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BLOW-UP CRITERION FOR THE 2D EULER-BOUSSINESQ
SYSTEM IN TERMS OF TEMPERATURE

CHENYIN QIAN

ABSTRACT. In this article, we study the blow-up slutions for the 2D Euler-
Boussinesq equation. In particular, it is shown that if

A0 E
sup ———————dt < oo or / A2 dt < oo,
/0 r>2 Vrlogr 0 I HBgo,oc

then the local solution can be continued to the global one. This is an improve-

ment of classical Lipschitz-type blow-up criterion (|[V0]| ;100 ) in terms of the
t

temperature 6.

1. INTRODUCTION

The 2D incompressible generalized Boussinesq equations with the fractional
Laplacian dissipation is of the type

O+ (v-V)v+ AP + Vi =fey,  (x,t) € R* x (0, 00),

0+ (v- V)0 + kA0 =0,

V-v=0,

v(z,0) =", O(x,0) = 0",
where v = v(x,t) = (vi(z,t),v2(z,t)), 7 = w(x,t) and § = O(x,t) stand for,
respectively, the velocity vector field, the pressure and the temperature. Here, the
constants v > 0 and k > 0 denote viscosity coefficient and thermal diffusivity

coefficient respectively, and e; = (0,1). A = /—A is the Zygmund operator, and
A% is defined by the Fourier transform,

(1.1)

~

() =16, Fie)= [ s aa.

The study of the standard 2D incompressible Boussinesq system (with v > 0,k > 0
and a = 8 = 2 in (L.I)) can be traced to 1980s (see [5]). Later, there are many
works considering the global well-posedness problem for the standard 2D Boussinesq
system without the viscosity (v = 0, kK > 0) or without the thermal diffusivity
(v >0, k=0), see [1 7, [14, 5 19].
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Recently, the 2D incompressible Boussinesq system with fractional Laplacian
generalizations have attracted considerable attention. For example, Hmidi and
Zerguine obtained the global well-posedness of Euler-Boussinesq system with
1 < o <2in [I7). Hmidi, Keraani and Rousset obtained the global well-posedness
for the Euler-Boussinesq system with critical dissipation (namely, o = 1) in [I6].
There are many other related results to the Boussinesq equations system , we
refer the reader to [2], B 6, [9] 111, 18] 12], 13, 21]. From above mentioned result, we
see that it is difficult for us to get the global well-posedness for the system
with super-critical dissipation (o + 3 < 1). Therefore, people may turn to the
blow-up criteria in terms of velocity (v) and temperature (6). As for the blow-up
criterion for Boussinesq equations in terms of 6, we refer readers to [§] (see also
[7]), in which the authors Chae and Nam obtained the blow-up criterion ||V@||1 1
in the framework of L2. The purposes of this article is to establish some blow-up
criteria better than ||V|| 11 .

In view of [I7], one can establish the local well-posedness results for the system
(1.1) with 0 < @ <2,k > 0 and

v’ € By (R?) with dive® =0, 6° € B) *(R?), (1.2)

where s > 1+ % with p €]1, 0. Here, we define the function space of solutions as
follows

P = C([0,T]; By, (R%)) x (C([0,T); By3*(R?*) N L'([0,TT; By, (R%)),  (1.3)

where B;7%(R?) and Bj ;(R?) are Besov spaces (see Section 2). Now, we give the
main results of this article.

Theorem 1.1. Let 1/2 < a <1 and (v,0) € x7¥ be the local unique solution of
(1.1) with initial data satisfying (1.2)), where T* is the maximal existence time. If

T* 1—
A0 2
sup —————dt < o0, 1.4
/0 TZFQ) vrlogr (1.4)

or
-
/ IAY=20]| 50 dE < o0, (1.5)
0 00,00

then the solution (v,0) can be continued beyond T*.

2. NOTATION AND PRELIMINARIES

We begin this section with dyadic decomposition. Let S be the Schwartz class
of rapidly decreasing functions. Let functions x, ¢ € S(R?) supported in B = {¢ €
RY: |¢] <4/3} and € = {£ € R?: 3/4 < |¢| < 8/3} respectively, such that

Y w(2776) = 1,¥¢ e R\{0},
JEZL
X+ w2776 =1,V e R
j=0
For u € &, we set
Aqu=x(D)u YgeN, Au=¢(27D)u Vq€Z,
Agu=p(279D)u.
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The following low-frequency cut-off will be also used:
Squ = Z Aju and S,u= Z Aju

—1<j<q-1 i<q—1
We now recall the definitions of Besov spaces through the dyadic decomposition.
Let s € R, p,q € [1,00], the inhomogeneous Besov space Bg,q(Rd) is the set of
tempered distribution u such that

lull gy, = (27°l14;ullLr) ,, < oo
To define the homogeneous Besov spaces, we first denote by S’/P the space of

tempered distributions modulo polynomials. Thus we define the space ].3;7 q(Rd) as
the set of distribution u € §’/P such that

lull s, = (21| 4julis) < oo

We point out that if s > 0 then we have By  (R?) = B;q(Rd) N LP(R%) and

lull g, = llull sy , + lullzo-

In our next study we require two kinds of coupled space-time Besov spaces. The
first is defined in the following manner: for 7' > 0 and ¢ > 1, we denote by L3.B,
the set of all tempered distribution u satisfying

lulls ;= 1 (2 Agullze) Ny, < oo.

The second mixed space is ETTB;& which is the set of tempered distribution u
satisfying

= . . [9a5| A N
lullzy 5, = (21 Agullizer) < .

3. PROOF OF MAIN RESULTS

In this section we use ®j to denote function of the form
Dy (t) = Coexp(...exp(Cot)...),
—_———
k times
where Cy depends on the involved norms of the initial data and its value may vary
from line to line up to some absolute constants. We will make an intensive use

(without mentioning it) of the following trivial facts
t

/Ot Op(7)dT < Di(t) and exp (/o (I)k(T)dT> < Ppyq(t).

Firstly, we introduce a pseudo-differential operator R, defined by R, := A=%0; =
AR, 0 < a < 1, where R := % is the usual Riesz transform. For (1.1, the
vorticity equation is

Ow +v-Vw = 010, (3.1)
and the acting of R, on the temperature equation, we have
RO +v- VR + kARl = —[Rq,v - V]0. (3.2)
Denote F = w + R,60. Thus we obtain
OF +v-VF = —[Rq4,v-V]b. (3.3)

Firstly, we give the following crucial Lemmas which are useful for us to proof the
main results.
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Lemma 3.1 ([4]). Assume thatv is divergence-free and that f satisfies the transport
equation on RY,
atf +v- Vf =9
fli=o = fo.

There exists a constant C, depending only on d, such that for all 1 < p,r < 0o and
t € Ry, we have

(3.4)

t
g, < Colmg, + lalzyioy ) (1+ [ 190@limar). @5)

Lemma 3.2 ([17]). Let v be a solution of the incompressible Euler system on R?
ow+v-Vuo+Vr = f,
v(z,0) = 2°, (3.6)
dive = 0.
Then for s > —1, (p,r) € (1,00) x [1, 00] we have

t
lollzpe (g ) < CeXVO (015, + / VO (D)l dr),  (37)

with V(t) =[5 [Vo(7)||p=dr.

Lemma 3.3. Let a € (0,1), v be a smooth divergence-free vector field.
(i) for every (s,p,r) € (—1,) X [2,00] X [1,00], there exists a constant C > 0

such that
l[Ras v V16ll5;, < CIVolo (16l pgse + 101120 (3:8)
(ii) for every (r,0) € [1,00] X (1,00) and € > 0, there exists a constant C' > 0
such that
[Ravo- Volas,, < Clwllim + lollze) (10l pgr o +162e) . (39)

Proof. Part (i) can be found in [2I, Proposition 3.3]. For the second part, we can
imitate the proof of [16] Theorem 3.3(2)] to get (ii). We omit the detail here. O

Lemma 3.4. Let o € [0,2], K > 0 and v be a smooth divergence-free vector-field of
R2. Let 0 be a smooth solution of

00 +v-VO+ kA0 = f,
0(x,0) = 6°.
Then (i) for every p € [1,00], p € [1,00], s > —1 one has (see [17])

(3.10)

t
e < CEVO (1160 5. 3 / .
16017, 5, < Ce (160 (168 + [ Toddr + 1 leyisy,) - B0
with
t
V() = / IVo()llz~dr, Ta(t) = VO ()55, Lroo (5).

(ii) for every p € [1,00], we have the LP estimates (see [10])

t
16l1e < [16%0120 + / 1£() o (3.12)
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(i11) for every p € [1,00] (see [16])

t
10055, < CUP g, + 1 1ezm,) (1+ [ IV imtr).  (313)

(iv) for p € (1,00), p € [1,00] and f = 0, there exists a constant C' such that
(see [17])

sup 277 || Ag| Ly Lo < ClE°l Lo + ClIE% | Loe [l - (3.14)
qe

Proof of Theorem[I1. By using the above Lemmas and the equation (3.3)), we first
estimate ||Vov(t)||L~. We do this in several steps.

Step 1: Estimation of ||w(¢)||La, for some max{2,p} < a < co. From (3.3)), for any
t < T*, by Lemma (ii) we have

t
IF@)llze < IF(0)[] e +/O I[Ra;v - VIO(7)]|Ledr. (3.15)
Note that (see [I0, p 516]) [ A*Ra6|Ra6]* *Rabdr > 0, by (3:2) we have
t
IRaB(®)llze < [Rab°|Le +/ I[Ra;v - VIO(7)|Ledr. (3.16)
0

Since v° € By, 8 > 14 2/p, we see that w® € IP N L™, and for §° € By
with 0 < o < 1, we have #° € LP N L™ note that p < a < 0o, the embedding

s—a—242 —at2 _
B1“ — B, CR Bi,1 L B;l", we have R,0° € L From (B.15) and
(3-16) we obtain
lwllze < NIF@)llze + [Rab(t)] Lo
. . t (3.17)
< O(J& oz + 160 5:) +c/0 |[Rarv - VIB(r) | e
Using the classical embedding BY) | < L, and Lemma (i), we have
I[Ra,v - VIO(@)||e < Cll[Rasv- VIOl 5o, (318)
< CIT0Olex (100 e + 100)10)- |
From [|0(t)]|za < [|0°||za,Vt > 0, it follows that
Jw®)lze < € (IO lzons + 16°) oo )
¢ (3.19)
+C [ 1ol (100 gy + 10720 )
According to Gronwall’s inequality we obtain
C 0 11—
ol e < CeCte N Minisn (3.20)

Next we estimate ”0HL}B1"1” let N € N, by the Littlewood-Paley decomposition,
by condition (T.4) we see that
H9||LgB;;f

< NSwllypios + D 2707 Agbll e
qg=N
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< CH|6°]| = +C/ D AN T [ poedr + Y 27T A 1
0<g<N >N

< Ct]|6°|| e +c/ ST 29| A7) podr + D 290 A1y

0<g<N q>N

1A1=20(r) 1.
<C qu \/bl 7d
<O<§<:N 08 /0 ffig’ Vrlogr T

+ O[]0 g +C > 20070 A 11
q>N

< CH)6°) oo + C2V% \/blogh + C > 290 70F D A 0|11 1

q>N

Since @ > 1/2, we choose a large enough such that 1 — 2« 4+ 4/a < 0, and using

Lemma [3.4] (iv), we have

— 2
> 200D AG gy e
q>N

< Z2q(1 2(x+ )(HHOHLG+||90“L°°/ ||w ||Lad’7'> (321)

q>N
< CY[6°]| e + 2V 20F 6] o /Ot [w(T)l|LedT.
Therefore,
101151 < Ot + DI pmripe +C2VEBEF
+ 2N (=20 D100 oo /t [w(T)[| e dr,
0
for any 0 < € < 1/2. Setting b = N and selecting N as follows

_ [log (e+ fot |w(T)||LedT)
(20 —1—2/a)log2

| +2.

Then

1

t 1ie
||9HL}BH < C(t+ D)%) prize + C|log (e+/ loledr)|" . (3:22)
) 0

Combining ({3.20) with (| , we have

t %+e
1611 1 g1s < Ot + )60 Loorre + O[log <e +/ Hw(T)HLadT)]
- 0

CHGHLIB ?)}%4_6 (323)

<Ct+1))0° ponre + C[log (e +tCee

lie
< CE 4+ 1) (0% e +1) + ClOIES S, .
tPoo,1
it follows that
10y pr-a < CL+t+¢2).

By (3.20), we obtain

[w®)llLa < P1(t), (3.24)
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where @ (t),k =1,2,3,... is same the as as in subsection 3.3.

Step 2: Estimation of ||w(t)||zs. By using the maximum principle for the transport

equation ({3.3) we have
t
IF @O~ < 1F Ol + [ NRawv- V10 i (3.25)
By using Lemma (ii) with p = oo, we see that (3.2) follows that

t
[RaO(t)|| L < [Rab|l Lo +/ IR, v VIO(T)]| o< dT- (3.26)
0

s 2
For 0° € By % with 0 < a <1, s > 1+2/p, we have B — Boo? P Bioi?,
we have R,0° € L>. From (3.25)) and (3.26)) we obtain

[wllzee < IF @)z + [Rab(t)]| Lo

o o t (3.27)
<l + 10 e +2 [ R VIO st
Using the classical embedding BgO’I — L°°, and Lemma (i), we have
[[Rasv- VIollz= < Cll[Ravv- Vidllsg
(3.28)
< C(Jwllz + Iwllze) (18]l gei-o + 16]e ) -
Combining (3.27)) and (3.28]) we have
oI
i
<C+C [l + 1) (10 ey + 107 se) dr
(3.29)
< C+ lwlzmze (1615 pesi-e + 1620 )
t
+€ [ ol (166 pegye + 1600
i ,
We claim that
16113 pesi-e < 210, (3.30)

for some suitable € > 0. In fact that, from step 1 and the Lemma [3.4] (iv) we have
101715 < B1(0)
and then for every o < «, we have

101225z, < 10llzms < ®1(0)

a,1 —

We choose that ¢ = a—1/a, and we keep in mind that a satisfies 1 —2a+4/a < 0,
therefore 2o — 1 — 4/a > 0, we choose ¢ satisfies 0 < € < 2a — 1 — 3/a, then we
have e+1—a < o —3/a = 0 — 2/a (here we note that the selected parameter a is
make sure o > 3/a, and we have 0 — 2/a > 0). Therefore, we have the embedding

By Y = By, — BL [/ < BT, and we finally obtain (3:30). Thus, by

00,1

(3.30) and step 1, one has

(Ol < @10+ C [ o)l (16()

peti-a + ||0°||La) dr.  (3.31)
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Again using (3.30) and Gronwall’s inequality, we obtain
[w(®)l[ee < Po(2).

Step 3: Estimation of ||Vv(t)| L. By using Lemma 3.1 and Lemma [3.4(iii), from

(13.2) and (3.3) we have
IOl +I R8O, < (C+ 1R VIl

Thanks to Lemma [3.3] and by step 1, step 2, we have
I[Ra,v - V10l Ly o,

) A+ 9l ), (332)

,1

¢ (3.33)
<c / (o(Mllz + (=) (10| pesi-e + 100122 ) dr < @ (2).
Therefore, we have
lo®llpe, , < IFOlp,, +IRabElpy, < Pat) (14 [Vl 2~ ) -
On the other hand, we have
IVo(t)llz < [VA_0()]~ + D A, V0(t)]
geN
(3.34)

< lw®)llze + llw®llpo,,
< 01 (0) + (Ol -
Using ([3.34)), we have

¢
lw(®)l e, , S‘pz(t)<1+/0 ||w(T>HBgoyldT).
From Gronwall’s inequality we obtain [[w(t)[|go = < ®3(t). Going back to (3.34),

we obtain
V[ Lee < @3(t).
Next, we give the estimate of [[v(t)| s ., [16(2)]

By % — B1 7. By Lemma ( ), we have

Bie- Since s > 1+ 2/p, we have
P,

10(E)]|+ oo, p1—a +/ 10(7) || g2 dT<CeCV(t)(1+t)H90H w
LE (B Boon 1 (3.35)

< CeVI(1 4 t)Hé)OHBs—la-
On the other hand, by Lemma [3.2] we have

[0()]| oo B < CeCV ||110||Bs / 6(7 Bb adT).
Therefore, by the embedding ngl — L* we have
t
PRI
< sup lo(r Bs a/ 10(T)|I g1, dr (3.36)
0<r ool
<ceCV<t>(1+t)||90|B; (o / 165z mclr).
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Applying (3.36)) and (3.11]), the estimate of 6 reads as follows
t
100 7 g + [ 1667

< CeCV(t) <H90

B;‘ldT

t
b0+ [ 190 (o)) (337)
t
< CeV O+ )6 o (14 00135, +/ 1007 30l ).
P ’ 0 P,
Combining the estimates of v (applying Lemma again) and ([3.37)), we have

t
s+ | 10 s; i

lo(®)ls; , + 110(2)]

t
< CeCVO(1 4 t)||90||B,sfla (1 + []2°] B:, +/ ||9(T)‘|Bs—1ad7') (3.38)
D, ’ 0 p,

<@u()(1+ /Ot 167 ps-mdr).

Therefore, by Gronwall’s inequality, we finally obtain

o055, + 10Ol + [ 1667

This completes the first part (when assumption holds) of this theorem.

The proof of the second part (when assumption holds) of this theorem is
quite similar to the one in the first part. The main difference is the estimates of
|w||ze in step 1. We begin with (3.18), and by the embedding B?, < L* and
Lemma [3.3] (i), we have

[[Ra,v- VIO(E)||Le < Cl[[Ra,v- VIO 50,

B;ldT S @5(t). (339)

(3.40)
< Ve lize (6@ 5 + 100
It follows that
Jo®)llze < € (Je®lronrs + 16 5ee )
t (3.41)
+C [l (10 + 1070 )
According to Gronwall’s inequality we obtain
clle —a
ol < CeCte 1 Nutnis (3.42)

The estimate of [0 1 g1—o is as follows, let N € N, by the Littlewood-Paley de-
composition, by condition (1.5) we see that
pyee
< HSNGHLgBi;g +[I(Id — SN)GHLgB;;f
w q(1-a)
< NSwbllypiog + D 270 Agbll L 1o

q>N

t 1/2
< Ct)e%)|~ + C / (32 1A 0m)3) Tdr+ 3D 2907 Al

0<g<N q>N
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t
< C\/N/ A0 | o, _d7 + CHll°][ = +C Y 2907 F D A0 1 1
0 00,00 t

q>N

< CVN + 0% oo + C > 29070F D A0 11 1.
q>N

Then, as for (3.21]), we can choose suitable N such that
t 1/2
1603515 < CC+ D]z +Clog (e +/ lo()lzedr)] . (3.43)
P e 0

Combining ({3.42)) with (3.43)), we have
101l p1og < Pa(?).
For the rest, we can follow the same process as above, and complete the proof. [J
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