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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
ELLIPTIC EQUATIONS WITH SINGULAR GROWTH

YASMINA NASRI, ALI RIMOUCHE

ABSTRACT. In this article, we consider an elliptic problem with singular and
critical growth. We prove the existence and multiplicity of solutions for the
resonant and nonresonant cases.

1. INTRODUCTION

In this article we study the existence of nontrivial solutions to the semilinear
elliptic problem

u . .
—Au — MW = Af(2)u+ |[u* 2u in Q\ {0}, )
u=0 on 01,

where  is a bounded domain in RY (N > 3) with 0 € , A and p are positive

parameters such that 0 < p < i = (¥52)2, i is the best constant in the Hardy

inequality, 2* = % is the critical Sobolev exponent and f is a positive singular
function which will be specified later.

The study of this type of problems is motivated by its various applications. For
example, it has been introduced as a model for nonlinear Schrodinger equations
with a singular potential of the form:

2
~in% B Ap v = e, @) e BY xRY
where i is the imaginary unit and A denotes the Plank constant. This equation
describes Bose-Einstein condensates [111 2] and the propagation of light in some
nonlinear optical materials [13].

Equation is doubly critical due to the presence of the critical exponent and
the Hardy potential. If A < 0 and  is starshaped, using Pohozaev identity [15]
one sees that has no nontrivial solution. When f = 1 the problem has
been widely investigated, see [3], 6], [7, @] and the references therein.

In Jannelli [9], for f = 1, the following was proved:

(1) If0 < p < p—1, then has at least one solution u € H}(Q2) for all

0 < X < \{ where \|' is the first eigenvalue of the operator (—A — =) in H(Q).
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(2) If o —1 < p < fi, then (L.1)) has at least one solution u € Hg () for all
p* < A< A where

Jo, Te@F g

lz[*Y

peH @) [o Lol dy °

*_

and v = /It + /It — [t

Ferrero and Gazzola [7] showed the existence of solutions for A > A{’; Cao and
Han [3] extended the results in [7]. When f # 1, is a positive measurable function,
Nasri [14] extended the results of Jannelli [9] allowing f to be singular. Borrowing
ideas from [3] and [7], we give existence and multiplicity results when f is a singular
function. Resonant and non resonant cases are considered.

This article is organized as follows: in Section 2 we collect preliminary results
and state our main results, in Section 3 we present variational properties of ,
and in Section 4 we complete the proofs of the main results.

2. PRELIMINARIES AND STATEMENT OF MAIN RESULTS

Throughout this article we denote by C,C1,Cs,... generic positive constants;
Bp, is the ball centered at 0 with radius R; H~! is the topological dual of H}();
LP(Q) for 1 < p < +o0, denotes the Lebesgue space with | - |, its usual norm.

For all 0 <y < i, we endow the Hilbert space H} () := H,(£2) with the scalar

product

(u, v), = / (Vqu - M%Big)dx, Yu,v € H,(Q),
Q

and define ) ,
U 1/2
llull, = (/ (|Vu|2 — uj)dx) , Yue H,(Q).
Q |z
By Hardy’s inequality [8], this norm is equivalent to the usual norm in Hg (). Let
Fo={f:Q—R": lli|m0|x|2f(w) =0 with f € LS, (Q2\ {0})}.

Next we state several properties to be used later in this paper.
Lemma 2.1 ([5]). Let 0 < pu < i, A €R, f € Fy. The eigenvalue problem

e .
—Ae — MW =Af(x)e inQ 2.1)
e=0 on0Q,

admits non-trivial weak solutions in H} (), corresponding to

Neou(f) = (M),
where
0<A(f) <X (f) <+ — +oo.
if Q is CY1, then all weak solutions of are in H(Q)NW27(Q) for all 1 <
r< 255
Lemma 2.2 ([5]). If f € F», then the embedding H} () — L*(Q, fdz) is compact.
For 0 < 3 < 2, we set

Fa = {f € Fo: 30 < G < 2such that 0 < li|m0|x|ﬂf(x) < oo}.
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Lemma 2.3 ([3]). Let 2j; := 2(]1\\,[:25), if f € Fa., then the embedding H}(Q) —
LY, fdx) is:

(i) compact for all 2 < q < 2j.

(ii) continuous for all 2 < q < 2.

Definition 2.4. Let I € C'(H{(2),R), c € R. We say that I satisfies the Palais-
Smale condition at the level ¢, for short (P.S)_, if every sequence (u,) in HE(Q)
such that

c’

I(up) —»cin R and I'(u,) — 0in H () asn — +oo,
has a convergent subsequence.
Our main results, are the following three theorems.

Theorem 2.5. Suppose that f € Fo g, p € [0, — (#)2} and A ¢ o,(f).

(i) If N =3 and 1 < B < 2, then the problem (1.1) has at least one solution.
(ii) If N > 4 and 0 < 8 < 2, then the problem (1.1)) has at least one solution.

Theorem 2.6. Suppose that f € Fop, p € (i — ( )2 i) and there exists
NF) € 0, f) such that X € Ay, Ni(f)) with Ay = NE(f)=Spu( [ 2|~/ 2da) =2/,
Assume one of the following conditions hold:

(i) N=3and 7/5< <2,

(i) N=4and2/3< <2,

(iii) N>5and0< < 2.
Then problem admits v pairs of montrivial solutions where vy, denotes the
multiplicity of Ni. (f).

Theorem 2.7. Suppose that f € Fa g, p € [0, i — (%)%%)2[ Assume one of
the following conditions holds:
(i) N=3and 7/5 < 3 < 2,
(i) N=4and 2/3< <2,
(iii)) N>5and 0 < g < 2.
Then for all A > 0, the problem (L1.1)) admits at least one solution.

We prove our results using critical point theory. However the energy functional
associated to does not satisfy (P.S) because of the lack of compactness of the
embedding H}(Q) — L2 (Q) and H}(Q) — L*(Q, |z|~2dz), standard arguments
are not applicable. We follow Brezis-Nirenberg’s arguments in [2] to verify that
the energy functional to satisfies (P.S), condition on a suitable compactness
range. Then, by employing the technics introduced in [3] [7] we obtain some results
on Brezis-Nirenberg type problems for an elliptic equation involving critical growth
and singular coefficients.

3. VARIATIONNAL CHARACTERIZATION

The nontrivial solutions to (1.1)) are the non zero critical points of the energy

functional
/|vu\ do— 1 M ——/f\ 2 m——/\u|2 do. (3.1)



4 Y. NASRI, A. RIMOUCHE EJDE-2016/65

Let
o e (VP — i)
weH N0} (fpn [ul? da)2/>
From [I6], we know that S, is achieved by the family of functions
Ce
(2] IVF + |2/ VE)VE

Sy =

ur(z) =

with

4eN(f — = = ’ = =
cez(#)ﬁ”, Y=VEt+Vi—p Y =ViE-Vi—p

Lemma 3.1. Assume that f € Fa 5 and p < [, then Jy satisfies the (PS). condi-
tion for all c < %SIJLV/Q.
The proof of the above lemma is the same that in [6]. Fix & € N and let
H~ =span{ei, eg,...,ex}, HT =(H)L

Take always m € N large enough, so By, C {2 and consider the function &, : {2 —
R defined by

0 if 2 € By (0),
ém(z) ={m|z| -1 ifzeA,= By /m(0) \ Bi/m(0),
1 if z € By/m (0).
Then, as in [7], define the approximate eigenfunctions e* := &,e; for all i« € N

and the space H,, := span{el”, i = 1,...,k}. For all € > 0, consider the shifted
functions

o if 2 € Q\ By/m(0).
Lemma 3.2. For f € Fop, u< i and i # j(i,j=1,2,...,k), we have:

(i) llef" — eill — 0 as m — oo,

e lu < A (f) + Cm— Vs, (3.2)
(el )l < Cm72VER, (3.3)
lei Iz, ,, < Ae(f) + Cm72HoVEE, (3.4)

(ii) For A={ue€ H, :||ullz2@,5 = 1}, we have
max [ul, < AL(f) + Om™ 2V,
ue

The proof of the above lemma is essentially given in [3] with minor modifications.

Lemma 3.3. Let 0 < 8 < 2 and f € Fa 3. For m large enough and € small enough,
we have

€ \2
/ (|Vufn| - M(U:ZFQ) )dm < 55/2 + CeNT2m2ViTh (3.5)
Q

/ (us,)? dx > SZ:’/Q — CeNm2N V=1 (N=2) (3.6)
Q
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L/‘f(uZJde

. 7

J Joewi= e (2-5) _ 12Ty~ 24 B2V if < fi— (3582, (3.7)
CoeN— 2)/2|1n5| —CeN—2 ifu=p—(52)>

Proof. For the proof of (3.5) and (3.6) we argue as in [7]. We prove only (3.7)).
Since f € Fa, 3, we have

/ fu CheVAR=P)/2VEa—i if | < i — (%5)2
CoeN=2)/2|1n¢| if p=p— (%

and

/H@VM=/ﬂ@w—@€w%x
Q
ulCy
/f dx_2/f (e2(2 'v/f+(1)v/\/ﬁ)ﬁdw
Z/f(us) dx
2V

_c/ _
52|x|v/f+\g;|w/f)‘f( 2(L )7’/\/ﬁ+(%)7/\/ﬁ)‘/‘7

dr.

We have
e2VE g2V
(G VI G VRE — V(L)Y (Lt e 2(3) 2V Vi) Vi
< e2VEmY,

and

/ f dx
By (2l IV 4 [ V)R

1/m ,rN—l—BdT
§C — —
52r7f+r7/f)f

Vi-n i
< ot E 2 1me VT TN=1=8dr
o NI
™' T VA
< COm~Y 72,

Hence

/ )2dx > / f(ub)?de — Ce¥VimIm= —240
/ fu)?dx — Ce?Vip=240+2Vi-

For p < i — (2 8)2 we find the result. O
Now, we prove that the functional Jy has Linking geometry.

Proposition 3.4. Suppose that f € Fa 3 and there exists k € N* such that N, (f) <
A< N1 (f). Then:
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(i) There exist p,a > 0 such that Jx [op,nu+> a,
(ii) There exists R > p such that Jx |ags < p(m) with p(m) — 0 as m — +o0
where Q%, = (BRN H,,) & {rus, : 0 <r < R}.

Proof. For v € H', we have

/ <|Vu|2 - Wu )dz > ML ( )/qu2dx, (3.8)
using (3.8), Hardy and Sobolev inequalities, we obtain

1 A
Jy(u) > 5(1 )‘llz+1(f)) /Q <|Vu|2 - Wu da: - —/ lul? dx
1 A 1 "
> 5(1 A,}gﬂ(f))u . ﬁ)|Vu|§ — ClulZ.

Hence, we can choose |Vu|s = p sufficiently small and o > 0 such that

Ix loB,nm+> a.
For any u € H,, from the estimates of Lemma [3.2| we obtain

1 x
Ja(u) < Oym™2VE /qudx 2*/u2 dz

< Com™2VE=Fyl3. — 2—*|u 5 (3.9)

< Cgm_Nv A=n

Consequently,

lim max Jy(u) = 0.
m— yecH,,

On the other hand,

o*
2%
E

2
,
Irus) < -

then Jy(ruZ,) becomes negative if r = R and R large enough. Therefore
In(u) < Cm=NVE=H for all u € H, U{H,, ® Ru,}.

Since maxo<,<g Jr(rus,) < 400 as v € H,, & Rtuf
with | supp(u8,) N supp(u)| = 0, then for large R,

I logs, < 0.

we may write v = u + ru,

m>

4. PROOF OF THEOREM

Lemma 4.1. Suppose that f € Fa, 3 and pn € [0, it — (%)Q] Then

Ia(teus,) < NSfLV/Q for e small enough.

Proof. Assume by contradiction that for all € > 0, there exists . > 0 such that
1
Ialteur,) > 8%, (4.1)

then we affirm that there exists a subsequence of (t:) such that t. — tg. If not
suppose that t. — o0, then Jy(t-u$,) — —oo when ¢ — 0, which contradicts
(4.1), thus (t.) is bounded and there exists to > 0 such that t. — to. If ¢ty = 0,
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using the continuity of the embedding, we obtain that fQ fus,dr and |uS,|o« are

bounded, the same for ||u,||,,. We have

L [ wupae- b [ <| S Atg/f :/<u;>2*dm—o<n,

which is in contradiction with - So t. — tg > 0. Usmg and (| and
letting e — 0, it follows that

m

2
%Ht ”u < 255/2 SN/2 +Ce N-2 m7

1 * 1

(t2 — 1)SN? 4 CeNmAN VTR (N=2),
By adding these two equations, we obtain

1 N -2, 5«
5(7&5 —1- (- 1))5})’/2 N2,

By the fact that max (mQ —1- %(3&2* — 1)) = 0, we obtain
x>0

1 1 « 1
§||tEUani - ;\tsui@@* < NSFJLV/Q +

1 1 . 1
§||t§u16n”i - 27/9@5“%)2 < ﬁSfLV/Q +CceN2,

We will estimate [, f(teus,)? for p < i — (%)2 For ¢ = 1/2Y/7", we can take ¢
small enough so that
VAV o L
qam
Hence there exists C' > 0 such that
62|x|’>’//\/ﬁ + |2 VE < Cla|VE, Vx| > eV,

1/am 1 \2
> Y N-1
/ fteus, C’/f/W (r) us(m)> T dr

and

1/qm
> c/ “(r)2r N Ldr
v/
1/qm
> CC? PN =gy
Eﬁ/’Y

1/qm
> CC2/ p A2V gy
= Jevan
To continue we dlstlnguish two cases:
- 2-
() < p—(352)7?

/ f(teus,))?dx > Ce2Vig2(Vi/v)(2=B-2Vi—p)

> CeN-2 2/ (2-6-2VA0)

1/qm _
/ f(teus,)?de > CC? | B2V g,
Q VE

e 7

> 052\/17| In 62(\//7/7)|.
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Thus Jy(tus,) < +S27% for e [0, i — (352)2). O
Proof of Theorem[2.5. The proof is based on Linking Theorem [I]. We have
inf Ix(h < Jx(u). 4.2
inf max A(h(u)) < Jnax N, (4.2)

It suffices to show that )
max Jy(u) < NSIJLV/Q

ulen

Arguing by contradiction, suppose that

N/2
1}161%%])\()>NSH/ VmeN, Ve >0.

Since {v € Qf, : Ja(v) > 0} is a compact set then the upper bound in (4.2)
is achieved thus, for all ¢ > 0 there exist w. € H,, and t. > 0 such that for
Ve 1= we + t-us,, we have

a(ve) == sup Jx(u) > 5N/2
u€QS,
i.e.,
1
7||v6||2 / folde — 7/ v dr > fsN/Q, Ve > 0. (4.3)
Using the proof of Lemmag we obtain that (¢.) admits a convergent subsequence,
(we) is bounded and thus
te =1t >0, w.—wo€ H,,.
By the Lemma [3.2]and the fact that A € (M(f), M, (f)), we obtain

1 A 1 x
—Jlwell® = 7/ fwidr — —/ w? dx
plweln =5 | 2 o

X (f) +0(1)
A - el <0

for m large enough. Using (4.3) and proceeding in the same way that Lemma
we obtain

J,\(wE)

IN

1
Jx (’UE) = Jx (wg) + Ja (tgufn) < Jx (tgufn) < NS;]AV/Z
which is absurd. O

5. PROOF OF THEOREM

Let
A =min{ N (f) € o : A <N ()},
denote by M(A?(f)) the eigenspace correpsonding to )\5-‘ (f). We put

I

H
MY =@z e, M) 7, M~ =@, M(X (),
suppose that Ay — A < S, ([, [z|#N/2dx)=2/N,
Lemma 5.1. We have
1 N/2 _ 1
Br= sup Ja(u) < —=(Ap =) / / || ~AN/2 < — SN2,
ueM— N Q N

Moreover, there exist py > 0 and ), € (O,ﬂk) such that Jy(u) > 0y for allu € M™
with [[ull, = pa
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Proof. Forallu € M~ we have [lul|? < Ay [, fu*dz. Since M~ is a finite dimension
space, using Holder inequality and knowing that
2 1 A

Z — —A(Z\(N=-2)/2
ntazagc(A 5 B o ) NA(B) for all A, B >0,

we obtain

1 2 A 1 "
J)\(u):5 Sz|vu‘2dl‘_g/ﬂ |u|2d.]3— qu2dm_7*/s;|u|2 dx
T

2 2
1 1
§(A+—)\)/S)fu2dx—2—*/ﬂ\u
1 1 «
f()\+f)\)/ |z|7ﬁu2dajf—/ lu|? dx
2 Q 2* Jq

1 1 5«
< / max(f(/\+ - )\)|x|75t2 — —t? )dx.
qQ t=0 \2 2%

2dx

IN

IN

2

5«» We have

Let u € M, by the inequality Hu||ﬁ > Ay [ futd and |ul|? > Sﬂ|u

A =X, o 1 .
Ty (u) > -
()= 5=l = Sl
Ap— A, 1,
> —_
LA =NV
_N( 204 ) S’
If we take
AJ’_—)\ 2/2* (N72)/4 1 )\J,_—A N/2 N/2
o= ((22=2)s Oy < = (BN g2
(( )‘+ )N ) N( )\+ ) ©

then we obtain Jy(u) > d) for all w € M* NIB,,. It remains to show that
6x < Bx. Indeed, since MT N M~ = M(Ay), we have M N M~ NB,, # 0 and all
uwe Mt NM~NB,, satisfies 6y < Jx(u) < By = supyearr— Ja(u).

To complete the proof it suffices to apply [4, Theorem 2.5] with H = H,, W =
M~ and V =M*t, g=LSN? 5=6,,8 =0, p=pxr 0

6. PROOF OF THEOREM
Proposition 6.1. Let f € Fopg and p < i — (%)%#)2 Then for all X > 0,
N
c<+S2.

Proof. Without loss of generality, we can assume that there exists k& such that
() S A< N ()
Let maxyeq: Ja(u) = Jx(wm + t;,u5,), where w,, € H,. Using the same
calculation as in the second point of Proposition we have
Ix(wp) < Cm~NVE=E,
_N42 =

By choosing ¢ = m™ N2 VHTH

£ \2
/ (IVes, 2 _M(Um) Yz < SN/ 4 O NV,
Q

|z[?
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* 2 =
/ (u5,)? da > SY/2 — -~ /(N2
Q

/ fus,)?dx > Cm~(N+2(35%),
Q

and

¢ < max Jy(u
7uEQ}fi )\()

< J,\(wm + tfnufn)
< Ia(wm) + Ia(t5,us5,)

< om i B [ a2 S [ )
Q Q

|| "
_ (tfn)2 /('LLE )2*d$
Q

2*
< Om NVRmm g Lml (tE i (52 + Om NVETE _ Oy (V) (557 ))

ts 2% N 2 _
5t

< Om~NVITR 4 — (52 + Om NV _ Oy (N2 (357))

S7 + cmeﬂf _ Cm 2358
X
( S% —Cm™~ J\JJV_22 V= )

Note that for p < i — (%32)*(*33%)%, we have (N +2)(*)3%) < Nyi—p <
%m and we deduce that

1 _ s 1
¢ < SN/ CmTNYIETE - Cm~ V(5% < ~S
O

Proof of Theorem[2.7. From Lemma [3.1] and Proposition Jy satisfies the hy-
potheses of Linking Theorem [I], moreover B, N H* and 9Q%, are linked. Hence
¢ is a critical value of Jy and u is a nontrivial solution of the problem (L.1)). (]
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