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UNIFORM ESTIMATE AND STRONG CONVERGENCE OF
MINIMIZERS OF A p-ENERGY FUNCTIONAL WITH
PENALIZATION

BEI WANG, YUZE CAI

ABSTRACT. This article concerns the asymptotic behavior of minimizers of
a p-energy functional with penalization as a parameter £ approaches zero.
By establishing WP uniform estimates, we obtain WP convergence of the
minimizer to a p-harmonic map.

1. INTRODUCTION

Let G C R? be a bounded and simply connected domain with smooth boundary
G, and By = {z € R%; 23 + 23 < 1}. Denote S* = {z € R% 2% + 23 = 1,23 = 0}
and S% = {z € R3; 27 + 2%+ 22 = 1}. Sometimes we write the vector value function
u = (u1,uz,u3) as (uv',uz). Let g = (¢/,0) be a smooth map from AG into S*
satisfying d = deg(¢’, 0G) # 0. Without loss of generality, we may assume d > 0.
Consider the energy functional

1 1
E.(u,G) = 5/G|Vu|1”dx+ @/Gugdm, p>2

with a small parameter € > 0. From the direct method in the calculus of variations
it is easy to see that the functional achieves its minimum in the function class
W}P(G,5?). Obviously, the minimizer u. on W,?(G, §?) is a weak solution of

1
—div(|VuP~2Vu) = u|VulP + E—p(uu% —uges), on G,

where e3 = (0,0,1). Namely, for any 1 € Wy (G, R?), u. satisfies
1
/ |VulP~2VuVidz z/ wp|VulPdx + —/ Y(uu3 — uzes)dr. (1.1)
G G e’ Ja

Without loss of generality, we assume us > 0, otherwise we may consider |us| in
view of the expression of the functional.

When p = 2, the functional E.(u, G) was introduced in the study of some simpli-
fied model of high-energy physics, which controls the statics of planner ferromag-
nets and antiferromagnets (see [I0) [I8]). The asymptotic behavior of minimizers
of E.(u,G) has been considered by Fengbo Hang and Fanghua Lin in [8]. When
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the term % replaced by % and S? replaced by R2, the problem becomes
the simplified model of the Ginzburg-Landau theory for superconductors and was
well studied in many papers such as [3, 4] [I7, [19]. These works enunciate that
the study of minimizers of the functional with some penalization terms is con-
nected tightly with the study of harmonic maps with S'-value. When p > 2, it
also shows an enlightenment, namely, the properties (such as the partial regularity,
the properties of singularities) of p-harmonic maps can be seen via studying the
asymptotic properties of minimizers of some p-energy functional with penalization
(cf. [, 2, (111, 13, 14} [16] 20]).

In this article, as in [3 4 [§], we concern with the asymptotic behavior of mini-
mizers of functional E(u,G) on W}*(G,5?) where p > 2 as e — 0.

Theorem 1.1 ([I5, Theorem 1.1]). Assume u. is a minimizer of E.(u,G) on
ng’p(G,Sz). Then all the zeros of |ul| are included in finite, disintersected discs
B(m?, he),j =1,2,..., Ny where Ny and h > 0 do not depend on ¢ € (0,1).

As € — 0, there exists a subsequence z5* of the center x5 and a; € G such
that 25* — a;, i = 1,2,..., N;. Perhaps there may be at least two subsequences
converging to the same point, we denote by a1, as,...,an, N < Ny, the collection of
distinct points in {ai}fvzll. Although the relationship between N and d is unknown,
the integer N is independent of € € (0,1). By virtue of Theorem we see that
all the zeros of |ul| converge to a1, as,...,ayn as ¢ tends to 0. In addition, (2.3) in
[15] shows

[ul] >1/2 on K, (1.2)

where K is an arbitrary compact subset of G'\ UY ,{a;}.

Theorem 1.2 ([15, Theorem 1.2]). Assume u. is a minimizer of Ec(u,G) on
W}Ee(G,S?). K is an arbitrary compact subset of G\ UN_{a;}. Then there exists
a subsequence us, of u. such that as k — oo,

e, — up = (u,,0), weakly in W'P(K,R?),

where u, is a map of the least p-energy [, |[Vu|Pdz in W'P(K,0By).

We shall give the uniform L? = estimate of Vu. in §3. Recalling the case that

the parameter p equals to the dimension 2, we know it is available to estimate the
upper bound and the lower bound of [ |Vu.|>dx since we can use the property of
conformal transformation of [ |Vu.|*dz (the idea of which can be seen in [4} 7,8 0]).
In fact, when scaling x = ye in E.(u, G), there is a coefficient ¢* appearing in the
scaled energy functional. when p = 2, it can be derived that the exponent A of ¢ is
zero. Therefore, the estimate of the upper bound

1
EE(UE7G) < Cl lng +C

and the lower bound

1 1
7/ |Vul|?dz > Coln = — C
2 Je\UL_, B(ai,he) €

can be obtained, where Cy = Cy = 7d (cf. [8, §4]). The uniform estimate is deduced
at once. When p > 2, the property of conformal transformation of [ |Vu.[Pdz is
invalid. Therefore, A # 0. It is impossible to derive such results as the case p = 2
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if the idea of estimating the upper and the lower bounds of [ |Vu.|Pdz is adopted.
In fact, the upper bound

E.(ue,G) < C3e* P + C

and the lower bound
1

p /va'\Uile(ai,hs)
are also obtained. However, the relationship between C3 and Cy is not clear except
that Cy may be smaller. In [I5], a comparison method was used to obtain a uniform
estimate where the average functions come into plays.

Here, we use the iteration technique introduced in [12] to obtain the uniform LP?
estimate of Vu.. In fact, the term [} |[Vuc|Pdz of the functional E.(u., K) can

be divided into three terms, [, |V|u.|[Pdz, [, [Vus[Pdz and [, |u’€|p|V|Z:Z‘ [Pda.

We will prove that [ [V|ul|[Pdz + [} |Vus|Pdz + % [, uZsdz may be bounded by
O(g*) with A > 0 as € — 0. Using this estimate we will prove

|Vul[Pde > Cye* P — C,

/ [Vue[Pdz < C + O(e?).
K

Based on the Theorem [1.2] we will prove in §3 that the p-harmonic map u, is a
map of least p-energy || 1 |Vu|Pdz, and the convergence is also in strong VVﬁ)Cp sense.

Theorem 1.3. Assume u. is a minimizer of E.(u,G) on W;P(G,S5?). K is an

arbitrary compact subset of G\ Uévzl{aj}. Then there exists a subsequence ug, of
us such that as k — oo,

U, — up = (uy,,0), in WHP(K,R?),

where u;) is the map in Theorem .

2. UNIFORM ESTIMATE
The following inverse Holder inequality will be applied later.

Proposition 2.1. Assume that p > 1, and u. is a minimizer of E.(u,G) on
WP(G,5%). Then there exist constants t, Ry € (0,1/2) and C > 0 which is inde-
pendent of €, such that for any B C G (2R < Ry), we have

1/ 1/
(/ \Vu5|’1dx) ! < C(/ (|Vue|? + 1)P/2dx) p, Vq € [p,p + 2t).
Br Bar

The above proposition is a corollary from [6, Theorem 4.1], with a rescaling.

Theorem 2.2. Let R > 0 be a small constant such that B(z,2R) € G\ UN_ {a;}.
There exist constant g > 0 and C; > 0, and R; = 2R — [pﬂ% such that for
j:273a"'7[p]7 )
B.(ue, B;) < CjeiP (2.1)
where € € (0,e9), B; = B(z, R;), and [p] is the integer part of p.
For j = 2, the inequality (2.1)) is follows from [I5, Proposition 2.1]. Suppose that
(2.1) holds for all j < m. Then we have, in particular,
E.(ue, By) < Cpe™™P. (2.2)

If m = [p], then we are done. Suppose m < [p], we want to prove (2.1]) for j = m+1.
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Applying (T.2) we have 3 < |ul(y)| < 1, for all y € B(z,2R). Using the integral
mean value theorem we know that there exists r € [R,,41/2, ] such that

1
Bu(te, By \ By /) = Co(r) / 2 [Vucl? + a2y,
8B (z,r) P

and applying (2.2)), we see that
/ |Vu.[Pdé + — / uZydé < CyH(r)Cre™ P, (2.3)
OB(z,r) OB (z,r)

We denote B = B(z,r), and introduce two propositions.

Proposition 2.3. If p1 is a minimizer of the functional

1 1

E(p,B) = - 24 1)r/2d —/17 2d
(0u8) =5 [ (VoP 1y + o [ (1= pPae,
on W‘lu’fl (B,R* U{0}). Then E(py, B) < Ce™ P+l
Proof. Obviously, the minimizer p; exists and satisfies
1
—div(v®=2/2yp) = E—p(l —p) on B, (2.4)

plos = Jull, (2.5)

where v = [Vp|? + 1. Since 1/2 < [uZ| < 1, it follows from the maximum principle
that on B,

1
5 <p <L (2.6)
Applying (2.2)) and noting (1 — |v/])? < u2, we see easily that
E(p1,B) < E(Ju.],B) < C’EE(uE,B) < Ce™mTP, (2.7)

Multiplying (2.4]) by 9, p, where p denotes p;, and integrating over B, we have

—/ U(p_2)/2(al,p)2df+/ vPmEY Y (0, p)d
B B

1

= 5 [ 0= n@p)r,

(2.8)

where v denotes the unit outside norm vector on 0B. Using (2.7) we obtain

|/ 0PIV (9, p)da| gc/ v<P*2>/2|vp|2dx+1|/ v V(uP?)dz|

B B P JB (2.9)

§Cem7p+1/ oP/2de.
P JoB

Combining ([2.3), (2.5) and (2.7) we also have
1 1 23 2 m—p
5 [ A=) < o5l [ 0= praivar— [ 1 prae < .
Substituting this result and (2.9) into (2.8) yields

| vP=2/2(9,p) )2dg| < Ce™ TP+ 1/ vP/2dE. (2.10)
oB
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Applying (2.3), (2.5), (2.10) and the Young inequality, we obtain that for any
0€(0,1),

/ v = [ oI (0,0)° + (9,0)°)dE
OB OB

</ v(p—2>/2d§+/ WP=212(g, )2 de
~ Jonm OB

i (/GB Up/ng) (p—2)/p(/aB(T ‘ V|u5|)pd§>2/p

< O(6)em™™P + (1 + 25)/ vP/2dE,
p OB

where 7 denotes the unit tangent vector on dB. Therefore, it follows by choosing
0 > 0 sufficiently small that

/ vP/2dg < Ce™P, (2.11)
0B
We multiply both sides of (2.4) by (1 — p) and integrate over B. Then
1
/ U(p—2)/2|vp|2dx + 7)/ (1— p)de _ _/ U(p—2)/2(y -Vp)(1 — p)dé,
B & JB OB
whose left hand side is proportional to E(p1, B). Thus

E(p1,B) < C| . w2 (1 V) (1 - p)dg].

Applying Holder’s inequality and (2.3, (2.5), (2.6) and (2.11)), we obtain

1/

B B) <0l [ wlagoon| [ - gy
OB OB (212)

< Celm=—p)(p—1)/p

1/p
/ uggdf‘ < CemPtL
oB
The proof is complete. O
Proposition 2.4. Denote h = |ul|. Then there is t € (0,1/2) such that for any

5 €(0,1/2),
1 1 1 -
— [ |VhPdz + - [ |Vug|Pde+— [ (1 —h*)%dx
pJB pJB 4e? Jp

< Cemptl 4 5/ |V [Pde + C’(/ |Vue |Pdx + 1) (2.13)
B B

x [/ 1 fh2)2dxr/(p+t).
B

Proof. Let U = (\/2p1 — p3w,1—p1) on B; U = u. on G\ B, where w = w. = |Zf|.
Then U € W,?(G, §?). Since u, is a minimizer of E.(u,G), we have
E.(u.,G) < E.(U,G) = E.(U,B) + E:(us,G \ B),

which means E.(us, B) < E.(U, B). Using (2.12) it is not difficult to see that for
any § > 0,

(z,2r)

pP—2

/ IV 2|Vl 2de < ( / 1V [P/ / VulPdz) s
B B B
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< 5/ |Vu[Pdx + Ce™ 1P,
B
By using (2.6) and the mean value theorem,

1— 2
[ L0 + o = IVl e — [ (20— R)Tu Py s
B <“P1—P1 B

< c/ (Vorl? + [Vpu PIVw[P~2)dz,
B
and noting 2p — p? — 1 = —(1 — p)? < 0, we have
E.(us,B) < E.(U,B)
1
<> [ (o= pbIVulydn s C [ (Vo + VYl ?)do
P JB B
1
— 1—p1)?d
+ i B( p1)7dx
1
< f/ VwlPds + 5/ IV |Pdz + C=™P 4 CE(py, B).
pPJB B
From this result and , we deduce
1
E.(ue,B) < f/ |Vw|Pdx 4+ Ce™ TP 4 6/ |Vu|Pdx. (2.14)
PJB B
By Jensen’s inequality and (2.14)), we obtain
1 1 1
= [ |[VhPdz+ = [ (W’ = 1)|Vw|Pdz 4+ = | |Vus|Pdx
pJB pPJB pPJB

1
— | (1=h%%
t I B( ) dx

) (2.15)
< Ee(u.,B) - */ [Vw[Pdz
pJB
< CemPH 5/ [Vue|Pde.
B
Since h > 1/2 and Proposition there exists a t € (0,1/2) such that
1
7/ (1 = hP)|Vw,|Pdx
pJB
op
< —/(1 — hP)|Vue|Pdx
brs (2.16)

/(p+t) t/(p+t)
<o [ murra) " [
B B

< C(/B(m’%) [Vue|Pde +1) (/3(1 - h2)2dx)t/(p+t).

Combining this with (2.15)) we complete the proof. |
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Proof of Theorem [2.2

Step 1. Since |ul| > 1/2, there exists ¢ € WP(B(z,3R),[0,27)) such that w =
% = (cos ¢,sin ¢). Obviously, |Vw|? = |V|?. Substituting this into with
the test function (¢,0) yields

/ |VulP~2(wVh + hVw)Vidzs
B(z,3R)
1
= / hw|VulPypdx + 7/ hwip(1 — h?)dx
B(z,3R) €P JB(x,3R)

where ¢ € W, *(G,R?). Let ¢'® = cos ¢ + isin¢. Then

/ he'®|\VulPypda + — / hpet® (1 — h?)dx

Bsr(x) €% JBsr(2)

= / |VulP~2(e"*Vh + hie'*V ¢)Vipda.
B3r(z)

Taking ¢ = e~¢¢, where ¢ € W'*(B(z,3R),R?), we obtain

1

— h(1 — h?)¢dx
ep z
B35 (2.17)
= / |VuP=2(VAVC + h(|V|* — |Vul?)¢)da.
B(z,3R)
0= / |VulP~2(hV ¢V (¢ — (VhV$)da. (2.18)
B(z,3R)
Taking ¢ = h¢ in (2.18), where € € W,*(B(z,3R),R?), we have
0= / |VulP~2h?*VVed. (2.19)
B(z,3R)

Assume p is an arbitrary constant in (0,3R/2). Let ¢ € Wy (B(x,2p),[0,1]),
and ¢ = 1 on B(z, p). Taking £ = ¢¢? in (2.19) and using the Young inequality, for
any 71 € (0,1) we obtain

/ VUl 2h|V2cda < C VuP 2R (| VH2C + C () de.
B(x,2p) B(x,2p)

Choosing 7 sufficiently small and noticing ¢ =1 on B(z, p), we obtain

/
/ |VulP~2R2|V¢|dz < c(/ |Vu|pda:) g (2.20)
B(z,p) B(z,2p)
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Applying (2.20) with p = r we obtain

/ Vup < / VUl 2 (2 V6P + VA + [V [)da
B

1-2/
/ |Vu|pdx> 3
B(z,2r)

=(
(/ (VAP + |Vus|P)de /p(/B|Vu|pdx>(p2)/p (2.21)
=(

1-2/p
/ |Vu|pdx> +5/ |Vu|Pdz
B(x,2r) B
+C(0) [ (VAP + Vsl o
Substituting (2.13)) into (2.21)) and choosing § > 0 sufficiently small we derive

1-2/p
/ \VulPdz < o( / |Vu|pd:v) § Cemmp
B B(z,2r)

+C(/B<x,zr) |vu€|de+1> [/3(1 7h2)2dz]t/(p+t).

From ([2.2) it follows that

(2.22)

/ |VulPde < C(e™ P) 2/ 4 Cem Pt L CemPHods = ) + I, + I3, (2.23)
B

Step 2. When m < p/2, then m+1 —p < (m — p)(1 — 2/p). Therefore I < I.
Let kg € N be the minimum with the property m + 1 < (1 + L)’“f’m

In the following we shall improve the exponent m—p+ p_Hm of gin I3 tom—p+1.
Assume ¢ € Cg°(B(z,2R), [0, 1]) satisfying ( = 1 on B, 11,2 and |V(| < C. Taking
the test function as h¢(1 — h) in , we have

1
ep B

g/ |Vu|p’2VhV§h(17h)d:c+/ IVulPC(1 — h) gc/ \VulPda
B B B

R%(1 — h?)¢(1 — h)dx + / |Vu|P~2|Vh|2hldx + / R2|VulP(1 — h)(dx
B B

Noting ¢ = 1 on B, 1/2, applying h > 1/2 and ({2.22)), we obtain

),

which implies

— W2z < — /h2 — h)Cdx < C(1 4™ PHemm),

77L+1/2

/ (1= h?)2de < Ce™ M55 £ € (0,2). (2.24)
Bm+1/2

On the other hand, similar to the derivation of (2.14]), for B,, 1 /2 we still con-
clude that for any 6 > 0,

1
E.(ue, Byg12) < ;)/

Brt1/2

|Vw|pdx+C€m7p+1+5/ |Vu|Pdz.

Briti1)2
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Therefore, (2.15) can be written as

1 1 1
7/ Vh|Pdz + f/ VuslPde + —— (1 h?)2de
p Bpt1/2 . p Btz 4e Btz (225)
< C’sm7”+1—|—f/ (1—hp)|Vw|pdx—|—5/ |Vue|Pdz.
P JBias Bot1/2

To estimate the second term of the right hand side of (2.25)), we apply (2.23) and
(2.24) to obtain
L[ P < e st st — oot
p an+1/2
by the same way as for (2.16]). Substituting this into (2.25)) yields

1

/ (IVAIP + |Vus|P)de < C(em P+ 4 gmUtat) —py 4 5/ |Vu|Pd.
p Brt1/2 Brit1)2

Using this instead of (2.13]) and by the same argument of Step 1 we can improve
223 as

/ VuePde < C + C(e™ P 4 eI+ 5)"—7) < gem(+ )" —p,
Bry1/2

Now, we use this inequality replacing (2.23) to discuss, thus (2.24]) can be written
as

/ (1 —h?)%de < Cem(Hﬁ)Q, e € (0,e9).
B1n+3/4

As a result, it is also follows that, as the derivation of (2.16) and (2.23),

1 ¢
f/ (1 — hP)|Vw|Pdz < Ce™ 58" P,
b Brt3/4

/ \Vue[Pdz < C + C(em Pt + ™t 55)° 9y < cemUtate)’—p,
Bm+3/4

If we do in this way, and noting the definition of kg, we can derive by kg steps
that
VulPde < C + C(em=PH 4 M4 5R)"0—p)
B”m+171/2k071

Thus
/ |Vue |Pde < / |Vuc|Pde < C(e™ P! 4 1).
an+1

Bm+1—1/2k071
This is (2.2]) for j =m + 1.
Step 3. When m > p/2, (m —p)(1 —2/p) < m+1—p. Let k > 1 be an integer
such that (m —p)(1 —2/p)* <m+1—p < (m—p)(1 —2/p)k*L. Now, I} > I, in
£23). Thus,

/ |VulPdz < C(emP)1=2/P 4 Ce™ P 5in
B

mt :
o7 of e in Iy to (m —

p)(1—2/p) since we may find kg > 0 such that m(1+ #)ko —p>(m—p)(1-2/p).

Similar to Step 2, we may improve the exponent m — p +



10 B. WANG, Y. CAI EJDE-2016/46
Namely, there is a constant r; € (Ry,+1,7) such that
/ V. |Pdz < Celm=p)(1=2/p).
B(z,r1)
Therefore, as the derivation of (2.24)),
/ (1 — h2)2dx < Celm—P)(=2/p)4p,
B(z,2r1/3)

Substituting these into (2.22]) we have

/ |Vue|Pdx
B(z,r1/2)

1-2/
< CemtiTP C[/ \Vu5|pdm} '
B(x,r)
+ C(/ \Vue|Pdz + 1) {/ (1- h2)2dx} B
B(z,r) B(z,r)

< Cemtiop Ce(m=p)(1-2/p)* | 0o(m=p)(1-2/p)+[(m=p)(1-2/p)+pl 55
Noting (m — p)(1 —2/p)? < m+ 1 — p, we can see that

/ V. |Pds < C=m=P)(1=2/9)° | Colm=p)(1=2/p)+[(m=p)(1=2/p)+7 5t
B(z,r1/2)

Using the idea of Step 2, we can improve the exponent (m—p)(1—2/p)+[(m—p)(1—
2/p)+p] zﬁ of e to (m—p)(1—2/p)?. Namely, there is a constant ro € (Ry41,71/2)
such that

/ \Vue|Pdz < Celm—p)(1-2/p)°
B(z,r2)
Suppose that for some | < k — 1,

/ |V |Pdz < Celm—p)(1-2/p)’
B(z,ri—1)

holds, where R,,+1 < 141 < r;/2forl =2,3, -+ ,k—1. Therefore, as the derivation

of @27),
/ (1 — h?)2dz < Cem=—P(1=2/p)'+p
B(z,r1-1)

Substituting these inequalities into ([2.22)) yields

/ |Vue|Pdx
B(x,r)

< Cem =P 4 Oem=p)(1=2/p)""" | o (m=p)(1=2/p) +{(m=p)1-2/p) +7l 557

< Celm=p)(1=2/p)"*" | oo (m=p)(1=2/p)'+[(m—p)(1=2/p) +Pl 745

Similar to Step 2, we may improve again the exponent (m — p)(1 —2/p)! + [(m —

p)(1—2/p)t + p pit of € to (m — p)(1 —2/p)"*1. Namely, it can be seen that

/ |Vu.|[Pda < Cem=—p(1=2/p)""
B(z,r;)
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From this result it follows that for | = k — 1,
/ V. |P < Cetm=—r(-2/p)"
B(z,rk-1)
Therefore, as the derivation of (2.24)),
/ (1 - h?)%da < Ce(m=p)(1=2/p)"+p
B(z,ri—1)

Combining these with (2.22) we obtain

/ ) |Vue|Pdx
Bz, =57)
t

< O™t P (1=2/p)" T Ce(m=p)(1=2/p)" +[(m=p)(1-2/p)"+p] 75

< CemH1=p L e(m=p)(1-2/p)" +{(m=p)(1-2/p) " +pl 75

As in Step 2 and noting the definition of k, we may also improve the exponent of
€ to m 4+ 1 — p finally. Namely, we have

/ |Vu [P < Cemti=p,
B(a:,rk_l/Z)

This is (2.2]) for j = m + 1 and proof of Theorem is complete.

Theorem 2.5. For an arbitrary compact subset K of G\ {a1,a2,...,an}. There
exists a constant C > 0 which does not depend on € € (0,1) such that Ec(ue, K) <
C.

Proof. 1t is sufficient to prove that E.(u., B(z, R)) < C, where B(z, R) is the disc
in G\ {a1,az,...,an}. Theorem [2.2| shows that

E.(ue, By)) < CelPl7P, (2.26)

Using this and the integral mean value theorem, there exists a constant r €
[R[p]+1/2, R[p]] such that

1
/ |V [Pdé + — / u2yde < C(r)elPl=r, (2.27)
OB (z,r) ep OB (z,r)
Consider the functional
1 1
E(p,B) == [ (|Vp|* +1)*/?d —/1— 2d
(08) =5 [ (9 + 120+ o [ (1= pPa,

where B = B(z,r). It is easy to prove that the minimizer ps of E(p,B) on
le’,p | (B,R* U {0}) exists. Similar to the proof of proposition by (2.26) and
(2.27) we can derive

E(ps, B) < CelPl=p+1, (2.28)

From this it follows that for any § > 0,

/ |V p2|? | Vw[P~2dx < 5/ |Vu€\pdx+cg[p]+1—p'
B B
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Since u. is a minimizer of E.(u,G), we have

E.(uz, B) < E-((paw. /1~ p3). B)

1 —
S ];/B(p%|vw|2)p/2dl,+C/B(|Vp2|p+|vp2‘2|Vw|P Q)d.’L‘ (2.29)

1 2\2
t i B(l—Pg) de.

Therefore,
1
Ee(ue, B) < ];/ \Vw\pda:+ce[Pl+1—P+5/ Vue|Pdz.
B B

Combining this with Jensen’s inequality yields

1 1 1
= Vhpdx—i-f/ Vu pdx+—/ 1 —h?)?
p/B|| > 1vwapds+ o [ 0= m)

1 1
gEs(uE,B)—f/ |Vw|pda;+f/(1—hp)|w|pda; (2.30)
PJB PJB
< C’s[”]“’p—l-é/ |vu€v’dx+1/(1—hp)|vw|i’dx.
B PJB

To estimate the third term of the right hand side, we proceed in the same way of
the proof of Proposition and use Ei fB(l — h?)2dz < CelPl=P which is implied

p

by (2.26). As a result, there exists t € (0,1/2) such that

1/ (1 — )| Vuw|Pda < Celpl+plt/ o —p,
pJB N

Substituting this into (2.30]) yields

1 1
- P p 1232
p/Buvm + Vug| >dm+4gp/3<1 h?)*da

< C(E[le—p + 6[p]+%—p) + 5/ |V |Pda.
B
This and (2.21) imply that
/ |Vue|Pda < Cell=p+1 4 oelpl=ptimm o o (lPl-p)(1-2/p) C, (2.31)
B

as long as we choose § > 0 sufficiently small. Discussing in the same way to Step 2
and Step 3, we may improve the exponent of € in the second and the third terms of
the right hand side of step by step such that the improved exponent is not
smaller than [p] — p + 1, thus for some B, C B, there exists C' independent of
€ € (0,e0) with eq sufficiently small such that

/ Vu.|Pdz < C + CelPlH1—7 < ¢
Bipi4+1

The proof is complete. O
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3. PROOF OF THEOREM [L.3|

Step 1. Suppose B(zg,20) C [G\ U _:{a;}], where the constant ¢ may be
sufficiently small but independent of . Slnce theorem 2.5 implies F. (u., B(zg,20)\
B(zg,0)) < C, there is a constant r € (¢,20) such that

1
[ vapdgs 5 [ adde<co),
OB(zo,r) € OB (z0,r)

Thus, we can find a subsequence u., of u. such that u., — u, = (u,,0) in
C(0B(zo,7),R3), where uy, is the S'-valued harmonic map, which leads to

s, in C(0B(zo,1)). (3.1)

lul, | "
Step 2. Denote B = B(xq, 7). It is easy to see the existence of the solution w, of

min{ [ |VulPdz:ue WP (B,0B))}. (3.2)
B

Tull

Theoremand lul| > 1/2 on B imply 277 [, |V ,‘| dx < [5|Vue|Pdez < C, and
hence

li
/ |V, [Pdz g/ V= pda < C. (3.3)
B B ‘ua‘

From this and (2.28)) it follows that fB |V pa|2|Vw, |P~2dx < Ce2(PI+1=P)/P wwhere
p2 is the minimizer of E(p, B) on VV\u'|(B R U{0}). Substituting this result into

(2.29) and using (2.28)), we obtain
/ |[Vue|Pdr < 062([”]“71’)/”—!—/ |[Vw, |[Pdx. (3.4)
B B

Step 3. Let w! be a solution of

mm{/ (IVwl® +7)P2de :w e W' (B,0By)}, 7€ (0,1).  (35)
\u’\

Clearly, wI also solves

— div(e] P 2Vw) = w| Vw2l P72 T = Vw2 + 7. (3.6)

Noticing |u’6\ ew u’f (B,90By), we have

[ull

/|ng\pdx§/(|Vw;|2+7)p/2dm
B

/(|V o+ e (3.7)
/(|v| S <c

by using (3.3), where C' is a constant which is independent of e, 7. Then there exist
w* € Wlu’f: (B,0B1) and a subsequence of w? denoted still by itself such that

lull

lim wl = w* weakly in WP (B, R?). (3.8)

T7—0
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Noting the weak lower semi-continuity of [, |[Vw|?, we have
/ |Vw*|Pdz < lim inf/ |[Vw] |Pdz < lim sup/ |Vw! [Pdz. (3.9
B =0 JB r—0 JB
The fact that w] solves (3.5)) implies

limsup/(|Vw;|2+T)p/2dx§ lir%/(|sz|2+T)p/2dx:/ |Vw,|Pdx,
B —0/B B

T—0

where w, is a solution of (3.2)). This and (3.9) lead to

/ [Vw* [Pdx Sliminf/ |[Vwl|Pdx §limsup/ |Vw] [Pdz S/ |Vw|Pdx.
B 7—0 B T—0 B B

(3.10)
Since w* € W{f (B,9B1), we know w™* also solves (3.2), namely

lull

/ |Vwe|Pdx = / |Vw* |Pdz. (3.11)
B B
Combining this with (3.10) yields lim, o [, |Vw][Pdz = [, |[Vw*|Pdz, which and
(3-8) imply that as 7 — 0,

Vwl — Vw* in LP(B, R?). (3.12)

Step 4. By the same argument as in Step 3, we obtain the following conclusion:
Let u™ be a solution of

min{/ (IVul?> + 7)P2dx : w € WSP(B,0By)}, 7€ (0,1). (3.13)
B p

Then u” satisfies
/ Vurpdz < C, (3.14)
where C' is which is independent oBf) 7, and u” solves
— div[(v")P2/2Vy] = u|Vu|?0 P2/ T = |Vul? + 7. (3.15)
As 7 — 0, there exists a subsequence of u” denoted by itself such that
Vu™ — Vu* in LP(B, R?), (3.16)
where u* is a minimizer of [, |[Vu[Pdz in Wiép(B, 0By). It is well-known that u*
is a map of the least p-energy, and also a p-harmonic map.
Step 5. From [0, Lemma 1, Page 65], we can write
wl = (cos¢l,sing), u” = (cosy”,siny7),

we = (cos @2, sinp?), u* = (cosyp™,siny*),

!
u—f||33 = (cos ¢c,sin¢.),  uylop = (cos®,sineh),

g
where ¢T,97, ¢, 1* belong to WHP(B, R), ¢*,1 belong to WLP(OB, R), and they
are all single-valued functions since their degrees around 0B are zero. Therefore,

¢;|BB = ¢€7 7vzj‘l—|3B = w» (317)
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and |VwI| = |VoI|, |VuT| = |[VYT|. |Vw:| = |V¢%|, |[Vu*| = |V¢*|. More-

over, by (3.6) and (3.15), we obtain that both ¢7 and " satisfy — div[(|V®|? +
7)(P=2)/2¥®| = 0. Thus,

= div[(|VoZ|* + )PPVl — (|[VyT 4 )RV = 0. (3.18)
Multiplying both sides of (3.18]) by ¢ — ™ and integrating over B, we obtain

- /5,3@2 =212, — o (0=2/2y;,) (¢ — ) de

(3.19)

+ [ Q2090 - 0DV (6 - s =0,
B

where v denotes the unit outside-norm vector of 9B.
Let w = wl be a solution of (3.5). Integrating both sides of (3.6) over B, we

have
_/ v;@*?)/?wudgzj w| V2T 724y,
OB B
this and (3.7)) imply
| / vl P22, de| = | / oI Py, de| < / vIPPdr < C. (3.20)
OB OB B

An analogous discussion shows that for the solution u = ™ of (3.13) which is
equipped with (3.14), we may also obtain

|/ vP=2/ 2y, de| = y/ vP=2/ 2y, d¢ | g/ |Vu|Pdz < C. (3.21)
OB OB B
Combining (3.17) with (3.19)-(3.21]), we derive

/ (I ®P7227 ¢ — =2V (p — p)dx < Csup|pT — 7| = C'sup |- — ),
B OB OB

where C is independent of ¢, 7. Letting 7 — 0 and applying (3.12)) and (3.16]), we
obtain

| /B (IV@r|P=2/2V¢r — |V |P=D/20y* )V (¢F — ") dz| < Csup|o. —l,

which implies [, [V¢: — Vip*[Pdx < Csupyp [¢e — 9| Letting e — 0 and using
(3.1), we obtain [, |V¢:[Pdr — [, |Vip*[Pdx. That is,

/|Vw€\pdx—>/ |Vu*|Pde. (3.22)
B B

Step 6. Since [, |VulPdz is weak lower semi-continuous, from Theorem we
deduce [ [Vu,[Pde < liminf., o [ |Vuc, |[Pdz. Combining this result with (3.4),

(3.11)) and (3.22]), we obtain

/ |Vup|Pde < liminf [ |Vu,,|Pdz <lim sup/ |Vue, |Pdx
B =0 Jp ' B '

Ek—>0

T er—0

< lim |Vw5|pd:v:/ |[Vu*|Pdx.
B B
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Recalling the definition of u* in Step 4, and noticing u/, € W,;*(B, 9B ), we know
ya

that u;, is also a minimizer of [, [Vu[P, and

lim / \Vu5k|pdx:/ |Vup|pdx:/ [Vu*Pdz.
&—0J/B B B

This result and Theorem imply Vu., — Vu, in LP(B,R3). when ¢, — 0.
Combining this with the fact u., — u, in LP(B, R3), which is implied by Theorem
1.2}, we obtain

Ue, — up, in WHP(B, R?)

as €y, — 0. Then it is not difficult to complete the proof of this theorem.
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