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EXISTENCE OF SOLUTIONS TO DIFFERENTIAL INCLUSIONS
WITH PRIMAL LOWER NICE FUNCTIONS

NORA FETOUCI, MUSTAPHA FATEH YAROU

Abstract. We prove the existence of absolutely continuous solutions to the
differential inclusion

ẋ(t) ∈ F (x(t)) + h(t, x(t)),

where F is an upper semi-continuous set-valued function with compact values

such that F (x(t)) ⊂ ∂f(x(t)) on [0, T ], where f is a primal lower nice function,
and h a single valued Carathéodory perturbation.

1. Introduction

In this article we study the first-order differential inclusion
ẋ(t) ∈ F (x(t)) + h(t, x(t)) a. e. t ≥ 0

x(0) = x0
(1.1)

where F is an upper semi-continuous set-valued function with nonconvex values
and h is a Carathéodory function. It is well known that the problem admits a
solution when F has convex values (see [2]). When the values of F fail to be convex
many results have been established in the case when F (x) ⊂ ∂f(x), for some proper
convex lower semi-continuous function f , see for instance [5]. For some extensions of
these results, we refer to [1, 6, 8, 10]. The case where the convexity of f is dropped
has been studied in [3] by supposing f is (Clarke) regular. This class of function
is of great importance in nonsmooth analysis and optimization as it generalizes
several classes of functions such as convex proper lower semi-continuous functions
and uniformly regular functions. A more general problem has been studied in the
infinite dimensional setting in [12], in which the author proved that for locally
Lipschitz functions, the class of convex functions, the class lower-C2 functions and
the class of uniformly regular functions are strictly contained within the class of
regular functions. Another class of functions which is of great interest in variational
analysis and optimization is the so called primal lower nice function (pln for short).
This class of functions covers all convex functions, qualified convexly composite
functions, and benefits from remarkable features such the strong connection of
pln functions and their Moreau envelopes, in addition to the coincidence of their
proximal and Clarke subdifferential. The notion of pln functions was introduced by
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Poliquin [9] where a subdifferential characterization of these functions was given in
the finite dimensional setting. Analogously to the convex case, it was proved that
pln functions are completely determined by their subgradients, more precisely, if
two lower semi-continuous functions are pln at some point x of their domain and
have the same proximal subgradient on a neighborhood of x, then the difference
between these functions is constant near x. Some local regularity properties of the
Moreau envelopes and the related proximal mappings of prox regular functions and
pln functions in Hilbert space have been established, see [4] and [7]. In this paper,
we aim at showing that existence of solution of (1.1) holds in the context of pln
lower semi-continuous functions f . The paper is organized as follows: In section
2 we recall some preliminary facts that we need in the sequel and in section 3 we
prove our existence result; first in Rn and then in infinite dimensional Hilbert space.

2. Preliminaries

Throughout this article, H stands for a real Hilbert space with scalar product
〈·, ·〉 and norm ‖ · ‖, B(x, r) is the closed ball centered at x with radius r.

Definition 2.1. Let X and Y be topological spaces and F a set-valued mapping
defined on X with values in the space P(Y ) of all nonempty subsets of Y . We
will say that F : X → P(Y ) is upper semi-continuous (usc) at x̄ ∈ X if for every
neighborhood U of F (x̄) there exists a neighborhood V of x̄ such that F (x) ⊂ U
for all x ∈ V .

Definition 2.2. Let f : H → R ∪ {+∞} be an extended real valued lower semi-
continuous function and let x ∈ dom f , that is f(x) < +∞. The proximal subd-
ifferential of f at x is the set ∂pf(x) of all elements v ∈ H for which there exist
r > 0 and ε > 0 such that

〈v, x− x〉 ≤ f(x)− f(x) + ε‖x− x‖2 for all x ∈ B(x, r).

The Fréchet subdifferential ∂F f(x) of f at x is defined by v ∈ ∂F f(x) provided
that for each ε > 0, there exists some η > 0 such that for all x ∈ B(x, η),

〈v, x− x〉 ≤ f(x)− f(x) + ε‖x− x‖.
The Clarke subdifferential of a lower semi-continuous function f at x is the set

∂Cf(x) := {v ∈ H : f↑(x; y) ≥ 〈v, y〉, ∀y ∈ H}.
where f↑(x; y) is the generalized Rockafellar derivative given by

f↑(x; y) = lim sup
t→0+,

x→f x

inf
y′→y

t−1[f(x+ ty′)− f(x)]

where x→f x means x→ x and f(x)→ f(x). If f is locally Lipschitz, the general-
ized Rockafellar derivative f↑(x; y) coincides with the Clarke directional derivative
f0(x, y) defined by

f0(x, y) = lim
x→x

sup
t↓0

f(x+ ty)− V (x)
t

If x /∈ dom f , ∂Cf(x) := ∅. When f is convex and lower semi-continuous, one has

∂pf = ∂Cf = ∂F f = ∂f.

The operator ∂f denotes the subdifferential in the sense of convex analysis.
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Now, let us recall the definition of Primal Lower Nice functions [7].

Definition 2.3. Let f : H → R ∪ {+∞} be a proper function and consider x0 ∈
dom f . The function f is said to be primal lower nice (pln for short) at x0, if there
exist positive real numbers s0, c0, Q0 such that for all x ∈ B(x0, s0), for all q ≥ Q0

and all v ∈ ∂pf(x) with ‖v‖ ≤ c0q, one has

f(y) ≥ f(x) + 〈v, y − x〉 − q

2
‖y − x‖2 for each y ∈ B(x0, s0).

Remark 2.4. (1) Each extended real valued convex function is primal lower nice
at each point of its domain.

(2) Clearly, if f is pln at u0 with constants s0, c0, Q0, one has

〈v1 − v2, x1 − x2〉 ≥ −q‖x1 − x2‖2

for any vi ∈ ∂pf(xi) with ‖vi‖ ≤ c0q whenever q ≥ Q0 and xi ∈ B(u0, s0), i = 1, 2.
(3) If f is pln at u0 ∈ dom f then for all x in a neighborhood of u0, the proximal

subdifferential of f at x coincides with the Fréchet subdifferential and the Clarke
subdifferential of f at x, i.e, ∂pf(x) = ∂F f(x) = ∂Cf(x). In this case, we simply
denote by ∂f(x) the common subdifferential, and by ∂0f(x) its element of minimal
norm for x ∈ dom f .

The graph of the (proximal) subdifferential of a pln function enjoys the useful
closure property.

Proposition 2.5. Let f : H → R ∪ {+∞} be a proper lsc function which is pln
at u0 ∈ dom f with constants s0, c0, Q0 > 0, and let T0, T, v0, η0 be positive real
numbers such that T > T0 and v0 + η0 = s0. Let v(.) ∈ L2([T0, T ], H) and u(·) be a
mapping from [T0, T ] into H. Let (un(·))n be a sequence of mappings from [T0, T ]
into H and (vn(·))n be a sequence in L2([T0, T ], H). Assume that:

(1) {un(t), n ∈ N} ⊂ B(u0, η0) ∩ dom f for almost every t ∈ [T0, T ],
(2) (un)n converges almost everywhere to some mapping u with u(t) ∈ dom f

for almost every t ∈ [T0, T ],
(3) vn converges to v with respect to the weak topology of L2([T0, T ], H),
(4) for each n ≥ 1, vn(t) ∈ ∂f(un(t)) for almost every t ∈ [T0, T ].

Then, for almost all t ∈ [T0, T ], v(t) ∈ ∂f(u(t)).

For the proof of the above proposition, we refer the reader to [7].

Proposition 2.6 ([11]). Let f : H→ R∪{+∞} be a lower semi-continuous and
pln function at x ∈ dom f with constants ε, c, T and f is bounded from above on
B(x, ε). Assume also that ∂f is included in the Clarke subdifferential of f . Then
the function f is Lipschitz continuous and DC (difference of convex functions) near
x. In fact, if ε > 0 is such that f is also bounded from below on B(x, ε), then for
any α ∈]0, 1[ the function f is Lipschitz continuous and DC on B(x, αε)

For more details about pln functions we refer to [4] and [9].

3. Main results

Let us recall first the existence result for the subdifferential operator of a pln
function obtained in [7].
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Theorem 3.1. Let f : H → R ∪ {+∞} be a proper lsc function. Consider T0 ∈
[0,+∞[ and let x0 ∈ dom f be such that f is pln at x0 with constants s0, c0, Q0.
Then, there exist a real number T ∈]T0,+∞[ and a unique absolutely continuous
mapping x : [T0, T ]→ B(x0, s0) which is a solution of the problem

0 ∈ ẋ(t) + ∂f(x(t)) for a.e t ∈ [T0, T ],

x(T0) = x0.
(3.1)

Further, in the particular case when x0 ∈ dom ∂f , the solution x(·) above is actually
Lipschitz continuous and it also satisfies:

(1) f ◦ x(·) is Lipschitz continuous on [T0, T ].
(2) For almost every t ∈ [T0, T ], the derivative (f ◦ x)′(t) exists and

(f ◦ x)′(t) = −‖ẋ(t)‖2,
and for any T0 ≤ s ≤ t ≤ T :

f(x(t))− f(x(s)) = −
∫ t

s

‖ẋ(τ)‖2dτ.

Now we are able to establish existence result for the problem (1.1) in the context
of finite dimensional space Rn.

Theorem 3.2. Under the following assumptions:
(H1) Ω ⊂ Rn is an open set and F : Ω ⇁ Rn is an upper semi-continuous

compact valued multifunction.
(H2) f : Ω→ R∪{+∞} is a lower semi-continuous function, pln at x0 ∈ dom ∂f

with constants s0, c0, Q0 such that

F (x) ⊂ ∂f(x) ∀x ∈ Ω.

(H3) h : R× Rn → Rn is a Carathéodory function, i. e. for every x ∈ Rn, h(·, x)
is measurable, h(t, ·) is continuous, and there exists m(·) ∈ L2(R∗+) such
that

‖h(t, x)‖ ≤ (1 + ‖x‖)m(t), ∀x ∈ Rn, a.e. t ∈ R.
Then, there exist T > 0, and an absolutely continuous solution x : [0, T ] → Rn of
the differential inclusion

ẋ(t) ∈ F (x(t)) + h(t, x(t)) a.e. t ∈ [0, T ],

x(0) = x0.

Proof. Since Ω is open, there exists r > 0 such that the compact set K = B(x0, r)
is contained in Ω. Moreover, by (H1) and [2, Proposition 1.1.3], F (K) = ∪

x∈K
F (x)

is compact, hence there exists M such that

sup{‖u‖ : u ∈ F (x), x ∈ K} ≤M. (3.2)

Since f is pln at x0, there exist positive real numbers s0, c0, Q0 such that for all
x ∈ B(x0, s0), q ≥ Q0 and u ∈ ∂pf(x), with ‖u‖ ≤ c0q one has

f(y) ≥ f(x) + 〈u, y − x〉 − q

2
‖y − x‖2

for each y ∈ B(x0, s0). Let us choose T ′ > 0 such that∫ T ′

0

(M + αm(t))dt <
r

2
,
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where α = 1+‖x0‖+ r
2 . Set r0 = min( r

2 , s0), take T = min( r0
M , T ′) and let I = [0, T ].

For each integer n ≥ 1 and for 0 ≤ i ≤ n − 1, we set tin = iT
n ; Ii

n = [tin, t
i+1
n [, and

for every t ∈ Ii
n, we define

xn(t) = xi
n + (t− tin)ui

n +
∫ t

i T
n

h(s, xi
n)ds, (3.3)

where xn(0) = x0
n = x0 and

xn(tin) = xi
n = xi−1

n +
T

n
ui−1

n for every i ∈ {1, 2, . . . , n}, (3.4)

ui
n ∈ F (xi

n), for every i ∈ {0, 1, 2, . . . , n}. (3.5)

(xn) is well defined on [0, T ]. Clearly one has for every i ∈ {1, 2, . . . , n},

xi
n − x0

n =
T

n
(u0

n + u1
n + · · ·+ ui−1

n )

≤ T

n
(‖u0

n‖+ ‖u1
n‖+ ‖u2

n‖+ · · ·+ ‖ui−1
n ‖

≤ iTM

n
≤ r

2
,

proving that

xn(tin) = xi
n ∈ B(x0,

r

2
). (3.6)

By (3.2) and (3.3) for all t ∈ [tin, t
i+1
n [, we obtain

‖xn(t)− xn(tin)‖ ≤
∫ t

ti
n

(M + (1 + ‖x0‖+
r

2
)m(τ))dτ

≤
∫ t

ti
n

(M + αm(τ))dτ <
r

2
.

(3.7)

From (3.6) and (3.7) one can deduce that

‖xn(t)− x0‖ ≤ ‖xn(t)− xn(tin)‖+ ‖xn(tin)− x0‖

≤ r

2
+
r

2
= r,

and so
xn(t) ∈ B(x0, r), for each t ∈ [0, T ]. (3.8)

By (3.3) we have
ẋn(t) = ui

n + h(t, xn(t)) ∀t ∈]tin, t
i+1
n [, (3.9)

the last equality with (3.2) ensures that

‖ẋn(t)‖ ≤M + αm(t) for a.e t ∈ [0, T ], (3.10)

then ∫ T

0

‖ẋn(t)‖2dt ≤
∫ T

0

(M + αm(t))2dt,

and so the sequence (ẋn)n is bounded in L2([0, T ],Rn). Further, for all t, s ∈ [0, T ],
0 ≤ s < t ≤ T , one has

‖xn(t)− xn(s)‖ = ‖
∫ t

s

ẋn(τ)dτ‖ ≤
∫ t

s

(M + αm(τ))dτ, (3.11)
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hence by [2, Theorem 0.3.4], there exist a subsequence, still denoted by (xn)n and an
absolute continuous function, x : [0, T ]→ Rn, such that (xn)n converges uniformly
on CRn([0, T ]) to x and (ẋn)n converges weakly in L2([0, T ]; Rn) to ẋ. Let us define
step functions from [0, T ] to [0, T ] by

θn(t) = tin for all t ∈ [tin, t
i+1
n [, θn(T ) = T,

then by (3.3), (3.5), and (3.9),

ẋn(t)− h(t, xn(t)) ∈ F (xn(θn(t)) ⊂ ∂f(xn(θn(t)), (3.12)

and by (3.6), xn(θn(t)) ∈ B(x0, r), for any t ∈ [0, T ]. We have |θn(t) − t| ≤ T
n

for each t ∈ [0, T ], then θn(t) → t uniformly on [0, T ], further, by the uniform
convergence of (xn) and (θn), we conclude that xn(θn(t)) → x(t). By (H2) and
Proposition 2.5, we obtain

ẋ(t)− h(t, x(t)) ∈ ∂f(x). (3.13)

By Theorem 3.1, the maps t → x(t) and t → f(x(t)) are Lipschitzian, so by [3,
Proposition 3.4]

d

dt
f(ẋ(t)) = 〈ẋ(t), ẋ(t)− h(t, x(t))〉

for a.e t ∈ [0, T ], hence

f(x(T ))− f(x(0)) =
∫ T

0

‖ẋ(τ)‖2dτ −
∫ T

0

〈ẋ(τ), h(τ, x(τ))〉dτ. (3.14)

On the other hand, since

ẋn(t)− h(t, xn(tin) ∈ F (xn(tin)) ⊂ ∂f(xn(tin)), ∀t ∈]tin, t
i+1
n [,

and using the fact that f is pln on x0, we obtain for all q ≥ max(Q0,
M
c0

)

f(xn(ti+1
n )− f(xn(tin))

≥ 〈ẋn(t)− h(t, xn(tin)), xn(ti+1
n )− (xn(tin)〉 − q

2
‖xn(ti+1

n )− xn(tin)‖2

≥ 〈ẋn(t)− h(t, xn(tin)),
∫ ti+1

n

ti
n

ẋn(t)dt〉 − q

2
‖xn(ti+1

n )− xn(tin)‖2

≥
∫ ti+1

n

ti
n

‖ẋ(t)‖2dt−
∫ ti+1

n

ti
n

〈h(t, xn(tin)), ẋn(t)〉dt− q

2
‖xn(ti+1

n )− xn(tin)‖2

≥
∫ ti+1

n

ti
n

‖ẋ(t)‖2dt−
∫ ti+1

n

ti
n

〈h(t, xn(tin)), ẋn(t)〉dt− q

2
(
T 2

n2
‖ui

n‖2)

≥
∫ ti+1

n

ti
n

‖ẋ(t)‖2dt−
∫ ti+1

n

ti
n

〈h(t, xn(tin)), ẋn(t)〉dt− q

2
(
T 2

n2
M2).

By adding we obtain

f(xn(T ))− f(x0) ≥
∫ T

0

‖ẋn(t)‖2dt−
∫ T

0

〈h(t, xn(tin)), ẋn(t)〉dt− qT 2M2

2n2
. (3.15)

As qT 2M2

2n2 → 0, the convergence of (xn(·)) in L2([0, T ],Rn)-norm and of (ẋn) in the
weak topology of L2([0, T ],Rn) implies that

lim
n→+∞

∫ T

0

〈h(t, xn(tin)), ẋn(t)〉dt =
∫ T

0

〈h(t, x(t)), ẋ(t)〉dt.
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Taking the limit superior in (3.15) and using the continuity of f , we obtain

f(x(T ))− f(x0) ≥ lim sup
n→+∞

∫ T

0

‖ẋn(t)‖2dt−
∫ T

0

〈h(t, x(t)), ẋ(t)〉dt, (3.16)

By (3.14) we obtain
‖ẋ(t)‖2L2 ≥ lim sup

n→+∞
‖ẋn(t)‖2L2

By the weak lower semi-continuity of the norm, one has

‖ẋ(t)‖2L2 ≤ inf
n→+∞

‖ẋn(t)‖2L2 .

So that
‖ẋ(t)‖2L2 = lim

n→+∞
‖ẋn(t)‖2L2 .

By (H1), the graph of F is closed and since (xn(t), ẋn(t) − hn(t, xn(t))) converges
to (x(t), ẋ(t) − h(t, x(t))) on a complement of a null set, we conclude from (3.12)
that

ẋ(t)− h(t, x(t)) ∈ F (x(t)), a.e on [0, T ].
�

Next, we prove an existence result for the problem (1.1) in the case of infinite
dimensional Hilbert space. For this purpose we use the same techniques given by
Yarou [12].

Theorem 3.3. Under the following assumptions:
(H1) Ω ⊂ H is an open set in H and F : Ω ⇁ H is an upper semi-continuous

compact valued multifunction.
(H2’) f : Ω→ R∪{+∞} is a lower semi-continuous function, pln at x0 ∈ dom ∂f

with constants s0, c0, Q0 such that

F (x) ⊂ ∂f(x) ∀x ∈ Ω, F (x) ⊂ (1 + ‖x‖)K (K a compact set).

and f is bounded from above on B(x0, s0),
(H3’) h : R+×H → H is measurable in t and Lipschitz in x, and for any bounded

subset B of H, there is a compact set K1 such that h(t, x) ∈ K1 for all
(t, x) ∈ R+×B,

Then there exist T > 0 and an absolutely continuous function x : [0, T ] → H
solution of the differential inclusion (1.1).

Proof. Since Ω is open, there exists r > 0 such that B(x0, r) is contained in Ω. By
the definition of f , for all x ∈ B(x0, s0), for all q ≥ Q0 and all u ∈ ∂pf(x), with
‖u‖ ≤ c0q, one has

f(y) ≥ f(x) + 〈u, y − x〉 − q

2
‖y − x‖2.

Since f is lower semi-continuous on x0, taking s0 smaller if necessary, we may
suppose that f is bounded from bellow on B(x0, s0). Let us fix β ∈]0, 1[, Proposition
2.6 implies that there is L > 0 such that ∂pf(x) ⊂ LB, whenever x ∈ B(x0, βs0).
By our assumption (H3’) there is a positive constantm such that h(t, x) ∈ K1 ⊂ mB
for all (t, x) ∈ R+×B(x0, r). Moreover, by (H2’), there exists a positive constant
m1 such that for any x ∈ B(x0, r), F (x) ⊂ (1+‖x0‖+ r)K ⊂ m1B. Choose T such
that

0 < T <
r0

(m1 +m)
, (3.17)
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where r0 = min( r
2 , βs0). Let I = [0, T ], for each integer n ≥ 1 and for 0 ≤ i ≤ n−1,

we set tin = iT
n ; Ii

n = [tin, t
i+1
n [, and consider the same discretization (3.3), (3.4) and

(3.5). We obtain (3.6), (3.7) and (3.8). By (3.3) we have for every t ∈ [0, T ]\{tin},

ẋn(t) = ui
n + h(t, xn(t)). (3.18)

The above equality with (3.17) ensures that

‖ẋn(t)‖ ≤ (m1 +m) for a.e t ∈ [0, T ], (3.19)

then the sequence (ẋn)n is bounded in L1([0, T ], H). Then (ẋn)n converges weakly
in L1([0, T ];H) to ẋ.

Following the same steps of proof of Theorem 3.2, we obtain: for all t, s ∈ [0, T ],
0 ≤ s < t ≤ T ,

‖xn(t)− xn(s)‖ = ‖x0 +
∫ t

0

ẋn(τ)dτ − x0 −
∫ s

0

ẋn(τ)dτ‖

= ‖
∫ t

s

ẋn(τ)dτ‖

≤
∫ t

s

‖ẋn(τ)‖dτ ≤
∫ t

s

(m1 +m)dτ

≤ (m1 +m)|t− s|.

So that the sequence (xn)n is an equi-Lipschitz subset of CH([0, T ]), and the set
{xn(t) : n ∈ N∗} is relatively compact in H for every t ∈ [0, T ] since xn(t) ∈
x0 + (K1 + (1 + ‖x0‖ + r)K)[0, T ] := K2, hence by Ascoli Theorem, there exists
a subsequence, still denoted by (xn)n and an absolute continuous function, x :
[0, T ] → H, such that (xn)n converges uniformly on CH([0, T ]) to x. Further, the
sequence (un)n∈N, is relatively σ(L1([0, T ], H); (L∞([0, T ], H))-compact since we
have almost everywhere

un(t) ∈ (1 + ‖x0‖+ r)K. ∀n ∈ N∗. (3.20)

Therefore, by extracting subsequences if necessary, we can assume that there exists
u ∈ L1([0, T ], H) such that un → u for σ(L1([0, T ], H); (L∞([0, T ], H))-topology.
Also, we have h(·, xn (θn(·)) → h(·, x (·)) in the norm of the space L1([0, T ], H).
Consequently, one has for all t ∈ [0, T ]

x(t) = x0 + lim
n→∞

∫ t

0

[h(s, xn(θn(s))) + un(s)]ds = x0 +
∫ t

0

[h(s, x(s)) + u(s)]ds,

which gives the equality

ẋ(t) = h(s, x(s)) + u(s) for almost every t ∈ [0, T ].

Since un converges weakly to u, ẋn converges weakly to ẋ. By construction, we
have for a.e t ∈ [0, T ]

ẋn(t)− h(s, xn(θn(t))) = un(t) ∈ F (xn(θn(t))),

and by (H2’),

un(t) ∈ F (xn(θn(t))) ⊂ (1 + ‖xn(θn(t))‖)K ⊂ (1 + ‖x0‖+ r)K.

Then un is in the fixed compact set (1 + ‖x0‖ + r)K, consequently it converges
strongly to u which gives the strong convergence of ẋn. Since the graph of F is
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closed, we get
ẋ(t) ∈ F (x(t)) + h(t, x(t)) a.e. on [0, T ].

Therefore, the differential inclusion (1.1) admits a solution. �
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