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ENTIRE FUNCTIONS RELATED TO STATIONARY SOLUTIONS
OF THE KAWAHARA EQUATION

ANDRÉ LUIZ C. DOS SANTOS, PATRÍCIA N. DA SILVA,
CARLOS FREDERICO VASCONCELLOS

Abstract. In this study, we characterize the lengths of intervals for which the
linear Kawahara equation has a non-trivial solution, whose energy is stationary.

This gives rise to a family of complex functions. Characterizing the lengths

amounts to deciding which members of this family are entire functions. Our
approach is essentially based on determining the existence of certain Möbius

transformation.

1. Introduction

In the Kawahara equation

ut + ux + κuxxx + ηuxxxxx + uux = 0, (1.1)

the conservative dispersive effect is represented by the term (κuxxx + ηuxxxxx).
This equation is a model for plasma wave, capilarity-gravity water waves and other
dispersive phenomena when the cubic KdV-type equation is weak. Kawahara [11]
pointed out that it happens when the coefficient of the third order derivative in
the KdV equation becomes very small or even zero. It is then necessary to take
into account the higher order effect of dispersion in order to balance the nonlinear
effect. Kakutani and Ono [10] showed that for a critical value of angle between the
magneto-acoustic wave in a cold collision-free plasma and the external magnetic
field, the third order derivative term in the KdV equation vanishes and may be
replaced by the fifth order derivative term. Following this idea, Kawahara [11]
studied a generalized nonlinear dispersive equation which has a form of the KdV
equation with an additional fifth order derivative term. This equation has also
been obtainded by Hasimoto [9] for the shallow wave near critical values of surface
tension. More precisely, in this work Hasimoto found these critical values when the
Bond number is near one third.

While analyzing the evolution of solutions of the water wave-problem, Schneider
and Wayne [17] also showed that the coefficient of the third order dispersive term
in nondimensionalized statements of the KdV equation vanishes when the Bond
number is equal to one third. The Bond number is proportional to the strength
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Key words and phrases. Entire functions; Möbius transformations; stationary solutions;

Kawahara equation.
c©2016 Texas State University.

Submitted November 20, 2014. Published January 29, 2016.

1



2 A. L. C. DOS SANTOS, P. N. DA SILVA,C. F. VASCONCELLOS EJDE-2016/43

of the surface tension and in the KdV equation it is related to the leading order
dispersive effects in the water-waves problem. With its disappearance, the resulting
equation is just Burger’s equation whose solutions typically form shocks in finite
time. Thus, if we wish to model interesting behavior in the water-wave problem it
is necessary to include higher order terms. That is, it is necessary to consider the
Kawahara equation. In any case, the inclusion of the fifth order derivative term
takes into account the comparative magnitude of the coefficients of the third and
fifth power terms in the linearized dispersion relation.

Berloff and Howard [3] presented the Kawahara equation as the purely dispersive
form of the nonlinear partial differential equation

ut + urux + auxx + buxxx + cuxxxx + duxxxxx = 0.

The above equation describes the evolution of long waves in various problems in fluid
dynamics. The Kawahara equation corresponds to the choice a = c = 0 and r = 1
and describes water waves with surface tension. Bridges and Derks [6] presented
the Kawahara equation – or fifth-order KdV-type equation – as a particular case
of the general form

ut + κuxxx + ηuxxxxx =
∂

∂x
f(u, ux, uxx) (1.2)

where u(x, t) is a scalar real valued function, κ and η 6= 0 are real parameters
and f(u, ux, uxx) is some smooth function. The form (1.1) occurs most often in
applications and corresponds to the choice of f in (1.2) with the form f(u, ux, uxx) =
−u2/2.

As noted by Kawahara [11], we may assume without loss of generality that η < 0
in (1.1). In fact, if we introduce the following simple transformations

u→ −u, x→ −x, t→ t,

we can obtain an equation of the form of (1.1) in which κ and η are replaced,
respectively, by −κ and −η.

Hagarus, Lombardi and Scheel [8] pointed out that the Kawahara equation

ut = uxxxxx − εuxxx + uux, (1.3)

in which ε is a real parameter, models water waves in the long-wave regime for
moderate values of surface tension (Weber numbers close to 1/3). For such Weber
numbers, the usual description of long water waves via the Korteweg-de Vries (KdV)
equation fails since the cubic term in the linear dispersion relation vanishes and
fifth order dispersion becomes relevant at leading order, ω(k) = k5 + εk3. Positive
(resp. negative) values of the parameter ε in (1.3) correspond to Weber numbers
larger (resp. smaller) than 1/3.

Dispersive problems have been object of intensive research (see, for instance, the
classical paper of Benjamin, Bona and Mahoni [2], Biagioni and Linares [4], Bona
and Chen [5], Menzala et al. [13], Rosier [15], and references therein). Recently
global stabilization of the generalized KdV system have been obtained by Rosier and
Zhang [16] and Linares and Pazoto [12] studied the stabilization of the generalized
KdV system with critical exponents. For the stabilization of global solutions of the
Kawahara under the effect of a localized damping mechanism, see Vasconcellos and
Silva [19, 20, 21].

We consider the linear Kawahara equation

ut + βux + κuxxx + ηuxxxxx = 0 with (x, t) ∈ (0, L0)× (0,∞), (1.4)
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where the coefficients β, κ and η are real numbers such that η < 0, κ 6= 0, β ∈ {0, 1}.
Sometimes, while discussing the existence of solutions of certain partial differential
equations, it is necessary to establish when a certain quotient of entire functions
still turns out to be an entire function (see, for instance, Rosier [15], Vasconcellos
and Silva [19]). The problem of factoring an entire function is solved by the famous
Weierstrass factorization theorem and its corollaries. However, applying this result
may not be very practical or even viable in some cases.

Now we proceed to a general description of such kind of factoring problems. We
have a polynomial p : C→ C and a family of functions

Na : C× (0,∞)→ C,

a ∈ C4 ∼ {0}, whose restriction Na(·, L) is entire for each L > 0. We consider a
family of functions fa(·, L) defined by

Na(ξ, L) = fa(ξ, L) p(ξ) (1.5)
in its maximal domain. For a given polynomial p(·), the problem of characterizing
the set of values L0 > 0, for which it is possible to find a non null a0 ∈ C4 such that
the function fa0(·, L0) is entire, is a challenging problem and of particular interest
of the academic community.

Vasconcellos and Silva [19, Lemma 2.1] discussed the existence of non-zero so-
lutions for (1.4) whose energy is constant over time. Their results show that the
existence of such solutions is equivalent to determining the lengths of interval (0, L0)
for which it is possible to verify that the condition

(∃λ ∈ C, u0 ∈ (H3
0 (0, L0)∩H5(0, L0),C) ⇒ λu0 +βu′0 +κu′′′0 + ηu′′′′′0 = 0) (1.6)

is valid. Such condition in turn reduces to the problem of characterizing the set X
of L0 > 0 values, for which exist r and a0 providing that function fa(·, L) is entire
for L = L0 and a = a0. In this case, using (1.5), fa(·, L) is defined by

Na(ξ, L) = a1iξ − a2iξe
−iξL + a3 − a4e

−iξL

p(ξ) = r + βξ − κξ3 + ηξ5
(1.7)

where a = (a1, a2, a3, a4) and r ∈ R. It follows from (1.6) that λ is a pure imaginary
number. Thus, we only have to consider polynomials p(·) with r ∈ R.

For each r ∈ R and a0 ∈ C4 ∼ {0}, let Xa0r be the set of L0 > 0 values, for
which the function fa(·, L) is entire for L = L0 and a = a0. The set X is the union
of Xa0r for r ∈ R and a0 ∈ C4 ∼ {0}.

Here, we place emphasis on the following statements:
(S1) fa0(·, L0) is entire;
(S2) all the zeros, taking the respective multiplicities into account, of the poly-

nomial p are zeros of Na0(·, L);
(S3) the maximal domain of fa0(·, L0) is C;

which are, clearly, equivalent and will be widely used throughout this article. A
closer look shows that determining the solution to the problem guarantees the exis-
tence of a Möbius transformation in some circumstances. Further, for the function
fa(·, L), defined by (1.5) and (1.7), to be entire, given the equivalence between
statements (S1) and (S2); informally, we must have

a1iξ0 + a3

a2iξ0 + a4
= e−iLξ0 (1.8)



4 A. L. C. DOS SANTOS, P. N. DA SILVA,C. F. VASCONCELLOS EJDE-2016/43

for each root ξ0 of the polynomial p. We note that for a such that a1a3−a2a4 6= 0,
the left side of (1.8) suggests that a Möbius transformation is defined. Note that
we already have an indication that for a polynomial p with at least two roots
differing by an integer multiple of 2π/L, we obtain L /∈ X . With this, a method for
solving the problem is revealed: we must verify for which structures of the roots of
the polynomial p is it possible to define a Möbius transformation M that satisfies
M(ξ0) = e−iLξ0 for each zero ξ0 of polynomial p (See Lemma 2.6).

Taking (1.8), it is essential to define, for each non null a ∈ C4, the discriminant
of a, specifically, the complex number d(a) = a1a4 − a2a3. It is natural, however,
to consider:

(i) d(a) = 0 or
(ii) d(a) 6= 0.

The main result shown in this article guarantees that the existence of pairs (a0, L0)
that make fa(·, L) entire is intimately linked to whether or not the discriminant
is zero. In fact, when the discriminant of a is zero, such pairs do not exist for
any r ∈ R. On the other hand, if the discriminant of a is non-zero, we identify
situations where the pairs (a0, L0) can exist or not. Whereas case (i) has been
completely solved here, in case (ii) there are situations where the problem remains
to be solved, i.e., in some cases, we do not know whether or not it is possible to
satisfy (1.8). As far as we know, Rosier [15] was the first to analyze these kinds
of problems. In fact, he showed that the existence of non-trivial solutions for the
Kortweg de Vries equation, whose energies do not decay over time, is equivalent to
determining the set U of values l0 > 0, for which there exists a non null k0 ∈ C2

and s ∈ C, so that the function gk(·, L) with k = (k1, k2), defined by

Mk(ξ, l) = gk(ξ, l) q(ξ), (1.9)

is entire for k = k0 and l = l0. Here, in particular, Mk(ξ, l) = k1 − k2e
−iLξ and

q(ξ) = ξ3 − ξ + s. Then Rosier [15] proves that

U =
{

2π

√
m2 +mn+ n2

3
: n,m ∈ N

}
.

Let us take case (i) from the same starting point as Rosier [15], i.e., the analysis of
zeros of Na(·, L). Here, it makes no sense to argue about the existence of a Möbius
transformation. Case (ii) is completely based on equation (1.8). Our strategy is
quite efficient. It proved to be efficient in this situation, where using previously
established results, such as the Weierstrass factorization theorem, is not possible.

Notice that, for each choice of the coefficients β, κ and η, condition (1.6) asso-
ciates the Kawahara equation

ut + βux + κuxxx + ηuxxxxx = 0

to a family of polynomials

p(ξ) = r + βξ − κξ3 + ηξ5, r ∈ R.

Let X be the set of the lengths of interval (0, L0) for which exist non-zero solutions
for (1.4) whose energy is constant over time. Consider for each r ∈ R and a ∈ C4 ∼
{0}, the set Xar of values L0 > 0 for which the function fa(·, L) defined by (1.5)
and (1.7) is entire for L = L0. We can decompose X as the union of the sets Xar

for r ∈ R and non null a ∈ C4
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We extend the results obtained by Vasconcellos and Silva [19, 20] for character-
izing the set X for the Kawahara equation (1.4). They have partially analyzed the
case κ = 0 in (1.4) and did not deal with the case κ = 1 in (1.4). In our proof, we
argue by exhaustion characterizing the sets Xar. In Part (I) of Theorem 1.1, we
see that if d(a) = 0, then Xar = ∅ for all r ∈ R. As a consequence of this result,
it follows that for any Kawahara equation (1.4), the set X is given by the union
of the set Xar for r ∈ R and d(a) 6= 0. Our results for d(a) 6= 0 allow to partially
describe the set X for Kawahara equations (1.4) with β = 1 and κ 6= 0 or β = 0
and κ < 0. For Kawahara equations (1.4) with β = 0, κ > 0, as a consequence of
Theorem 1.1, we obtain that X is empty.

Now we summarize the results obtained in this article in the following theorem
guided by the roots of polynomial p, as we will shortly see.

Theorem 1.1. Let r ∈ R, a non null a ∈ C4 and L > 0, and consider the function
fa(·, L) defined by the product

Na(ξ, L) = fa(ξ, L) p(ξ) (1.10)

in its maximal domain. Let us suppose that Na(ξ, L) and p(ξ) are as in (1.7). Let
Xar be the set of values L0 > 0 for which the function fa(·, L) defined by (1.10) is
entire for L = L0.

(I) If L0 > 0 is such that fa0(·, L0) is entire for some non null a0 ∈ C4, then
d(a0) 6= 0. In other words, for any non null a, if d(a) = 0, we obtain Xar = ∅, for
any r ∈ R. The reciprocal, however, is false.

(II) If a is such that d(a) 6= 0 and one of following three items occurs:

(a) β = 1 and |r| > z − κz3 + ηz5, where z =

√
3κ−
√

9κ2−20η

10η ;

(b) β = 0, κ > 0 and r ∈ R;
(c) β = 0, κ < 0 and |r| > −κz3 + ηz5, where z =

√
3κ
5η .

Then there is no L > 0 that renders the function fa(·, L) entire. Therefore, Xar = ∅.
(III)

(a) If β = 1 and r = 0, then there exist L0 > 0 and non null a0 such that
fa0(·, L0) is entire if and only if

L0 ∈
{
L ∈ R, k cotanh

(Lk
2

)
= −ρ cot

(Lρ
2

)}
where

ρ =

√
κ−

√
κ2 − 4η
2η

and k =

√√√√∣∣∣∣∣κ+
√
κ2 − 4η
2η

∣∣∣∣∣.
(b) If β = 0, κ < 0 and r = 0, then there exist L0 > 0 and non null a0 such

that fa0(·, L0) is entire if and only if

L0 ∈
{
L > 0, tan

ρL

2
=
ρL

2

}
,

where ρ =
√
κ/η.

The sets in (a) and (b) are enumerable.
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The knowledge of the zeros of gk(ξ, l) in (1.9) plays a key role in the Rosier’s
analysis of the existence of non-trivial solutions for the Kortweg de Vries equation,
whose energies do not decay over time. The function fa(ξ, L) related to Kawahara
equation does not resemble this fact and its structure together with the order of
the polynomial turn the analysis of the Kawahara case into a hard problem. Many
other authors have made efforts to tackle this problem (see for instance, Glass
and Guerrero [7], for a particular case of (III)(b); Araruna, Capistrano-Filho and
Doronin [1], for an example of a critical set). Our results take their contributions
into account. We show they can be presented and obtained in a systematic way
and we go a step further.

2. Proof of main results

First we establish some lemmas need for proving the three parts of Theorem 1.1.

Part (I). The main idea behind Part (I) of Theorem 1.1 is to find out whether
there is at least one zero of polynomial p that is not a zero of Na(·, L). The following
lemma is a decisive factor in obtaining this result.

Lemma 2.1. Let non null a ∈ C4 with d(a) = 0 and L > 0. Then the set of the
imaginary parts of the zeros of Na(·, L) has at most two elements.

Proof. Fix an arbitrarily L > 0 and a non null a such that d(a) = 0. The nullity of
the discriminant of a guarantees that the vectors (a1, a3) and (a2, a4) are linearly
dependent. We can then assume that there exists some complex number λ such
that (a1, a3) = λ(a2, a4). Thus (a2, a4) cannot be zero and, if (a1, a3) is zero, then
λ = 0. Therefore, we can write

Na(ξ, L) = (a2iξ + a4) (λ− e−iLξ) (2.1)

Finally, we see that in one of the factors of (2.1) there is at most one zero and, in
the other, an infinite number of zeros all with the same imaginary part. Thus, the
set of the imaginary parts of the zeros of Na(·, L) has no more than two elements. If
we assume that (a2, a4) = λ(a1, a3), the same conclusion about the zeros of Na(·, L)
is valid, proving the result. �

By quickly verifying the result shown in Lemma 2.6, we conclude the set of
the imaginary parts of the polynomial p has at least three elements, except for
r = β = 0 and κ < 0, when all the roots are real. With the aim of proving part (I)
of Theorem 1.1, we fix an arbitrary L > 0 and a non null a such that d(a) = 0. We
initially consider any complementar case to r = β = 0 and κ < 0. The Lemmas 2.6
and 2.1 combined guarantee that there will always be a zero of the polynomial p
that is not a zero of Na(·, L). Consequently, the function fa(·, L) is not entire.
Finally, we suppose that r = β = 0 and κ < 0 and assume that fa(·, L) is entire.
Since 0 is a root of multiplicity three, given the equivalence between (S1) and (S2),
we have Na(0, L) = N ′a(0, L) = N ′′a (0, L) = 0 (differentiating with respect to ξ).
These three equations imply that a = µ(−L2 ,

L
2 , 1, 1) for a complex number µ 6= 0.

Here, we obtain d(a) = −µL 6= 0, which contradicts the hypothesis of the nullity of
the discriminant of a. Therefore, fa(·, L) is not entire for any value of L > 0 and
non null a such that d(a) = 0. This proves part (I) of Theorem 1.1.
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Part (II). The following lemma essentially states that if the polynomial p has “too
many” complex roots, equation (1.8) cannot be satisfied.

Lemma 2.2. For any L > 0, there is no Möbius transformation M such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ1, ξ2}

with ξ1, ξ2, ξ1, ξ2 all distinct in C.

Proof. Write ξj = xj + iyj and ωj = M(ξj) for j = 1, 2 and note that M(ξj) = 1
ωj

.
The Möbius transformation M that satisfies

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ1, ξ2}

exists if, and only if, the equality

(ξ1, ξ2; ξ1, ξ2) =
(
ω1, ω2;

1
ω1
,

1
ω2

)
is valid [18, Theorem VI,p. 178]. (Note that (ξ1, ξ2; ξ3, ξ4) stands for the cross ratio
of pairs (ξ1, ξ2) and (ξ3, ξ4)) However, this does not occur, as(
ω1, ω2;

1
ω1
,

1
ω2

)
=

4 sinhLy1 sinhLy2
2 coshL(y1 + y2)− 2 cosL(x2 − x1)

>
4y1y2
K

= (ξ1, ξ2; ξ1, ξ2),

where K = |ξ1 − ξ2|. To prove this statement, let us assume, without loss of
generality, that y1, y2 > 0 and define the function:

F (t) = K sinh(y1t) sinh(y2t)− 2y1y2[cosh((y1 + y2)t)− cos((x2 − x1)t)]

for t ∈ R. A direct calculation (see the Appendix) shows that F (0) = F ′(0) = 0
and F ′′(t) > 0 for all t > 0. Using a second order Taylor expansion for the function
F , we conclude that F (t) > 0 for all t > 0. In particular, this means that for L > 0,
the inequality

4K sinh(Ly1) sinh(Ly2) > 4y1y2(2 cosh(L(y1 + y2))− 2 cos(L(x2 − x1)))

is valid. This completes the proof. �

Thus, now we can prove part (II) of Theorem 1.1. Let us suppose there exists
a such that d(a) 6= 0 and that one of (a), (b) with r 6= 0, or (c) of part (II) of the
theorem occurs (case (b) with r = 0 is proven in Lemma 2.5).

Here, Lemma 2.6 guarantees that polynomial p has a single real root, whose
multiplicity is equal to 1. This means that this polynomial has two pairs of complex
conjugate roots. Let us assume, in contradiction, that there exists L > 0 such that
the function fa(·, L) is entire. Then, all roots of polynomial p must satisfy (1.8);
i.e., there exists a Möbius transformation that takes each root ξ0 of p into e−iLξ0 .
However, this contradicts Lemma 2.2 and proves part (II) of the theorem except
for the case where β = 0, κ > 0 and r = 0 that will be shown in Lemma 2.5.

Part (III). Lemma 2.3 below, unlike Lemma 2.2, guarantees the existence of a
Möbius transformation in a case when the polynomial p has exactly three real roots
whose multiplicities are equal to 1. Lemma 2.5 below guarantees the existence of a
Möbius transformation when all roots of polynomial p are real.
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Lemma 2.3. Let L, k and ρ be real numbers with L > 0 and k 6= 0. There is a
unique Möbius transformation M which satisfies M(0) = 1, M(±ρ) = e∓iLρ and
M(±ik) = e±Lk if and only if the following equality occurs

k cotanh
(Lk

2

)
= −ρ cot

(Lρ
2

)
.

Proof. First we prove the necessity part. Assume that exists a unique Möbius
transformation M that satisfies M(0) = 1, M(±ρ) = e∓iLρ and M(±ik) = e±Lk.
We know [18, Theorem V, p. 176] that the pairs (0, 1), (ik, eLk) and (−ik, e−Lk)
unambiguously determine the Möbius transformation of M1, whose expression is

M1(z) = −
z + ik cotanh

(
Lk
2

)
z − ik cotanh

(
Lk
2

) (2.2)

and can be obtained by (5.1). Thus, we must obtain M = M1. (For the coefficients
M1(z) and M2(z), see the Appendix)

Similarly, the injectivity of M implies that L is not an integer multiple of πρ . Thus
the pairs (0, 1), (ρ, e−iLρ) and (−ρ, eiLρ) determine a unique Möbius transformation
M2. The formula (5.1) guarantees that M2 is expressed by

M2(z) = −
z − iρ cot

(
Lρ
2

)
z + iρ cot

(
Lρ
2

) . (2.3)

Consequently, we obtain M = M2. Thus, M1 = M2. We know [14, Theorem 3, p.
26] that if M1 and M2 coincide, their coefficients must be such that[

−1 −ik cotanh
(
Lk
2

)
1 −ik cotanh

(
Lk
2

)] =
[
−1 iρ cot

(
Lρ
2

)
1 iρ cot

(
Lρ
2

)] .
The same result guarantees the sufficiency part. �

Lemma 2.4. Let k and ρ be real numbers with k 6= 0. The positive solutions of the
equation

k cotanh
(Lk

2

)
= −ρ cot

(Lρ
2

)
form a countable set.

Proof. If ρ = 0, there is nothing to prove. Thus, suppose that ρ 6= 0. For every
n ∈ N, let Jn = ((n−1)π, nπ) and J = ∪n∈NJn. The continuous function g : J → R,
defined by g(t) = k cotanh(kt2 )+ρ cot(ρt2 ), is strictly decreasing on each Jn and such
that g[Jn] = R. Therefore, there exists a unique Ln in each Jn such that g(Ln) = 0,
proving that the solutions of the equation form a countable set. This completes the
proof. �

We have all the ingredients to prove item (a) of part (III) of Theorem 1.1. If
β = 1 and r = 0, the polynomial p has exactly three real roots, whose multiplicities
are equal to 1. Now, it is sufficient to observe that Lemma 2.3 together with
equation (1.8), as well as Lemma 2.4, conclude this. Finally, we prove the final
lemma that supports item (b) of Theorem 1.1.

Lemma 2.5. Consider the family of functions fa(·, L) defined by (1.7) and let us
suppose that r = β = 0. Let Xar be the set of values L0 > 0 for which the function
fa(·, L) is entire for L = L0.
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(1) If κ < 0, there exist L0 > 0 and non null a0 such that fa0(·, L0) is entire if
and only if

L0 ∈
{
L > 0, tan

ρL

2
=
ρL

2

}
where ρ =

√
κ/η.

(2) If κ > 0, then fa(·, L) is not entire for any non null a and L > 0. That is,
Xa0 = ∅.

Proof. In the case κ < 0, the polynomial p allows the decomposition p(ξ) = ηξ3(ξ−
ρ)(ξ + ρ) where ρ =

√
κ/η. Assume L0 is in

P =
{
L > 0, tan

ρL

2
=
ρL

2

}
and set a0 = (−L0

2 ,
L0
2 , 1, 1). We obtain

Na0(0, L0) = N ′a0
(0, L0) = N ′′a0

(0, L0) = 0,

i.e., 0 is the root of Na0(0, L0) with multiplicity at least equal to 3. Now, if we
prove that Na0(±ρ, L0) = 0, then we will be done. To this end, observe that
Na0(ρ, L0) = 0 if and only if( iρL0

2
+ 1
)
e(

iρL0
2 +1) =

( iρL0

2
+ 1
)
e(
iρL0

2 +1) (2.4)

This equality, in turn, is equivalent to sin ρL0
2 = ρL0

2 cos ρL0
2 , which is valid, since

we chose L0 in P. The same argument proves that Na0(−ρ, L0) = 0. Then, the
function fa0(·, L0) is entire, proving that the condition is sufficient. Now, we will
prove that it is necessary. Suppose that fa0(·, L0) is entire for a certain pair (a0, L0).
This tells us that

Na0(0, L0) = N ′a0
(0, L0) = N ′′a0

(0, L0) = Na0(±ρ, L0) = 0. (2.5)

The three first equalities in (2.5) can be used to explicitly determine a0, i.e., a0 =
a(L0) = γ(−L0

2 ,
L0
2 , 1, 1) for γ 6= 0. As Na(L0)(±ρ, L0) = 0, we conclude from

argument (2.4), that L0 must be in P, proving that the condition is also necessary.
Finally, we assume κ > 0. Here, the polynomial p admits the factorization

p(ξ) = ηξ3(ξ − ρ̃)(ξ + ρ̃) where ρ̃ = iρ and ρ =
√
−κ/η. Suppose that function

fa(·, L) is entire for the pair (a, L). This implies

Na(0, L) = N ′a(0, L) = N ′′a (0, L) = Na(±ρ̃, L) = 0. (2.6)

As in the first part, we can obtain a(L) = γ(− iL2 ,
iL
2 , 1, 1) for γ 6= 0. Thus

Na(L)(ξ, L) = γ
[
− iL

2
ξ + 1−

( iL
2
ξ + 1

)
e−iξL

]
.

On the other hand, as Na(L)(±ρ̃, L) = 0, the following equalities must be valid

±ρL
2

+ 1−
(∓ρL

2
+ 1
)
e±ρL = 0 (2.7)

However, this is absurd. To prove this, note that h : R → R defined by h(t) =
et(2− t)− (2 + t) is such that h(0) = 0 and h′(t) < 0 for all t ∈ R. This completes
the proof. �

Note that the sets obtained from the final lemma are clearly countable. Thus
Theorem 1.1 is proved.
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2.1. Describing the roots. The following lemma separates the roots into groups
according to their algebraic structure. To characterize a group, we consider the
quantity of real roots and their respective multiplicities. It is worth noting that for
each polynomial p, the relation of its roots with these groups determines whether
or not a solution exists for the problem of determining an entire member of family
fa(·, L).

Lemma 2.6. Consider the polynomial p(ξ) = r+ βξ − κξ3 + ηξ5 where r, β, κ and
η are real such that β ∈ {0, 1}, κ 6= 0 and η < 0.

(1) If β = 0,
(a) κ > 0 and

(i) r = 0, then 0 is the only real root of p with multiplicity 3.
(ii) r 6= 0, then p has a single real root, with multiplicity 1.

(b) κ < 0 and
(i) r = 0, then 0 and ±ρ are roots of p, where ρ =

√
κ
η , being 0 the root

of multiplicity 3.
(ii) 0 < |r| < −κz3 + ηz5, with z =

√
3κ
5η , then p has exactly three real

roots, all of which are of multiplicity 1.
(iii) |r| = −κz3 + ηz5, with z =

√
3κ
5η , then p has exactly three real roots,

one of which has multiplicity 2.
(iv) |r| > −κz3 +ηz5, with z =

√
3κ
5η , then p has exactly one real root, with

multiplicity 1.
(2) If β = 1 and
(a) r = 0, then the roots of p are 0,±ρ,±ik where

ρ =

√
κ−

√
κ2 − 4η
2η

and k =

√√√√∣∣∣∣∣κ+
√
κ2 − 4η
2η

∣∣∣∣∣.
(b) 0 < |r| < z−κz3 +ηz5, where z =

√
3κ−
√

9κ2−20η

10η , then p has exactly three
non null real roots, with multiplicity 1.

(c) |r| = z−κz3 +ηz5, where z =

√
3κ−
√

9κ2−20η

10η , then p has exactly three real
roots, one of which has multiplicity 2.

(d) |r| > z − κz3 + ηz5, where z =

√
3κ−
√

9κ2−20η

10η , then p has exactly one real
root with multiplicity 1.

3. Final Remarks

It is worth noting that when d(a) = 0, the sets Xar were completely characterized
for any r ∈ R. The same happens when we consider d(a) 6= 0, β = 0, κ > 0 and
r ∈ R; i.e., when p(ξ) = r − κξ3 + ηξ5. In particular, in this case, Theorem 1.1
tells us that the sets Xar are empty for all non null a ∈ C4 and r ∈ R. Thus
the set X is empty and the problem of the initial and boundary value, analyzed
by Vasconcellos and Silva [19] and associated with the linear Kawahara equation
ut + κuxxx + ηuxxxxx = 0, does not admit non-trivial solutions whose energies do
not decay over time. Note that for p(ξ) = r + βξ − κξ3 + ηξ5, the case d(a) 6= 0
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remains to be solved in two situations: (a) when r 6= 0 and p has exactly three real
roots, with all the multiplicities being equal to 1 and (b) p has exactly three real
roots with one of them having a multiplicity of 2.

4. Appendix: Derivatives of F (t)

Consider the function

F (t) = K sinh y1t sinh y2t− 2y1y2(cosh((y1 + y2)t)− cos((x2 − x1)t))

for t ∈ R. Note that F (0) = 0 and that

F ′(t) = K(y1 cosh y1t sinh y2t+ y2 sinh y1t cosh y2t)

− 2y1y2((y1 + y2) sinh((y1 + y2)t) + (x2 − x1) sin((x2 − x1)t))

F ′′(t) = (x2 − x1)2(y2
1 + y2

2) sinh y1t sinh y2t

+ (y1 + y2)2 (y1 − y2)2 sinh y1t sinh y2t+ 2(x2 − x1)2y1y2(cosh y1t cosh y2t

− cos((x2 − x1)t))

Note that F ′(0) = 0 and that, for y1, y2 > 0, F ′′(t) > 0 for all t > 0.

5. Appendix: Coefficients of M1 and M2

Let ξ1, ξ2 and ξ3 be three distinct points that are mapped byM into three distinct
points w1, w2 and w3. Since there is always one and only one linear fractional
transformation that transforms any three distinct points into three given distinct
points (see, for instance, [18, Theorem V p. 176], if we take

a =

∣∣∣∣∣∣
w1ξ1 w1 1
w2ξ2 w2 1
w3ξ3 w3 1

∣∣∣∣∣∣ , b =

∣∣∣∣∣∣
w1ξ1 ξ1 w1

w2ξ2 ξ2 w2

w3ξ3 ξ3 w3

∣∣∣∣∣∣ ,
c =

∣∣∣∣∣∣
ξ1 w1 1
ξ2 w2 1
ξ3 w3 1

∣∣∣∣∣∣ , d =

∣∣∣∣∣∣
w1ξ1 ξ1 1
w2ξ2 ξ2 1
w3ξ3 ξ3 1

∣∣∣∣∣∣ ,
(5.1)

then M(ξ) = aξ+b
cξ+d is the Möbius transformation M(ξ) such that M(ξj) = wj

(j = 1, 2, 3).

5.1. Coefficients of M1. Let M1(ξ) be the linear fractional transformation such
that M1(0) = 1, M1(ik) = eLk, M1(−ik) = e−Lk. By (5.1), the coefficients of M1

may be determined by

aI = −ik
(
wI +

1
wI
− 2
)

= −2ik(cosh(Lk)− 1)

bI = k2
(
wI −

1
wI

)
= dI = 2k2 sinh(Lk)

cI = ik
(
wI +

1
wI
− 2
)

= 2ik(cosh(Lk)− 1)

Therefore,

M1(ξ) =
−2ik(cosh(Lk)− 1)ξ + 2k2 sinh(Lk)
2ik(cosh(Lk)− 1)ξ + 2k2 sinh(Lk)

= −
ξ + ik cotanh

(
Lk
2

)
ξ − ik cotanh

(
Lk
2

) .
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5.2. Coefficients of M2. Let M2(ξ) be the linear fractional transformation such
that M2(0) = 1, wρ = M2(ρ) = e−iLρ, M2(−ρ) = eiLρ. By (5.1), the coefficients of
M2 may be determined by

aρ = −ρ(wρ + wρ − 2) = −2ρ(cos(Lρ)− 1)

bρ = −ρ2 (wρ − wρ) = dρ = −2iρ2 sin(Lρ)

cρ = ρ (wρ + wρ − 2) = 2ρ(cos(Lρ)− 1) .

Therefore,

M2(ξ) =
−2ρ(cos(Lρ)− 1)ξ − 2iρ2 sin(Lρ)
2ρ(cos(Lρ)− 1)ξ − 2iρ2 sin(Lρ)

= −
ξ − iρ cot

(
Lρ
2

)
ξ + iρ cot

(
Lρ
2

) .
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