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EXISTENCE OF SOLUTIONS TO FRACTIONAL HAMILTONIAN
SYSTEMS WITH COMBINED NONLINEARITIES

ZIHENG ZHANG, RONG YUAN

Abstract. This article concerns the existence of solutions for the fractional
Hamiltonian system

−tDα∞
`
−∞D

α
t u(t)

´
− L(t)u(t) +∇W (t, u(t)) = 0,

u ∈ Hα(R,Rn),

where α ∈ (1/2, 1), L ∈ C(R,Rn2
) is a symmetric and positive definite matrix.

The novelty of this article is that if τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 and the non-
linearity W (t, u) involves a combination of superquadratic and subquadratic

terms, the Hamiltonian system possesses at least two nontrivial solutions.

1. Introduction

The study of fractional calculus (differentiation and integration of arbitrary or-
der) has emerged as an important and popular field of research. It is mainly because
of the extensive application of fractional differential equations in many engineering
and scientific disciplines such as physics, chemistry, biology, economics, control the-
ory, signal and image processing, biophysics, blood flow phenomena, aerodynamics,
fitting of experimental data, etc., [1, 12, 17, 19, 23, 32]. An important characteristic
of a fractional-order differential operator that distinguishes it from an integer-order
differential operator is its nonlocal behavior, that is, the future state of a dynamical
system or process involving fractional derivatives depends on its current state as
well its past states. In other words, differential equations of arbitrary order de-
scribe memory and hereditary properties of various materials and processes. This
is one of the features that has contributed to the popularity of the subject and has
motivated researchers to focus on fractional order models, which are more realistic
and practical than the classical integer-order models.

Recently, also equations including both left and right fractional derivatives are
discussed. Apart from their possible applications, equations with left and right
derivatives is an interesting and new field in fractional differential equations theory.
In this topic, many results are obtained dealing with the existence and multiplicity
of solutions of nonlinear fractional differential equations by using techniques of
nonlinear analysis, such as fixed point theory (including Leray-Schauder nonlinear
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alternative) [3], topological degree theory (including co-incidence degree theory)
[15] and comparison method (including upper and lower solutions and monotone
iterative method) [33] and so on.

It should be noted that critical point theory and variational methods have also
turned out to be very effective tools in determining the existence of solutions for
integer order differential equations. The idea behind them is trying to find solutions
of a given boundary value problem by looking for critical points of a suitable energy
functional defined on an appropriate function space. In the last 30 years, the critical
point theory has become a wonderful tool in studying the existence of solutions of
differential equations with variational structures, we refer the reader to the books
due to Mawhin and Willem [18], Rabinowitz [24], Schechter [27] and the references
listed therein.

Motivated by the above classical works, in the recent paper [16], the authors
showed that the critical point theory is an effective approach to tackle the existence
of solutions for the fractional boundary value problem

tD
α
T (0D

α
t u(t)) = ∇W (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ),

where α ∈ (1/2, 1), u ∈ Rn, W ∈ C1([0, T ]×Rn,R) and ∇W (t, u) is the gradient of
W (t, u) at u and obtained the existence of at least one nontrivial solution. Inspired
by this work, Torres [28] considered the fractional Hamiltonian system

tD
α
∞(−∞Dα

t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,Rn),
(1.1)

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2
) is a symmetric and positive

definite matrix for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W (t, u) is the gradient
of W (t, u) at u. Assuming that L(t) and W (t, u) satisfy the following hypotheses,
Torres [28] showed that (1.1) possesses at least one nontrivial solution, using the
mountain pass theorem and the following assumptions:

(A1) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists
an l ∈ C(R, (0,∞)) such that l(t)→∞ as |t| → ∞ and

(L(t)u, u) ≥ l(t)|u|2 for all t ∈ R, u ∈ Rn; (1.2)

(A2) W ∈ C1(R× Rn,R) and there is a constant θ > 2 such that

0 < θW (t, u) ≤ (∇W (t, u), u) for all t ∈ R, u ∈ Rn\{0};
(A3) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly with respect to t ∈ R;
(A4) there exists W ∈ C(Rn,R) such that

|W (t, u)|+ |∇W (t, u)| ≤ |W (u)| for every t ∈ R, u ∈ Rn.
A strong motivation for investigating (1.1) comes from fractional advection-

dispersion equation (ADE for short). This is a generalization of the classical ADE
in which the second-order derivative is replaced with a fractional-order derivative.
In contrast to the classical ADE, the fractional ADE has solutions that resemble the
highly skewed and heavy-tailed breakthrough curves observed in field and labora-
tory studies (see, [4, 5, 6]), in particular in contaminant transport of ground-water
flow (see, [6]). Benson et al. stated that solutes moving through a highly het-
erogeneous aquifer violations violates the basic assumptions of local second-order
theories because of large deviations from the stochastic process of Brownian motion.
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In (1.1), if α = 1, then it reduces to the following second order Hamiltonian
system

ü− L(t)u+∇W (t, u) = 0. (1.3)

It is well known that the existence of homoclinic solutions for Hamiltonian systems
and their importance in the study of the behavior of dynamical systems have been
recognized from Poincaré [22]. They may be “organizing centers” for the dynamics
in their neighborhood. From their existence one may, under certain conditions,
infer the existence of chaos nearby or the bifurcation behavior of periodic orbits.
During the past two decades, with the works of [21] and [25] variational methods and
critical point theory have been successfully applied for the search of the existence
and multiplicity of homoclinic solutions of (1.3).

Assuming that L(t) and W (t, u) are independent of t or periodic in t, many au-
thors have studied the existence of homoclinic solutions for (1.3), see for instance
[8, 10, 25] and the references therein and some more general Hamiltonian systems
are considered in recent papers [13, 14]. In this case, the existence of homoclinic
solutions can be obtained by going to the limit of periodic solutions of approxi-
mating problems. If L(t) and W (t, u) are neither autonomous nor periodic in t,
the existence of homoclinic solutions of (1.3) is quite different from the periodic
systems, because of the lack of compactness of the Sobolev embedding, such as
[10, 21, 26] and the references mentioned there.

Assumption (A2) is the so-called global Ambrosetti-Rabinowitz condition, which
implies that W (t, u) is of superquadratic growth as |u| → ∞. Motivated by [28], in
[7] the authors gave some more general superquadratic conditions on W (t, u) and
obtained that (1.1) possesses infinitely many nontrivial solutions. Furthermore,
using the genus properties of critical point theory, in [34] the authors established
some new criterion to guarantee the existence of infinitely many solutions of (1.1)
for the case that W (t, u) is subquadratic as |u| → ∞. In [7, 34], the condition (A1)
is needed to guarantee that the functional corresponding to (1.1) satisfies the (PS)
condition.

As is well-known that condition (A1) is the so-called coercive condition and is
very restrictive. In fact, for a simple choice like L(t) = τIdn, the condition (1.2) is
not satisfied, where τ > 0 and Idn is the n× n identity matrix. Therefore, in [35]
the authors focused their attention on the case that L(t) is bounded in the sense
that

(A1’) L ∈ C(R,Rn2
) is a symmetric and positive definite matrix for all t ∈ R and

there are constants 0 < τ1 < τ2 <∞ such that

τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 for all (t, u) ∈ R× Rn.

If the potential W (t, u) is assumed to be subquadratic as |u| → ∞, then they
showed that (1.1) possessed infinitely many solutions. More recently, the authors
in [29] and [31] investigated the perturbed fractional Hamiltonian system

−tDα
∞(−∞Dα

t u(t))− L(t)u(t) +∇W (t, u(t)) = f(t),

u ∈ Hα(R,Rn),
(1.4)

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2
) is a symmetric and positive

definite matrix for all t ∈ R, W ∈ C1(R × Rn,R) and ∇W (t, u) is the gradient of
W (t, u) at u, f ∈ C(R,Rn) and belongs to L2(R,Rn). Some reasonable assumptions
on L, W (t, u) and f are established to guarantee the existence of solutions of (1.4).
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For the other works related to fractional Hamiltonian systems, we refer the reader
to [20, 30].

Motivated mainly by [7, 28, 35], in this article we investigate the case that the
nonlinearity W (t, u) involves a combination of superquadratic and subquadratic
terms. That is, W (t, u) is of the form

W (t, u) = W1(t, u) +W2(t, u),

where W1(t, u) is superquadratic as |u| → ∞ and W2(t, u) is of subquadratic growth
at infinity. As far as the authors know, there is no literature to consider the
combined nonlinearity associated with (1.1). Therefore, we focus our our attention
on this problem and provide some reasonable assumptions on W1(t, u) and W2(t, u)
to guarantee the existence of at least two nontrivial solutions of (1.1). For the
statement of our main result, W (t, u) is supposed to satisfy the following hypothesis:

(A5) W1 ∈ C1(R× Rn,R) and there exists a constant θ > 2 such that

0 < θW1(t, u) ≤ (∇W1(t, u), u) for all t ∈ R, u ∈ Rn \ {0};

(A6) there exists a continuous function a : R→ R+ with lim|t|→∞ a(t) = 0 such
that

|∇W1(t, u)| ≤ a(t)|u|θ−1 for all (t, u) ∈ R× Rn;

(A7) W2(t, 0) = 0 for t ∈ R, W2 ∈ C1(R × Rn,R) and there exist a constant
1 < % < 2 and a continuous function b : R→ R+ such that

b(t)|u|% ≤W2(t, u) for all (t, u) ∈ R× Rn;

(A8) for all t ∈ R and u ∈ Rn,

|∇W2(t, u)| ≤ c(t)|u|%−1,

where c : R→ R+ is a continuous function such that c ∈ Lξ(R,R) for some
constant 1 ≤ ξ ≤ 2.

To obtain the existence of at least two nontrivial solutions of (1.1), we also need
the following assumption on a and c:

(A9) (2‖c‖LξC
%
%ξ∗

%

θ − %
θ − 2

)θ−2

<
( θ

2‖a‖∞Cθθ
2− %
θ − %

)%−2

,

where ‖c‖Lξ is the Lξ(R,R) norm of c, ‖a‖∞ = ess supt∈R a(t), % and θ are
defined in (A5) and (A7), respectively, ξ∗ is the conjugate component of ξ,
that is, 1

ξ + 1
ξ∗ = 1, C%ξ∗ and Cθ are defined in (2.5) below.

Now, we are in a position to state our main result.

Theorem 1.1. Suppose that (A5)-(A9) are satisfied, then (1.1) possesses at least
two nontrivial solutions.

Remark 1.2. In view of (A5), we deduce that (see [13, Fact 2.1])

W1(t, u) ≤W1(t,
u

|u|
)|u|θ for t ∈ R and 0 < |u| ≤ 1 (1.5)

and
W1(t, u) ≥W1(t,

u

|u|
)|u|θ for t ∈ R and |u| ≥ 1. (1.6)
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Moreover, by (A7) and (A8), it is obvious that

W2(t, u) ≤ c(t)
%

for all t ∈ R, u ∈ Rn. (1.7)

In addition, from (A5)–(A8), it is easy to show that

W (t, u) =
∫ 1

0

(∇W (t, su), u)ds ≤ a(t)
θ
|u|θ +

c(t)
%
|u|% (1.8)

for all (t, u) ∈ R× Rn.
For the reader’s convenience, we present one example to illustrate our main

result. Considering the following nonlinearity:

W (t, u) = a(t)|u|3 + c(t)|u| 32 ,

where a : R→ R+ and c : R→ R+ are continuous functions, lim|t|→∞ a(t) = 0 and
c ∈ Lξ(R,R) with 1 ≤ ξ ≤ 2. Then it is easy to check that (A5)–(A8) are satisfied.
Meanwhile, the additional assumption

2‖c‖LξC
%
%ξ∗

√
2‖a‖∞Cθθ < 1

guarantees that (A9) holds, where θ = 3 and % = 3/2.
Here, we must point out that, in our Theorem 1.1, for the first time we obtain

that (1.1) has at least two nontrivial solutions for the case thatW (t, u) is a combined
nonlinearity. Therefore, the previous results in [7, 28, 35] are generalized and
improved significantly. However, we do not know whether (1.1) also possesses
infinitely solutions if the potential W (t, u) is even with respect to u as usual.

The remaining part of this paper is organized as follows. Some preliminary
results are presented in Section 2. Section 3 is devoted to the proof of Theorem
1.1.

2. Preliminary Results

In this section, for the reader’s convenience, firstly we introduce some basic
definitions of fractional calculus. The Liouville-Weyl fractional integrals of order
0 < α < 1 are defined as

−∞I
α
x u(x) =

1
Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ,

xI
α
∞u(x) =

1
Γ(α)

∫ ∞
x

(ξ − x)α−1u(ξ)dξ.

The Liouville-Weyl fractional derivative of order 0 < α < 1 are defined as the
left-inverse operators of the corresponding Liouville-Weyl fractional integrals

−∞D
α
xu(x) =

d

dx
−∞I

1−α
x u(x), (2.1)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x). (2.2)

The definitions of (2.1) and (2.2) may be written in an alternative form as follows:

−∞D
α
xu(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x− ξ)
ξα+1

dξ,
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xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞
0

u(x)− u(x+ ξ)
ξα+1

dξ.

Moreover, recall that the Fourier transform û(w) of u(x) is defined by

û(w) =
∫ ∞
−∞

e−iwxu(x)dx.

To establish the variational structure which enables us to reduce the existence of
solutions of (1.1) to find critical points of the corresponding functional, it is neces-
sary to construct appropriate function spaces. In what follows, we introduce some
fractional spaces, for more details see [11, 28]. To this end, denote by Lp(R,Rn)
(2 ≤ p < ∞) the Banach spaces of functions on R with values in Rn under the
norms

‖u‖Lp =
(∫

R
|u(t)|pdt

)1/p

,

and L∞(R,Rn) is the Banach space of essentially bounded functions from R into
Rn equipped with the norm

‖u‖∞ = ess sup{|u(t)| : t ∈ R}.
For α > 0, define the semi-norm

|u|Iα−∞ = ‖−∞Dα
xu‖L2

and the norm

‖u‖Iα−∞ =
(
‖u‖2L2 + |u|2Iα−∞

)1/2

(2.3)

and let
Iα−∞ = C∞0 (R,Rn)

‖·‖Iα−∞ ,

where C∞0 (R,Rn) denotes the space of infinitely differentiable functions from R into
Rn with vanishing property at infinity.

Now we can define the fractional Sobolev space Hα(R,Rn) in terms of the Fourier
transform. Choose 0 < α < 1, define the semi-norm

|u|α = ‖|w|αû‖L2

and the norm

‖u‖α =
(
‖u‖2L2 + |u|2α

)1/2

and let
Hα = C∞0 (R,Rn)

‖·‖α
.

Moreover, we note that a function u ∈ L2(R,Rn) belongs to Iα−∞ if and only if

|w|αû ∈ L2(R,Rn).

Especially, we have
|u|Iα−∞ = ‖|w|û‖L2 .

Therefore, Iα−∞ and Hα are equivalent with equivalent semi-norm and norm. Anal-
ogous to Iα−∞, we introduce Iα∞. Define the semi-norm

|u|Iα∞ = ‖xDα
∞u‖L2

and the norm

‖u‖Iα∞ =
(
‖u‖2L2 + |u|2Iα∞

)1/2

(2.4)
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and let
Iα∞ = C∞0 (R,Rn)

‖·‖Iα∞ .

Then Iα−∞ and Iα∞ are equivalent with equivalent semi-norm and norm, see [11].
Let C(R,Rn) denote the space of continuous functions from R into Rn. Then

we obtain the following lemma.

Lemma 2.1 ([28, Theorem 2.1]). If α > 1/2, then Hα ⊂ C(R,Rn) and there is a
constant C = Cα such that

‖u‖∞ = sup
x∈R
|u(x)| ≤ C‖u‖α.

Remark 2.2. From Lemma 2.1, we know that if u ∈ Hα with 1/2 < α < 1, then
u ∈ Lp(R,Rn) for all p ∈ [2,∞), since∫

R
|u(x)|pdx ≤ ‖u‖p−2

∞ ‖u‖2L2 .

In what follows, we introduce the fractional space in which we will construct the
variational framework of (1.1). Let

Xα =
{
u ∈ Hα :

∫
R
[|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))]dt <∞
}
,

then Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =
∫

R
[(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))]dt

and the corresponding norm is

‖u‖2Xα = 〈u, u〉Xα .
Similar to Lemma 2.1 in [28], we have the following conclusion. Its proof is the

same as in [28, Lemma 2.1], so we omit the details.

Lemma 2.3. Suppose L(t) satisfies (A1’), then Xα is continuously embedded in
Hα.

Remark 2.4. From Lemmas 2.1 and 2.3, the embedding of Xα into L∞(R,Rn) is
continuous. On the other hand, it is obvious that the embedding Xα ↪→ L2(R,Rn)
is also continuous. Therefore, combining this with Remark 2.2, for any p ∈ [2,∞],
there exists Cp > 0 such that

‖u‖Lp ≤ Cp‖u‖Xα . (2.5)

Now we introduce some notation and necessary definitions. Let B be a real
Banach space, I ∈ C1(B,R) means that I is a continuously Fréchet-differentiable
functional defined on B. Recall that I ∈ C1(B,R) is said to satisfy the (PS)
condition if any sequence {un}n∈N ⊂ B, for which {I(un)}n∈N is bounded and
I ′(un)→ 0 as n→∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0
and ∂Br denotes its boundary. Under the conditions of Theorem 1.1, we obtain the
existence of the first solution of (1.1) by using of the following well-known Mountain
Pass Theorem, see [24].

Lemma 2.5 ([24, Theorem 2.2]). Let B be a real Banach space and I ∈ C1(B,R)
satisfying the (PS) condition. Suppose that I(0) = 0 and
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(A10) there are constants ρ, η > 0 such that I|∂Bρ ≥ η, and
(A11) there is an e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ η. Moreover c can be characterized as

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1],B) : g(0) = 0, g(1) = e} .

As far as the second one is concerned, we obtain it by minimizing method, which
is contained in a small ball centered at 0, see Step 4 in proof of Theorem 1.1

3. Proof of Theorem 1.1

For this purpose, we establish the corresponding variational framework and then
obtain solutions for (1.1). Define the functional I : B = Xα → R by

I(u) =
∫

R

[1
2
|−∞Dα

t u(t)|2 +
1
2

(L(t)u(t), u(t))−W (t, u(t))
]
dt

=
1
2
‖u‖2Xα −

∫
R
W (t, u(t))dt.

(3.1)

Under the conditions of Theorem 1.1, as usual, we see that I ∈ C1(Xα,R), i.e.,
I is a continuously Fréchet-differentiable functional defined on Xα, see [31] and [35]
for details. Moreover, we have

I ′(u)v =
∫

R

[
(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))

]
dt

for all u, v ∈ Xα, which yields that

I ′(u)u = ‖u‖2Xα −
∫

R
(∇W (t, u(t)), u(t))dt. (3.2)

Here, we say that u ∈ Eα is a solution of (1.1) if∫
R

[
(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))

]
dt = 0

for every v ∈ C∞0 (R,Rn).
To check that the corresponding functional I(u) satisfies the condition (A10) of

Lemma 2.5, the following lemma plays an essential role.

Lemma 3.1. Let 1 < % < 2 < θ, A,B > 0, and consider the function

ΦA,B(t) := t2 −At% −Btθ, t ≥ 0.

Then maxt≥0 ΦA,B(t) > 0 if and only if

Aθ−2B2−% < d(%, θ) :=
(θ − 2)θ−2(2− %)2−%

(θ − %)θ−%
.

Furthermore, for t = tB := [(2− %)/B(θ − %)]1/(θ−2), one has

max
t≥0

ΦA,B(t) = ΦA,B(tB) = t2B

[θ − 2
θ − %

−AB
2−%
θ−2

(θ − %
2− %

) 2−%
θ−2
]
> 0. (3.3)

The proof of the above lemma is essentially the same as that in [9, Lemma 3.2],
so we omit it.
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Lemma 3.2. Under the conditions of Theorem 1.1, I satisfies the (PS) condition.

Proof. Assume that {uk}k∈N ⊂ Xα is a sequence such that {I(uk)}k∈N is bounded
and I ′(uk)→ 0 as k →∞. Then there exists a constant M > 0 such that

|I(uk)| ≤M and ‖I ′(uk)‖(Xα)∗ ≤M (3.4)

for every k ∈ N, where (Xα)∗ is the dual space of Xα.
Firstly, we show that {un}k∈N is bounded. In fact, in view of (1.7), (3.1), (3.2),

(3.4), (A5), (A7), (A8) and (2.5), we obtain that

M +
M

θ
‖uk‖Xα ≥ I(uk)− 1

θ
I ′(uk)uk

=
(1

2
− 1
θ

)
‖uk‖2Xα −

∫
R

[
W (t, uk(t))− 1

θ
(∇W (t, uk(t)), uk(t))

]
dt

≥
(1

2
− 1
θ

)
‖uk‖2Xα −

(1
%

+
1
θ

)
‖c‖Lξ‖uk‖

%

L%ξ∗

≥
(1

2
− 1
θ

)
‖uk‖2Xα − C

%
%ξ∗

(1
%

+
1
θ

)
‖c‖Lξ‖uk‖

%
Xα .

Since 1 < % < 2, the boundedness of {uk}k∈N follows directly. Then the sequence
{uk}k∈N has a subsequence, again denoted by {uk}k∈N, and there exists u ∈ Xα

such that

uk ⇀ u weakly in Xα,

which yields

(I ′(uk)− I ′(u))(uk − u)→ 0 as k →∞,

and there exists some constant M1 > 0 such that

‖uk‖∞ ≤ C∞‖uk‖Xα ≤M1 and ‖u‖∞ ≤ C∞‖u‖Xα ≤M1 (3.5)

for k ∈ N.
In view of [31, Lemma 3.1], we see that∫

R
(∇W1(t, uk(t))−∇W1(t, u(t)), uk(t)− u(t))dt→ 0 (3.6)

as k → ∞. On the other hand, c ∈ Lξ(R,R+) implies that, for any ε > 0, there
exists T > 0 such that (∫

|t|>T
cξ(t)dt

)1/ξ

< ε. (3.7)

On account of the continuity of ∇W2(t, u) and uk → u in L∞loc(R,Rn), it follows
that there exists k0 ∈ N such that∫

|t|≤T
(∇W2(t, uk(t))−∇W2(t, u(t)), uk(t)− u(t))dt < ε for k ≥ k0. (3.8)
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Consequently, joining (A8), (2.5), (3.5) and (3.7), we obtain that∫
|t|>T

(∇W2(t, uk(t))−∇W2(t, u(t)), uk(t)− u(t))dt

≤
∫
|t|>T

|∇W2(t, uk(t))−∇W2(t, u(t)||uk(t)− u(t)|dt

≤
∫
|t|>T

c(t)(|uk(t)|%−1 + |u(t)|%−1)(|uk(t)|+ |u(t)|)dt

≤ 2
∫
|t|>T

c(t)(|uk(t)|% + |u(t)|%)dt

≤ 2
(∫
|t|>T

cξ(t)dt
)1/ξ

(‖uk‖%L%ξ∗ + ‖u‖%
L%ξ∗

)

≤ 2
(∫
|t|>T

cξ(t)dt
)1/ξ

C%%ξ∗(‖uk‖
%
Xα + ‖u‖%Xα)

≤ 4εC%%ξ∗
(M1

C∞

)%
.

(3.9)

Since ε > 0 is arbitrary, combining (3.8) with (3.9), we obtain∫
R

(∇W2(t, uk(t))−∇W2(t, u(t)), uk(t)− u(t))dt→ 0 (3.10)

as k →∞. Noting that

(I ′(uk)− I ′(u))(uk − u)

= ‖uk − u‖2Xα −
∫

R
(∇W1(t, uk(t))−∇W1(t, u(t)), uk(t)− u(t))dt

−
∫

R
(∇W2(t, uk(t))−∇W2(t, u(t)), uk(t)− u(t))dt.

Combining this with (3.6) and (3.10), we deduce that ‖uk − u‖Xα → 0 as k → ∞
and prove that the (PS) condition holds. �

Proof of Theorem 1.1. We divide this proof into four steps.

Step 1. It is clear that I(0) = 0 and that I ∈ C1(Xα,R) satisfies the (PS) condition
by Lemma 3.2.

Step 2. To show that there exist constants ρ > 0 and η > 0 such that I satisfies
I|∂Bρ ≥ η > 0; that is, the condition (A10) of Lemma 2.5 holds. To this end, in
view of (1.8) and (2.5), we have∫ T

0

W (t, u)dt ≤ ‖a‖∞
θ

∫
R
|u|θdt+

1
%

∫
R
c(t)|u|%dt

≤ ‖a‖∞
θ
‖u‖θLθ +

1
%
‖c‖Lξ‖u‖

%

L%ξ∗

≤ ‖a‖∞C
θ
θ

θ
‖u‖θXθ +

C%%ξ∗

%
‖c‖Lξ‖u‖

%
Xα ,

(3.11)
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which yields

I(u) =
1
2
‖u‖2Xα −

∫ T

0

W (t, u)dt

≥ 1
2
‖u‖2Xα −

‖a‖∞Cθθ
θ

‖u‖θXα −
C%%ξ∗

%
‖c‖Lξ‖u‖

%
Xα for all u ∈ Xα.

(3.12)

Applying Lemma 3.1 with

A =
2‖a‖∞Cθθ

θ
, B =

2C%%ξ∗‖c‖Lξ
%

,

we obtain
I(u) ≥ 1

2
ΦA,B(tB) > 0,

provided that Aθ−2B2−% < d(%, θ); that is, provided that(2‖c‖LξC
%
%ξ∗

%

θ − %
θ − 2

)θ−2

<
( θ

2‖a‖∞Cθθ
2− %
θ − %

)%−2

.

Let ρ = tB = [ 2−%
B(θ−%) ]

1
θ−2 and η = 1

2ΦA,B(tB), then we have I|∂Bρ ≥ η > 0.

Step 3. To obtain that there exists an e ∈ Xα such that I(e) < 0 with ‖e‖Xα > ρ,
where ρ is defined in Step 2. For this purpose, take ψ ∈ Xα such that ψ(t) > 0 on
[0, 1]. In view of (3.1), (1.6), (A5) and (A7), for l ∈ (0,∞) such that |lψ(t)| ≥ 1 for
all t ∈ [0, 1], we deduce that

I(lψ) =
l2

2
‖ψ‖2Xα −

∫
R
W (t, lψ(t))dt

≤ l2

2
‖ψ‖2Xα −

∫ 1

0

W1(t, lψ(t))dt

≤ l2

2
‖ψ‖2Xα − lθ

∫ 1

0

W1

(
t,
ψ(t)
|ψ(t)|

)
|ψ(t)|θdt

≤ l2

2
‖ψ‖2Xα −mlθ

∫ 1

0

|ψ(t)|θdt,

(3.13)

where m = min{W1(t, u) : t ∈ [0, 1], |u| = 1} (on account of (A5), it is obvious that
m > 0). Since θ > 2, (3.13) implies that I(lϕ) = I(e) < 0 for some l � 1 with
‖lϕ‖Xα > ρ, where ρ is defined in Step 2. By Lemma 2.5, I possesses a critical
value c1 ≥ η > 0 given by

c1 = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], Xα) : g(0) = 0, g(1) = e} .

Hence there is 0 6= u1 ∈ Xα such that

I(u1) = c1 and I ′(u1) = 0.

That is, the first nontrivial solution of (1.1) exists.

Step 4 From (3.12), we see that I is bounded from below on Bρ(0). Therefore, we
can denote

c2 = inf
‖u‖Xα≤ρ

I(u),
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where ρ is defined in Step 1. Then there is a minimizing sequence {vk}k∈N ⊂ Bρ(0)
such that

I(vk)→ c2 and I ′(vk)→ 0
as k →∞. That is, {vk}k∈N is a (PS) sequence. Furthermore, from Lemma 3.2, I
satisfies the (PS) condition. Therefore, c2 is one critical value of I. In what follows,
we show that c2 is one nontrivial critical point. Taking ϕ ∈ Xα such that ϕ(t) 6= 0
on [0, 1], according to (A5) and (A7), one deduces that,

I(lϕ) =
l2

2
‖ϕ‖2Xα −

∫
R
W (t, lϕ(t))dt

≤ l2

2
‖ϕ‖2Xα −

∫ 1

0

W2(t, lϕ(t))dt

≤ l2

2
‖ϕ‖2Xα − l%

∫ 1

0

b(t)|ϕ(t)|%dt, ∀l ∈ (0,+∞).

(3.14)

Since 1 < % < 2, (3.14) implies that I(lϕ) < 0 for l small enough such that
‖lϕ‖Xα ≤ ρ. Therefore, c2 < 0 < c1. Consequently, there is 0 6= u2 ∈ Xα such that

I(u2) = c2 and I ′(u2) = 0.

That is, (1.1) has another nontrivial solution. �
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