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NUMERICAL SOLUTIONS TO HEAT EQUATIONS VIA THE
SPECTRAL METHOD

MOHAMED ABDELWAHED, NEJMEDDINE CHORFI, VICENŢIU RĂDULESCU

Abstract. In this article we study a discretized version of the heat equation.
For the time semi-discrete problem, we use an implicit Euler’s scheme, and

for the space discretization we used the spectral method. We estimate for the

error between the exact and approximated discrete solutions, and illustrate
the features of our method with numerical examples.

1. Introduction

Let Ω ⊂ Rd, d = 2, 3 be a bounded connected domain, with boundary Γ = ∂Ω
that is assumed Lipschitz continuous, and let T be a positive real number. We
consider the heat equation

∂u

∂t
−∆u = f in Ω×]0, T [,

u = 0 on ∂Ω×]0, T [,

u(·, 0) = u0 in Ω,

(1.1)

where f ∈ L2(Ω×]0, T [) and u0 ∈ L2(Ω) are given, and u is the unknown function.
This model was studied in [1] using the finite element discretization. The aim of

this work is to extend this study to the spectral discretization method known for
its high precision [4]. The spectral element method is used for the discretization of
elliptic equations with discontinuous coefficients. This method is also used for the
heat diffusion in an inhomogeneous medium, see [2]. A posteriori analysis of the
spectral discretization of the heat equation is presented in [6].

We begin by doing the time discretization of the heat equation using an implicit
Euler scheme. The existence and uniqueness of the solution are established, and an
error estimate of order 1 in time is presented. Then, we use the spectral method
for space discretization and we prove an error estimate.

This article is organized as follows. We begin by presenting in section 2 the vari-
ational formulation of the problem and the proof of existence and uniqueness of the
solution. Section 3 is devoted to the time and space discretization problems. The
error estimates on time and space are proved in section 4. Finally some numerical
results are presented in section 5.
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2. Continuous problem

We first study the variational formulation of problem (1.1). Then we present
the existence and uniqueness of the solution. In the following, we use the classi-
cal Sobolev spaces Hs(Ω) and Hs

0(Ω) endowed with the norm ‖ · ‖Hs(Ω) and the
seminorm | · |Hs(Ω). We use the following notation (see [9, 10]):

• (·, ·) is the scalar product defined on L2(Ω) and by extension, the duality
paring between H−s(Ω) and Hs

0(Ω),
• L2

0(Ω) is the space of functions in L2(Ω) with a null integral,
• C0(0, T,X) the space of continuous functions from [0, T ] with values in X

a Banach space with associated norm ‖ · ‖X ,
• L2(0, T,X) the space of square integrable functions from [0, T ] with values

in X with associated norm

‖v‖L2(0,t,X) =
∫ t

0

‖v(., s)‖2Xds.

2.1. Variational formulation. Problem (1.1) admits the following variational for-
mulation. Find u ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) such that for all t ∈]0, T [,

u(·, 0) = u0 in Ω; (2.1)∫
Ω

∂u

∂t
(x, t)v(x)dx+

∫
Ω

∇u(x, t)∇v(x)dx =
∫

Ω

f(x, t)v(x)dx ∀v ∈ H1
0 (Ω). (2.2)

It is shown in [8, Theorem 7.2.1], [7], [11] that problem (2.1)-(2.2) has a unique
solution u ∈ C0(0, T, L2(Ω)) ∩ L2(0, T,H1

0 (Ω)).
By choosing v = u in (2.2) and integrating on ]0, t[, 0 ≤ t ≤ T , we deduce the

following stability condition:

[u](t) ≤ C
(
‖u0‖2L2(Ω) + ‖f‖2L2(0,t,H−1(Ω))

)1/2

, (2.3)

where [· · · ] is a norm defined for all w ∈ L2(0, t,H1
0 (Ω)) by

[w](t) =
(
‖w‖2L2(Ω) + ‖w‖2L2(0,t,H1

0 (Ω))

)1/2

(2.4)

and C is a constant depending only on the domain Ω.
In the same way by taking v = ∂u

∂t in (2.2) and if u0 ∈ H1
0 (Ω) we obtain

|u(t)|2H1
0 (Ω) + ‖∂u

∂t
‖2L2(0,T,L2(Ω)) ≤ |u0|2H1

0 (Ω) + ‖f‖2L2(Ω×(0,T )) (2.5)

which implies that u is in L2(0, T,H2(Ω)).

3. Discrete problem

3.1. Time discretization. Let T be a fixed positive number and f be a function
in C(0, T,H−1(Ω)). We consider the partition of [0, T ] into I equal subintervals
[ti−1, ti], 1 ≤ i ≤ I with t0 < t1 < · · · < tI = T and δt = ti − ti−1 = T/I.

Let Wδt be the space of functions vδt which are continuous on [0, T ] and affine
on each subinterval [(i− 1)δt, iδt], 0 ≤ i ≤ I, with values in L2(Ω). For each family
vi ∈ L2(Ω), 0 ≤ i ≤ I, we associate the function vδt ∈ Wδt equal to vi on iδt,
0 ≤ i ≤ I. This function is written for 0 ≤ i ≤ I,

vδt = vi +
ti − t
δt

(vi − vi−1), ∀t ∈ [ti−1, ti]. (3.1)
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For simplicity, we denote by f i = f(x, ti). Using the implicit Euler scheme, the
time discrete problem is written

ui − ui−1

δt
−∆ui = f i in Ω, 1 ≤ i ≤ I,

ui = 0 on ∂Ω, 1 ≤ i ≤ I,
u0 = u0 in Ω.

(3.2)

This problem admits the following equivalent variational formulation. Find ui in
L2(Ω)×H1

0 (Ω)I (1 ≤ i ≤ I) which satisfies

u0 = u0 in Ω, (3.3)

and for each v ∈ H1
0 (Ω),∫

Ω

ui(x)v(x)dx+ δt

∫
Ω

∇ui(x)∇v(x)dx

=
∫

Ω

ui−1(x)v(x)dx+ δt

∫
Ω

f i(x)v(x)dx.
(3.4)

Using the Lax-Milgram theorem, we deduce that problem (3.3)-(3.4) has a unique
solution ui ∈ (H1

0 (Ω))I , 1 ≤ i ≤ I.
Moreover, by taking v = ui in (3.4) we obtain

‖ui‖2L2(Ω) + δt‖∇ui‖2L2(Ω) ≤ ‖u
i−1‖2L2(Ω) + δt‖f i‖2H−1(Ω). (3.5)

Summing with respect to i, we deduce the following stability condition on the
solution ui, 1 ≤ i ≤ I:

‖ui‖2L2(Ω) + δt

i∑
l=1

‖ul|2H1(Ω) ≤ C
(
‖u0‖2L2(Ω) + δt

i∑
l=1

‖f l‖2H−1(Ω)

)
, (3.6)

where C is a constant independent of δt.
For vδt in Wδt and if ui ∈ (H1(Ω))I , we define the norm

[|vδt|](ti) =
(
‖vi‖2L2(Ω) + δt

i∑
l=1

‖vl|2H1(Ω)

)1/2

.

We remark that

[vδt](ti) =
(
‖vi‖2L2(Ω) +

∫ ti

0

|vδt(·, s)|2H1(Ω)ds
)1/2

.

Considering that∫ ti

0

|vδt(., s)|2H1(Ω)ds =
i∑
l=1

∫ tl

tl−1

|vδt(., s)|2H1(Ω)ds

and using (3.1) we obtain

δt|vl−1|2H1(Ω) ≤
∫ tl

tl−1

|vδt(., s)|2H1(Ω)ds ≤ δt|v
l|2H1(Ω).

Computing the sum, we show finally that there exist two constants C1 and C2

independent of δt such that

C1[vδt](ti) ≤ [|vδt|](ti) ≤ C2[vδt](ti). (3.7)



4 M. ABDELWAHED, N. CHORFI, V. RĂDULESCU EJDE-2016/68

3.1.1. A priori error estimates. Let ei = u(ti) − ui, 1 ≤ i ≤ I and e0 = 0. By
writing problem (2.2) for t = ti we obtain∫

Ω

∂u

∂t
(x, ti)v(x)dx+

∫
Ω

∇u(x, ti)∇v(x)dx =
∫

Ω

f(x, ti)v(x)dx.

Next, observing that∫
Ω

(∫ ti

ti−1

∂u

∂t
(x, t)

)
v(x)dx =

∫
Ω

(u(x, ti)− u(x, ti−1))v(x)dx

and using (3.1), we deduce that for all v ∈ H1
0 (Ω), the sequence (ei)1≤i≤I is solution

of the problem∫
Ω

ei(x)v(x)dx+ δt

∫
Ω

∇ei(x)∇v(x)dx

=
∫

Ω

ei−1(x)v(x)dx+ δt
( 1
δt

∫
Ω

(∫ ti

ti−1

∂u

∂t
(x, t)dt− ∂u

∂t
(x, ti)

)
v(x)dx

)
.

(3.8)

Considering (3.6) with f i = 1
δt

( ∫ ti
ti−1

∂u
∂t (x, t)dt− ∂u

∂t (x, ti)
)

and using the fact that
∂2u
∂t2 ∈ L

2(0, T,H−1(Ω)) we deduce

[|u− uδt|](ti) ≤ Cδt‖
∂2u

∂t2
‖2L2(0,ti,H−1(Ω)) (3.9)

where C is a constant independent of δt. Using the norm equivalence (3.7), we
conclude that there exists a constant C independent of δt such that

[u− uδt](ti) ≤ Cδt‖u‖2H2(0,ti,H−1(Ω)). (3.10)

3.2. Space discretization. We suppose throughout this part that Ω is a rectangle
for d = 2 or a parallelepiped for d = 3.

For a positive integer N , we denote by PN (Ω) the set of polynomials with d
variables and degree ≤ N for each variable. Let ξ0 = −1 and ξN = 1, we define
(N −1) nodes ξj , 1 ≤ j ≤ (N −1) (which are the zeros of the polynomial L′N where
LN is the Legendre polynomial) and (N + 1) weights ρj , 0 ≤ j ≤ N satisfying the
Gauss-Lobatto quadrature formula on ]− 1, 1[∫ 1

−1

ψNdx =
N∑
j=0

ψN (ξj)ρj , ∀ψN ∈ P2N−1(]− 1, 1[). (3.11)

We recall the following formula (see [5]):

‖ψN‖2L2(]−1,1[) ≤
N∑
j=0

ψ2
N (ξj)ρj ≤ 3‖ψN‖2L2]−1,1[, ∀ψN ∈ PN (]− 1, 1[). (3.12)

Let F be the affine application which transforms ] − 1, 1[d (d = 2, 3) to Ω. We
introduce the discrete scalar product

(u, v)N =

{meas(Ω)
4

∑N
i=0

∑N
j=0 u ◦ F (ξi, ξj)v ◦ F (ξi, ξj)ρiρj , d = 2

meas(Ω)
8

∑N
i=0

∑N
j=0

∑N
k=0 u ◦ F (ξi, ξj , ξk)v ◦ F (ξi, ξj , ξk)ρiρjρk, d = 3

We suppose that u0 and f are respectively continuous on Ω and Ω×]0, T [. Using
the Galerkin method and numerical integration, the space discrete problem of (3.4)
is written as follows.
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Find uiN ∈ (P0
N (Ω))I , 1 ≤ i ≤ I such that

u0
N = IN (u0) in Ω (3.13)

and for 1 ≤ i ≤ I,

(uiN , v
i
N )N+δt(∇uiN ,∇viN )N = (ui−1

N , vN )N+δt(f i, vN )N , ∀vN ∈ P0
N (Ω), (3.14)

where IN is the interpolation operator from L2(Ω) to PN (Ω).

Proposition 3.1. Problem (3.13)-(3.14) has a unique solution (u0
N , u

i
N )1≤i≤I in

PN (Ω) × (P0
N (Ω))i and there exists a positive constant C independent of N such

that

‖uiN‖2L2(Ω) + δt

i∑
l=1

|ul|2H1(Ω) ≤ C
(
‖IN (u0)‖2L2(Ω) + δt

i∑
l=1

‖IN (f l)‖2L2(Ω)

)
(3.15)

Proof. Using the Lax-Milgram theorem, the Cauchy-Schwarz inequality and in-
equality (3.12), we show that (3.13)-(3.14) has a unique solution (u0

N , u
i
N )1≤i≤I ∈

PN (Ω)× (P0
N (Ω))i.

To prove (3.15), we begin by choosing vN = uiN in (3.14) and using the Cauchy-
Schwarz inequality, we obtain

(uiN , u
i
N )N + δt(∇uiN ,∇uiN )N

≤ (ui−1
N , ui−1

N )1/2
N (uiN , u

i
N )1/2

N + δt(INf i, INf i)1/2
N (uiN , u

i
N )1/2

N .
(3.16)

Using the inequality ab ≤ a2

2 + b2

2 , the Poincaré-Friedrichs inequality and the in-
equality (3.12), relation (3.16) becomes

1
2
‖uiN‖2L2(Ω) + δt‖∇uiN‖2L2(Ω) ≤

‖ui−1
N ‖2L2(Ω)

2
+ δt

(‖IN (f i)‖2L2(Ω)

2
+C‖∇uiN‖2L2(Ω)

)
where C is the Poincaré-Friedrichs constant. Finally, computing the sum on i, we
deduce the inequality (3.15). �

4. Error estimate

We establish now the error estimate between the solution u of the continuous
problem (1.1) and the solution (uiN )0≤i≤I of the discrete problem (3.14). We define
uNδt the function in Wδt equal to uiN on iδt.

Theorem 4.1. If f and u0 are respectively continuous on Ω× [0, T ] and Ω, we have
the following error estimates: There exists a constant C independent of δt and N
such that

[|uδt − uNδt|](ti)

≤ C
(

inf
vln∈PN (Ω)×P0

N−1(Ω)
0≤l≤I

(
[|uδt − vNδt|](ti) + ‖u0 − v0

N‖L2(Ω)

)
+ ‖u0 − INu0‖L2(Ω)

+
(
δt

i∑
l=1

[
inf

f lN∈PN−1(Ω)
‖f l − f lN‖L2(Ω) + ‖f l − INf l‖L2(Ω)

])1/2)
(4.1)
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Proof. Let (viN )0≤i≤N ∈ PN (Ω) × (P0
N−1(Ω))I . Considering that (uiN )0≤i≤I and

(ui)0≤i≤I are respectively the solutions of (3.14) and (3.4) and taking into account
that the quadrature formula (3.11) is exact for polynomials with degree ≤ 2N − 1,
we deduce that for all wN ∈ PN (Ω)

(uiN − viN , wN )N + δt(∇(uiN − viN ),∇wN )N

= (ui−1
N − vi−1

N , wN )N +
∫

Ω

(ui − viN )(x)wN (x)dx

−
∫

Ω

(ui−1 − vi−1
N )(x)wN (x)dx+ δt

∫
Ω

∇(ui − viN )(x)∇wNdx

+ δt(f i, wN )N − δt
∫

Ω

f i(x)wN (x)dx

(4.2)

By introducing f lN−1 in PN−1(Ω), then following the exactness of the quadrature
formula (3.11), for all wN ∈ PN (Ω),∫

Ω

f l(x)wN (x)dx− (f l, wN )N =
∫

Ω

(f l− f lN−1)(x)wN (x)dx− (INf l− f lN−1, wN )N

(4.3)
Summing over i in (4.3) and using the fact that

‖uδt − uNδt‖ ≤ ‖uδt − vNδt‖+ ‖uNδt − vNδt‖

we obtain (4.1). �

We define ΠN (respectively Π1,0
N ) the orthogonal projection operator from L2(Ω)d

(respectively H1
0 (Ω)d) onto PN (Ω) [5]. To obtain the order of convergence with

respect to N , we take vlN = ΠNu0 ×Π1,0
N ul and f lN−1 = ΠN−1f

l; 1 ≤ l ≤ i in (4.1)
and we use the polynomial approximation and interpolation results [3]. We obtain
the following theorem.

Theorem 4.2. Assume that f ∈ C0([0, T ] × Hσ(Ω)) and u0 ∈ Hσ(Ω), σ > d
2 .

Let (ui)0≥i≤I ∈ Hs(Ω), s ≥ 1 be the solution of (3.14). Then there exists C > 0
independent of δt and N such that

‖uδt − uNδt‖(ti) ≤ C
(
N1−s

(
‖ui‖2Hs(Ω) + δt

i∑
l=1

‖ul‖2Hs(Ω)

)1/2

+N−σ
(
‖u0‖Hs(Ω) + ‖f‖C0([0,T ],Hs(Ω))

))
.

Let u be the solution of (1.1). By writing

[|u− uNδt|] ≤ [|u− uδt|] + [|uδt − uNδt|]

and using the property (3.7) we obtain the following property.

Corollary 4.3. Let f ∈ L2(0, T,Hσ(Ω)) and u0 ∈ L2(0, T,Hσ(Ω)). If we assume
that the solution u of problem (1.1) is in L2(0, T,Hs(Ω)) then

[u− uNδt](ti)
≤ C1(δt+N1−s)‖u‖L2(0,ti,Hs(Ω)) + C2(δt+N−σ)(‖f‖L2(0,ti,Hσ(Ω)) + ‖u0‖Hσ(Ω)).

where C1 and C2 are constants independent of δt and N .
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Figure 1. Error on time for the solution (5.1)

Figure 2. Error on time for the solution (5.2)

5. Numerical results

Let hj be the Lagrange polynomial interpolation defined by

hj ∈ P([−1, 1]), hj(ξi) = δij , 0 ≤ i, j ≤ N

where δij is the Kronecker symbol.
We have then for each uiN ∈ P0

N (Ω)I solution of the discrete problem (3.14),

uiN (x, y) =
N−1∑
i=1

N−1∑
j=1

uiN (ξxi , ξ
y
j )hxi (x)hyj (y)

where (ξxi , ξ
y
j ) = F (ξi, ξj) and hxi h

y
j verify hxi h

y
j ◦ F = hihj .

If we consider U i the vector composed by the admissible solutions uiN (ξxi , ξ
y
j )

then the discrete problem (3.14) can be written as the matrix form

(D + δtA)U i = F i
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where D is a diagonal matrix of components ρrρs, 1 ≤ r, s ≤ N −1, A is the matrix
with components (∇(hihj);∇(hrhs)), 1 ≤ i, j, r, s ≤ N − 1 and F i is a vector with
components (ui−1

N (ξr, ξs) + δtf i(ξr, ξs))ρrρs, 1 ≤ i, r, s ≤ N − 1.
We note that D + δtA is a symmetric, positive definite matrix. The algorithm

is then solved using the gradient conjugate method.
We present in the following some numerical tests in order to confirm the theo-

retical results. The numerical results have been performed in dimension d = 2.

Figure 3. Error on space for the solution (5.1)

Figure 4. Error on space for the solution (5.2)

5.1. Convergence in time. We are interested in this case to the time convergence.
We consider the domain Ω = [−1, 1]2. Two examples of the exact solution are
tested. The first one is

u(t, x, y) = cos(πt) sin(πx) sin(πy) (5.1)

The domain is discretized with N = 20. T is taken equal to 1 and δt = 10−1, 10−2,
10−3 and 10−4. We present in Figure 1 the quantities log10 ‖u − uNδt‖H1(Ω)2 (in
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Figure 5. Convergence in space: Continuous solution (right), dis-
crete solution (left)

blue) and log10 ‖u− uNδt‖L2(Ω)2 (in red) as a function of log10(δt). For the second
test we consider a less regular solution

u(t, x, y) = t3/2(1− x2)5/2(1− y2)5/2 (5.2)

and we present in Figure 2 the same quantities as the Figure 1 for N = 20 a time
T = 0.1 and for time step δt = 5× 10−2, 10−2, 5× 10−3, 10−4. The obtained figures
show that the errors decrease, which prove the convergence of the method.

5.2. Convergence in space. In this test, we fix the time step δt = 0.01 and we
vary N from 5 to 22. We consider

u = (1 + t)(1− x2)(1− y2)

and T = 1. We present in figure 3 (respectively figure 4) the quantities log10 ‖u−
uNδt‖H1(Ω)2 (in blue) and log10 ‖u−uNδt‖L2(Ω)2 (in red) as a function of N (respec-
tively log10(N)). We remark that the error norm log10 ‖u− uNδt‖H1(Ω)2 decreases
until N = 10 and becomes sinusoidal for N > 10. The error log10 ‖u− uNδt‖L2(Ω)2

decreases until N = 10 and stagned for N > 10. These results are due to the fact
that the convergence order in time is less than that on space and that the time
variation polutes the space convergence. The isovalues of the exact and discrete
solutions for this case when δt = 0.01 and N = 22 are presented in Figure 5.

Figure 6. Physical test domain
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Figure 7. Physical test, g = 1

Figure 8. Physical test, g = 10

Figure 9. Physical test, g = 30

5.3. Physical interpretation. We consider the test presented in [12] where u
represents the temperature. The domain Ω is a rectangle [0, 10]× [0, 2] (see figure
6). We consider a variable boundary condition u = g at the inlet of the domain
and a fixed boundary condition u = 0 at the other parts. We consider T = 1,
δt = 0.01 and N = 40. We present respectively in figures 7, 8 and 9 the isovalues
of the discrete solution for g equal respectively to 1, 10 and 30. We remak the
convergence of the solution for the three cases which correspond to the thermic
convection in the direction of the x axis.

Remark 5.1. Although the spectral methods are known as highly order method
in space, we remark that they have the disadvantage of losing part of this accuracy
due to lower order of temporal discretization (often of order 1 or 2).
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