2) :=
(

cos(x1x2t)
sin(x1x2t)

)
.

This f satisfies the conditions of Theorem 4.1 with β = 0 and L = 1.

Proof. We show that (3.1) holds with β = 0 and L = 1. We have

‖f(t, x1, x2)‖ =
√

cos2(x1x2t) + sin2(x1x2t) ≤ 1.

�
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Corollary 4.5. Consider the scalar version of (1.1), (1.2) so that n = 1. If the
conditions of Corollary 3.2 hold then the fractional boundary value problem (1.1),
(1.2) has at least one solution.

We conclude this section with an example that highlights how our a priori bound
and existence ideas come together for the scalar case (n = 1) which is new in its
own right.

Example 4.6. Consider the scalar BVP

Dq (x− x(0)) = −x7, x(0) + 0.25x(1/2) = 1.

All solutions are bounded a priori on [0, 1] and the problem has at least one solution.

Proof. Here we have a scalar-valued problem with: f(u) := −u7; M = 1; N = 1/4;
and b = 1. We show that the conditions of Corollary 3.2 hold. It is clear that f is
continuous. Consider

−2βuf(t, u) + L = 2βu8 + L ≥ | − u7|
for the choices β = 1/2 and L = 1. Finally,

2|N/M |2(1 + |N/(M +N)|) = 3/20 ≤ 1/5 = |N/(M +N)|.
Hence all of the conditions of Corollary 3.2 hold and conclude, by Corollary 4.5,
that our example has at least one solution. �

5. Counting solutions of boundary value problems

We conclude the work with several new results that link the number of solu-
tions to our problem (1.1), (1.2) with a fractional initial value problem, akin to an
abstract shooting method.

Theorem 5.1. Let f : [0, a] × Rn → Rn be continuous and let M be invertible. If
there is a constant P > 0 such that

‖f(t,u)− f(t,v)‖ ≤ P‖u− v‖, for all (t,u), (t,v) ∈ [0, a]× Rn (5.1)

then the fractional BVP (1.1), (1.2) has as many solutions as there are distinct
roots of the equation

G(s) := Ms +Nx(a; s) = b (5.2)
where x(t; s) is the unique solution of the initial value problem

Dq (x− x(0)) = f(t,x), x(0) = s. (5.3)

Proof. Part (i): Since f satisfies the Lipschitz condition (5.1), we know that for
each s the fractional IVP (5.3) has a unique solution for all t ∈ [0, a], which we
denote by x(t; s) (see, for example, [6, 18]).

Now, if s satisfies equation (5.2) then we claim that x(t; s) will also satisfy
the fractional BVP (1.1), (1.2). This follows because: the fractional differential
equations in (5.3) and (1.1) are identical; and (1.2) holds since

b = Ms +Nx(a; s) = Mx(0; s) +Nx(a; s).

If b1 and b2 are distinct roots of (5.2) then for all t ∈ [0, a] we have

x(t; b1) 6= x(t; b2)

because of the uniqueness of solutions to (5.3), so each distinct root of (5.2) will
yield a distinct solution of the fractional BVP (1.1), (1.2).
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Part (ii): Now let x = x(t) be a solution to the fractional BVP (1.1), (1.2). From
(1.2) it follows that x satisfies the fractional IVP (5.3) for the value of

s = M−1(b−Nx(a)).

The above value of s also satisfies (5.2) so that every solution to the fractional BVP
(1.1), (1.2) yields a root of (5.2). �

As can be seen from the previous proof, the continuity and Lipschitz assumptions
on f ensure existence and uniqueness of solutions to the fractional IVP (5.3). We
now generalize this idea.

Theorem 5.2. Let f : [0, a]× Rn → Rn. If, for each s, solutions to the fractional
IVP (5.3) exist and are unique on [0, a], then the fractional BVP (1.1), (1.2) has
as many solutions as there are distinct roots of the equation (5.2).

For the proof of the above theorem, the ideas mirror those of the proof of The-
orem 5.1 and so are omitted.
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