*Electronic Journal of Differential Equations*, Vol. 2016 (2016), No. 320, pp. 1–25. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

# STRUCTURAL STABILITY OF RIEMANN SOLUTIONS FOR STRICTLY HYPERBOLIC SYSTEMS WITH THREE PIECEWISE CONSTANT STATES

XUEFENG WEI, CHUN SHEN

ABSTRACT. This article concerns the wave interaction problem for a strictly hyperbolic system of conservation laws whose Riemann solutions involve delta shock waves. To cover all situations, the global solutions are constructed when the initial data are taken as three piecewise constant states. It is shown that the Riemann solutions are stable with respect to a specific small perturbation of the Riemann initial data. In addition, some interesting nonlinear phenomena are captured during the process of constructing the solutions, such as the generation and decomposition of delta shock waves.

## 1. INTRODUCTION

In this article, we are concerned with the hyperbolic system of conservation laws

$$u_t + (u^2)_x = 0,$$
  

$$v_t + \left((2u+1)v\right)_x = 0,$$
(1.1)

which was used to study the behavior of a magnetohydrodynamics model (MHD) [25, 26]. System (1.1) is strictly hyperbolic whose eigenvalues are  $\lambda_1 = 2u$  and  $\lambda_2 = 2u + 1$ . Furthermore, the first characteristic field for  $\lambda_1$  is genuinely nonlinear and the second one for  $\lambda_2$  is linearly degenerate.

The Riemann problem is the particular Cauchy problem with the two piecewise initial data

$$(u,v)(x,0) = \begin{cases} (u_-,v_-), & x < 0, \\ (u_+,v_+), & x > 0, \end{cases}$$
(1.2)

where all the  $u_{\pm}$  and  $v_{\pm}$  are given constants. The Riemann problem (1.1) and (1.2) was studied by Tan [25] through the self-similar vanishing viscosity method. It was discovered in [25] that if  $u_{+} < u_{-} - 1$ , then the solution of the Riemann problem (1.1) and (1.2) cannot be constructed by a combination of shock waves, rarefaction waves and contact discontinuities. In this situation, the delta shock wave should be introduced into the soluton, which is the form of the standard Dirac delta function supported on a shock wave [1, 2, 11, 12, 13, 23, 28].

strict hyperbolicity.

<sup>2010</sup> Mathematics Subject Classification. 35L65, 35L67, 76N15.

 $<sup>\</sup>mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases.}$  Delta shock wave; wave interaction; Riemann problem;

<sup>©2016</sup> Texas State University.

Submitted September 22, 2016. Published December 14, 2016.

With the Riemann solutions of (1.1) and (1.2) in hand, it is natural to expect the study of the so-called double Riemann problem because the Riemann problem (1.1) and (1.2) cannot describe the dynamic pictures in all the situations for (1.1). In this article, we study the Cauchy problem for (1.1) with three piecewise initial data:

$$(u,v)(x,0) = \begin{cases} (u_-,v_-), & -\infty < x < -\varepsilon, \\ (u_m,v_m), & -\varepsilon < x < \varepsilon, \\ (u_+,v_+), & \varepsilon < x < +\infty, \end{cases}$$
(1.3)

where  $\varepsilon > 0$  is arbitrarily small. This is the so-called perturbed Riemann problem or the double Riemann problem. For the reason that the initial data (1.3) may be regarded as a small perturbation of the corresponding Riemann initial data (1.2) with the perturbed parameter  $\varepsilon$ . In fact, we will encounter an interesting problem that if the limits  $\varepsilon \to 0$  of solutions  $(u_{\varepsilon}, v_{\varepsilon})(x, t)$  are identical with the ones of the Riemann problem (1.1) and (1.2) or not, in which  $(u_{\varepsilon}, v_{\varepsilon})(x, t)$  refer to the solutions of the particular Cauchy problem (1.1) and (1.3) associated with  $\varepsilon$  accordingly.

In fact, the three piecewise initial data (1.3) have been widely used to study the wave interaction problem for some hyperbolic systems, such as the the pressureless Euler system [20, 29], the Euler system for Chaplygin gas [7, 18], a non-strictly hyperbolic system [22, 30] and various types of chromatography systems [6, 19, 24]. It is noticed that all the systems studied above belong to the so-called Temple class [27], namely the shock curves coincide with the rarefaction curves in the phase plane, such that wave interactions have relatively more simplified structures and then the global solutions may be constructed completely for these systems with the initial data (1.3). However, it is remarkable that the system (1.1) does not belong to the Temple class, such that the solutions of the perturbed Riemann problem (1.1) and (1.3) have more complicated and interesting structures. Fortunately, we discover that the propagation speeds of elementary waves for the Riemann problem (1.1)and (1.2) can be expressed concisely by the state variable u, including shock wave, rarefaction wave, contact discontinuity and delta shock wave. Thus, the global solutions of the perturbed Riemann problem (1.1) and (1.3) can be constructed in explicit forms.

The main purpose of this paper is to investigate various possible wave interactions including delta shock waves for system (1.1). Thus, we take the three piecewise initial data (1.3) instead of the Riemann initial data (1.2) such that the solutions beyond the interactions are constructed. Furthermore, it is shown that the solutions of the perturbed Riemann problem (1.1) and (1.3) converge to the corresponding ones of the Riemann problem (1.1) and (1.2) as  $\varepsilon \to 0$  by dealing with this problem case by case, which shows the stability of Riemann solutions with respect to the small perturbation (1.3) of the Riemann initial data (1.2). In addition, some interesting nonlinear phenomena can be captured during the process of constructing the solutions to the perturbed Riemann problem (1.1) and (1.3). At first, we discover that a delta shock wave may be generated by the interaction between two shock waves. Secondly, it can be observed that a delta shock wave may be decomposed into a shock wave and a delta contact discontinuity during the process when it penetrates a rarefaction wave. Finally, it can be shown that infinitely many contact discontinuities may be continuously produced which have the same propagation speed during the process when a shock wave penetrates a rarefaction wave.

It should be pointed out that the following strictly hyperbolic system of conservation laws

$$u_t + \left(\frac{u^2}{2}\right)_x = 0,$$
  

$$v_t + \left((u-1)v\right)_x = 0,$$
(1.4)

was introduced by Hayes and LeFloch [8]. This system has the similar property with system (1.1). It should be stressed that the interactions between the delta shock wave with the other elementary waves have been well investigated for (1.4) by Nedeljkov and Oberguggenberger [17]. The method of split delta function [14, 15, 16] was in [17] to study the strength of delta shock wave precisely.

In this article, the wave interaction problem is also considered when the delta shock wave does not appear at the initial moment for the perturbed Riemann problem (1.1) and (1.3), which was not addressed in [17]. In fact, the interactions between the delta shock wave with the other elementary waves for (1.1) have similar structures with those for (1.4). In this paper, we only use the generalized Rankine-Hugoniot conditions to calculate the strength of delta shock wave for simplicity. In addition, the stability of solutions to the Riemann problem (1.1) and (1.2) can also be analyzed when the delta shock waves are involved in the solutions to the perturbed Riemann problem (1.1) and (1.3).

This article is organized in the following way. In Section 2, some preliminaries are given, which include the Riemann solutions of (1.1) and (1.2) and the generalized Rankine-Hugoniot relations of delta shock wave. Furthermore, it is proven rigorously that the delta shock wave solution indeed satisfies the system (1.1) in the sense of distributions. In Section 3, we consider the perturbed Riemann problem (1.1) and (1.3) when the delta shock wave does not appear at the initial time. The wave interaction problems are studied in detail and then the global solutions are constructed completely. In Section 4, we consider the perturbed Riemann problem (1.1) and (1.3) when the delta shock wave is involved at the initial time. The interactions between the delta shock wave with the other elementary waves are investigated carefully, including shock wave, rarefaction wave and contact discontinuity. At the end, discussions are carried out and the conclusions are drawn in Section 5.

#### 2. The Riemann problem

In this section, we are devoted to the Riemann problem (1.1) and (1.2), which was investigated in [25] by using the self-similar vanishing viscosity method. The eigenvalues of system (1.1) are  $\lambda_1 = 2u$  and  $\lambda_2 = 2u+1$ , thus (1.1) is strictly hyperbolic for the reason that  $\lambda_1 < \lambda_2$  holds for any u. Furthermore, the corresponding right eigenvectors are  $r_1 = (-1, 2v)^T$  and  $r_2 = (0, 1)^T$ , respectively. Thus, we have  $\nabla \lambda_1 \cdot r_1 = -2$  and  $\nabla \lambda_2 \cdot r_2 = 0$ , in which the symbol  $\nabla$  expresses the gradient with respect to (u, v). We know that the first characteristic field for  $\lambda_1$  is genuinely nonlinear and the second one for  $\lambda_2$  is always linearly degenerate. Therefore, the waves of the first family are either rarefaction waves (denoted by R) or shock waves (denoted by S) which are decided by the initial data and while the waves of the second family are always contact discontinuities (denoted by J). We first consider the elementary wave for (1.1). For a given left state  $(u_-, v_-)$ , the 1-rarefaction wave curve in the (u, v) phase plane can be expressed as  $R(u_-, v_-)$ :

.

$$\xi = \lambda_1 = 2u, v \cdot e^{2u} = v_- \cdot e^{2u_-}, u > u_-, \quad 0 < v < v_-.$$
(2.1)

On the other hand, the 1-shock wave curve in the (u, v) phase plane can also be expressed as  $S(u_{-}, v_{-})$ :

$$\sigma = u_{-} + u,$$

$$\frac{v}{v_{-}} = \frac{u_{-} - u + 1}{u - u_{-} + 1},$$

$$u_{-} - 1 < u < u_{-}, \quad v > v_{-}.$$
(2.2)

In addition, the 2-contact discontinuity curve in the (u, v) phase plane should satisfy  $u = u_{-}$  and the corresponding propagation speed is  $\tau = 2u_{-} + 1 = 2u + 1$ .

Then, we construct the Riemann solutions of (1.1) and (1.2) for different cases. For the case  $u_{-} < u_{+}$ , the Riemann solution of (1.1) and (1.2) is a rarefaction wave followed by a contact discontinuity, which can be expressed as

$$(u,v)(x,t) = \begin{cases} (u_{-},v_{-}), & x < 2u_{-}t, \\ \left(\frac{x}{2t}, v_{-}\exp(2u_{-}-\frac{x}{t})\right), & 2u_{-}t < x < 2u_{+}t, \\ (u_{+},v_{-}\exp(2u_{-}-2u_{+})), & 2u_{+}t < x < (2u_{+}+1)t, \\ (u_{+},v_{+}), & x > (2u_{+}+1)t. \end{cases}$$
(2.3)

For the case  $u_{-} - 1 < u_{+} < u_{-}$ , the Riemann solution of (1.1) and (1.2) contains a shock wave plus a contact discontinuity, which is given by

$$(u,v)(x,t) = \begin{cases} (u_{-},v_{-}), & x < (u_{-}+u_{+})t, \\ (u_{+},v_{*}), & (u_{-}+u_{+})t < x < (2u_{+}+1)t, \\ (u_{+},v_{+}), & x > (2u_{+}+1)t, \end{cases}$$
(2.4)

where

$$v_* = v_- \cdot \frac{u_- - u_+ + 1}{u_+ - u_- + 1}.$$
(2.5)



FIGURE 1. The (u, v) phase plane for system (1.1) for a given left state  $(u_{-}, v_{-})$ .

Let us turn our attention on the case  $u_+ \leq u_- - 1$ . Then the nonclassical situation appears where the Riemann problem (1.1) and (1.2) cannot be solved by a combination of shock waves, rarefaction waves and contact discontinuities. To solve the Riemann problem (1.1) and (1.2) when  $u_+ \leq u_- - 1$ , it was shown in [25] that a solution containing a weighted  $\delta$ -measure supported on a curve should be adopted. In this paper, let us use the exact definition of delta shock wave solution which was introduced by Danilov and Shelkovich [3, 4, 5] and improved by Kalisch and Mitrovic [9, 10].

**Definition 2.1.** Using the two-dimensional weighted  $\delta$ -measure  $\beta(s)\delta_{\Gamma}$ , which is supported on a smooth curve  $\Gamma = \{(x(s), t(s)) : a < s < b\}$ , we define the measure-valued solutions by

$$\langle \beta(\mathbf{s})\delta_{\Gamma},\psi(\mathbf{x},\mathbf{t})\rangle = \int_{\mathbf{a}}^{\mathbf{b}}\beta(\mathbf{s})\psi(\mathbf{x}(\mathbf{s}),\mathbf{t}(\mathbf{s}))\mathrm{d}\mathbf{s},$$
 (2.6)

for all  $\psi(x,t) \in C_0^{\infty}(R \times R_+)$ .

Let  $\Gamma = \{\gamma_i | i \in I\}$  be a set of curves in the closed upper half-plane  $\{(x,t) | (x,t) \in (-\infty, \infty) \times [0, \infty)\}$ , in which  $\gamma_i$  expresses a Lipschitz continuous curve and I is a finite index set. Let  $I_0$  be the subset of I involving all the indices of curves starting from the x-axis and then let  $\Gamma_0 = \{x_j^0 | j \in I_0\}$  be the set of initial points of all the curves  $\gamma_j$  when  $j \in I_0$ . In what follows, one may define the solutions in the distributional sense to the Cauchy problem for the system (1.1) with the delta measure initial data.

**Definition 2.2.** Let (u, v) be a pair of distributions, in which v has the form

$$v(x,t) = \hat{v}(x,t) + \beta(x,t)\delta(\Gamma) = \hat{v}(x,t) + \sum_{i \in I} \alpha_i(x,t)\delta(\gamma_i), \qquad (2.7)$$

and  $u, \hat{v} \in L^{\infty}(R \times R_{+})$ . Let us consider the initial data of type

$$(u,v)(x,0) = \left(u_0(x), \hat{v}_0(x) + \sum_{j \in I_0} \alpha_j(x_j^0, 0)\delta(x - x_j^0)\right),$$
(2.8)

in which  $u_0, \hat{v}_0 \in L^{\infty}(R)$ , then the above pair of distributions (u, v) are called as a generalized delta shock wave solution of the Cauchy problem (1.1) and (2.8) if the following integral equalities hold for any  $\psi \in C_c^{\infty}(R \times R_+)$ :

$$\int_{R_{+}} \int_{R} \left( u\psi_t + u^2\psi_x \right) \, dx \, dt + \int_{R} u_0(x)\psi(x,0)dx = 0, \tag{2.9}$$

and

$$\int_{R_{+}} \int_{R} \left( \hat{v}\psi_{t} + (2u+1)\hat{v}\psi_{x} \right) \, dx \, dt + \sum_{i \in I} \int_{\gamma_{i}} \alpha_{i}(x,t) \frac{\partial\psi(x,t)}{\partial l} + \int_{R} \hat{v}_{0}(x)\psi(x,0)dx + \sum_{k \in I_{0}} \alpha_{k}(x_{k}^{0},0)\psi(x_{k}^{0},0) = 0,$$
(2.10)

where  $\int_{\gamma_i}$  is the line integral along  $\gamma_i$  and  $\frac{\partial \psi}{\partial l}$  is the tangential derivative of  $\psi$ .

In view of the above definitions, we use the following theorem to describe the delta shock wave solution to the Riemann problem (1.1) and (1.2) when  $u_{+} \leq u_{-}-1$ .

**Theorem 2.3.** For the case  $u_+ \leq u_- - 1$ , the Riemann solution of (1.1) and (1.2) is piecewise smooth in the form

$$(u,v)(x,t) = \begin{cases} (u_-,v_-), & x < \sigma_{\delta}t, \\ (u_{\delta},\beta(t)\delta(x-\sigma_{\delta}t)), & x = \sigma_{\delta}t, \\ (u_+,v_+), & x > \sigma_{\delta}t, \end{cases}$$
(2.11)

where

$$\sigma_{\delta} = u_{-} + u_{+}, \quad u_{\delta} = \frac{1}{2}(u_{-} + u_{+} - 1),$$
  

$$\beta(t) = \left((u_{-} - u_{+})(v_{-} + v_{+}) - (v_{+} - v_{-})\right)t.$$
(2.12)

The measure-valued solution (2.11) should satisfy the generalized Rankine-Hugoniot conditions

$$\frac{dx}{dt} = \sigma_{\delta},$$

$$\frac{d\beta(t)}{dt} = \sigma_{\delta}[v] - [(2u+1)v],$$

$$\sigma_{\delta}[u] = [u^{2}],$$
(2.13)

and the over-compressive entropy condition

$$2u_{+} + 1 < \sigma_{\delta} < 2u_{-}, \tag{2.14}$$

where [u] = u(x(t)+0,t)-u(x(t)-0,t) denotes the jump of u across the discontinuity x = x(t), etc.

*Proof.* Let us check that the measure-valued solution (2.11) with (2.12) should satisfy the system (1.1) in the sense of distributions. In other words, we need to check that (2.11) and (2.12) should satisfy

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \left( u\psi_{t} + u^{2}\psi_{x} \right) \, dx \, dt = 0,$$

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \left( v\psi_{t} + (2u+1)v\psi_{x} \right) \, dx \, dt = 0,$$
(2.15)

for any  $\psi \in C_c^{\infty}(R \times R_+)$ . Without loss of generality, let us assume that  $\sigma_{\delta} > 0$  for the reason that  $\sigma_{\delta} \leq 0$  can be dealt with similarly and the difference only lies in that the different integral regions are decomposed in the upper-half physical plane  $(x, t) \in (R \times R_+)$ .

Let us check the first equation in (2.15). By the third equation in (2.13), we have

$$\begin{split} &\int_{0}^{\infty} \int_{-\infty}^{\infty} \left( u\psi_{t} + u^{2}\psi_{x} \right) \, dx \, dt \\ &= \int_{0}^{\infty} \int_{-\infty}^{\sigma_{\delta}t} \left( u_{-}\psi_{t} + u_{-}^{2}\psi_{x} \right) \, dx \, dt + \int_{0}^{\infty} \int_{\sigma_{\delta}t}^{\infty} \left( u_{+}\psi_{t} + u_{+}^{2}\psi_{x} \right) \, dx \, dt \\ &= \int_{0}^{\infty} \int_{-\infty}^{0} u_{-}\psi_{t} \, dx \, dt + \int_{0}^{\infty} \int_{0}^{\sigma_{\delta}t} u_{-}\psi_{t} \, dx \, dt + \int_{0}^{\infty} \int_{-\infty}^{\sigma_{\delta}t} u_{-}^{2}\psi_{x} \, dx \, dt \\ &+ \int_{0}^{\infty} \int_{\sigma_{\delta}t}^{\infty} \left( u_{+}\psi_{t} + u_{+}^{2}\psi_{x} \right) \, dx \, dt \end{split}$$

$$\begin{split} &= \int_0^\infty \int_{\frac{x}{\sigma_{\delta}}}^\infty u_-\psi_t \, dt \, dx + \int_0^\infty \int_{-\infty}^{\sigma_{\delta} t} u_-^2\psi_x \, dx \, dt + \int_0^\infty \int_0^{\frac{x}{\sigma_{\delta}}} u_+\psi_t \, dt \, dx \\ &+ \int_0^\infty \int_{\sigma_{\delta} t}^\infty u_+^2\psi_x \, dx \, dt \\ &= -\int_0^\infty u_-\psi(x, \frac{x}{\sigma_{\delta}}) dx + \int_0^\infty u_-^2\psi(\sigma_{\delta} t, t) dt + \int_0^\infty u_+\psi(x, \frac{x}{\sigma_{\delta}}) dx \\ &- \int_0^\infty u_+^2\psi(\sigma_{\delta} t, t) dt \\ &= \int_0^\infty \left(\sigma_{\delta}(u_+ - u_-) - (u_+^2 - u_-^2)\right) \psi(\sigma_{\delta} t, t) dt = 0, \end{split}$$

in which we have used the fact that  $\psi(x,t)$  is compactly support in the region  $R\times R_+.$ 

On the other hand, taking into account the second equation in (2.13) and the relation formula  $\sigma_{\delta} = 2u_{\delta} + 1$  from (2.12), we also have

$$\begin{split} &\int_{0}^{\infty} \int_{-\infty}^{\infty} (v\psi_{t} + (2u+1)v\psi_{x}) \, dx \, dt \\ &= \int_{0}^{\infty} \int_{-\infty}^{\sigma_{\delta}t} (v_{-}\psi_{t} + (2u_{-}+1)v_{-}\psi_{x}) \, dx \, dt \\ &+ \int_{0}^{\infty} \int_{\sigma_{\delta}t}^{\infty} (v_{+}\psi_{t} + (2u_{+}+1)v_{+}\psi_{x}) \, dx \, dt \\ &+ \int_{0}^{\infty} \beta(t)(\psi_{t}(\sigma_{\delta}t, t) + (2u_{\delta}+1)\psi_{x}(\sigma_{\delta}t, t))dt \\ &= \int_{0}^{\infty} \int_{0}^{\sigma_{\delta}t} v_{-}\psi_{t} \, dx \, dt + \int_{0}^{\infty} \int_{-\infty}^{\sigma_{\delta}t} (2u_{-}+1)v_{-}\psi_{x} \, dx \, dt \\ &+ \int_{0}^{\infty} \beta(t)(\psi_{t}(\sigma_{\delta}t, t) + \sigma_{\delta}\psi_{x}(\sigma_{\delta}t, t))dt \\ &= \int_{0}^{\infty} \int_{\frac{x}{\sigma_{\delta}}}^{\infty} v_{-}\psi_{t} \, dt \, dx + \int_{0}^{\infty} \int_{-\infty}^{\sigma_{\delta}t} (2u_{-}+1)v_{-}\psi_{x} \, dx \, dt \\ &+ \int_{0}^{\infty} \beta(t)(\psi_{t}(\sigma_{\delta}t, t) + \sigma_{\delta}\psi_{x}(\sigma_{\delta}t, t))dt \\ &= \int_{0}^{\infty} \int_{0}^{\frac{x}{\sigma_{\delta}}} v_{-}\psi_{t} \, dt \, dx + \int_{0}^{\infty} \int_{-\infty}^{\infty} (2u_{+}+1)v_{+}\psi_{x} \, dx \, dt \\ &+ \int_{0}^{\infty} \beta(t)d\psi(\sigma_{\delta}t, t) \\ &= \int_{0}^{\infty} (v_{+} - v_{-})\psi(x, \frac{x}{\sigma_{\delta}})dx + \int_{0}^{\infty} ((2u_{-}+1)v_{-} - (2u_{+}+1)v_{+})\psi(\sigma_{\delta}t, t)dt \\ &+ \int_{0}^{\infty} \beta(t)d\psi(\sigma_{\delta}t, t) \\ &= \int_{0}^{\infty} (\sigma_{\delta}(v_{+} - v_{-}) + (2u_{-}+1)v_{-} - (2u_{+}+1)v_{+} - \beta'(t))\psi(\sigma_{\delta}t, t)dt = 0. \end{split}$$

It is easy to check that the measure-valued solution (2.11) with (2.12) can be derived from the generalized Rankine-Hugoniot conditions (2.13) by a simple calculation. In order to ensure uniqueness, the  $\delta$ -entropy condition  $\lambda_1(u_r) < \lambda_2(u_r) < \sigma < \lambda_1(u_l) < \lambda_2(u_l)$  should be satisfied, which leads to the over-compressive entropy condition (2.14). In other words, all the characteristics on both sides of the  $\delta$ -shock wave curve are incoming. Thus, it can be concluded from the above calculations that (2.11) with (2.12) is indeed the piecewise smooth solution of the Riemann problem (1.1) and (1.2) in the sense of distributions when  $u_+ \leq u_- - 1$ .

**Remark 2.4.** One can see that the Riemann solutions of (1.1) and (1.2) can be constructed by a combination of shock waves, rarefaction waves, contact discontinuities and delta shock waves. More precisely, there are exactly three configurations of the Riemann solutions of (1.1) and (1.2) according to the relation between  $u_{-}$  and  $u_{+}$  as follows: R + J when  $u_{+} > u_{-}$ , S + J when  $u_{-} - 1 < u_{+} < u_{-}$  and  $\delta S$  when  $u_{+} \leq u_{-} - 1$ .

## 3. Interactions of classical waves

To study the perturbed Riemann problem (1.1) and (1.3) is in essence to study the wave interaction problem for the system (1.1). It is remarkable that the Riemann solution of (1.1) and (1.2) may contain the delta shock wave or not. In order to cover all the cases completely, our discussion should be divided into two parts according to the appearance of delta shock wave or not at the initial time. In this section, we are mainly concerned with the wave interaction problem which does not involve the delta shock wave at the initial time. Then, we have four possibilities according to the different combinations of the classical waves from  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$ as follows: (1) S + J and S + J; (2) R + J and S + J; (3) S + J and R + J; (4) R + J and R + J.

**Case 3.1:** S + J and S + J. First of all, let us consider the situation that both a shock wave followed by a contact discontinuity emit from the initial points  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$  respectively (see Figure 2). The occurrence of this case depends on the conditions  $u_{-} - 1 < u_m < u_{-}$  and  $u_{+} < u_m < u_{+} + 1$ , from which we can easily get  $u_{+} < u_{-}$ . The propagation speed of the first contact discontinuity  $J_1$  is  $\tau_1 = 2u_m + 1$  and that of the second shock wave  $S_2$  is  $\sigma_2 = u_m + u_{+}$ . Thus, it is easy to see that  $J_1$  overtakes  $S_2$  in finite time. The intersection  $(x_1, t_1)$  is determined by

$$x_1 + \varepsilon = (2u_m + 1)t_1,$$
  

$$x_1 - \varepsilon = (u_m + u_+)t_1,$$
(3.1)

which implies

$$(x_1, t_1) = \left(\frac{\varepsilon(3u_m + u_+ + 1)}{u_m - u_+ + 1}, \frac{2\varepsilon}{u_m - u_+ + 1}\right).$$
(3.2)

It can be shown that a new local Riemann problem for the system (1.1) will be formulated at the intersection  $(x_1, t_1)$  with the initial data

$$(u,v)(x,t_1) = \begin{cases} (u_1,v_1), & x < x_1, \\ (u_2,v_2), & x > x_1, \end{cases}$$
(3.3)

where

$$(u_1, v_1) = \left(u_m, -v_- \cdot \frac{u_m - u_- - 1}{u_m - u_- + 1}\right),\tag{3.4}$$

$$(u_2, v_2) = \left(u_+, -v_m \cdot \frac{u_+ - u_m - 1}{u_+ - u_m + 1}\right).$$
(3.5)

To solve the new Riemann problem (1.1) and (3.3), one can see that a new shock wave followed by a new contact discontinuity will be generated after the interaction between  $J_1$  and  $S_2$ . Let us denote them by  $S_3$  and  $J_3$  respectively. One can see that the propagation speeds of  $S_3$  and  $J_3$  are the same as those of  $S_2$  and  $J_2$  respectively for the reason that  $u_1 = u_m$  and  $u_2 = u_+$ .

Then,  $S_3$  and  $S_1$  intersect at the point  $(x_2, t_2)$ , which can be calculated by

$$x_{2} + \varepsilon = (u_{-} + u_{m})t_{2},$$
  

$$x_{2} - \varepsilon = (u_{m} + u_{+})t_{2}.$$
(3.6)

An easy calculation leads to

$$(x_2, t_2) = \left(\frac{\varepsilon(2u_m + u_+ + u_-)}{u_- - u_+}, \frac{2\varepsilon}{u_- - u_+}\right).$$
(3.7)

As before, a new local Riemann problem for system (1.1) will also be formulated at the intersection  $(x_2, t_2)$  with the initial data

$$(u,v)(x,t_2) = \begin{cases} (u_-,v_-), & x < x_2, \\ (u_3,v_3), & x > x_2, \end{cases}$$
(3.8)

in which

$$(u_3, v_3) = \left(u_+, -v_1 \cdot \frac{u_+ - u_m - 1}{u_+ - u_m + 1}\right).$$
(3.9)



FIGURE 2. Interactions between S + J and S + J for two different situations where both  $u_- - 1 < u_m < u_-$  and  $u_+ < u_m < u_+ + 1$  should be satisfied.

It is easy to get  $u_--2 < u_+ < u_-$  from  $u_--1 < u_m < u_-$  and  $u_+ < u_m < u_++1$ . In what follows, we can obtain two different situations according to the values  $u_+$  and  $u_--1$ , which may be described by using the lemma below.

**Lemma 3.1.** For the local Riemann problem (1.1) and (3.8), if  $u_- - 2 < u_+ < u_- - 1$ , then a new delta shock wave will be generated; otherwise, if  $u_- - 1 < u_+ < u_-$ , then there is also a new shock wave followed by a new contact discontinuity. Finally, the global solutions of the perturbed Riemann problem (1.1) and (3.1) can be illustrated in Figure 2, in which both  $u_- - 1 < u_m < u_-$  and  $u_+ < u_m < u_+ + 1$  should be satisfied.

*Proof.* If  $u_- - 2 < u_+ < u_- - 1$ , then a delta shock wave  $\delta S$  is generated after the coalescence of  $S_1$  and  $S_3$  at the point  $(x_2, t_2)$  (see Figure 2(a)), whose propagation speed and strength can be calculated by the generalized Rankine-Hugoniot conditions (2.13). Thus, one can easily get that the propagation speed of  $\delta S$  is  $\sigma_{\delta} = u_- + u_+$ . Consequently, the delta shock wave  $\delta S$  propagates with an invariant speed  $u_- + u_+$  for the reason that  $u_3 = u_2 = u_+$ . On the other hand, the strength changes at the different growth rates due to the differences among  $v_3$ ,  $v_2$  and  $v_+$ .

In what follows, the delta shock wave  $\delta S$  intersects  $J_3$  and consequently  $J_2$  in finite time. The intersection  $(x_3, t_3)$  of  $\delta S$  and  $J_3$  can be calculated by

$$x_3 - x_2 = (u_- + u_+)(t_3 - t_2), x_3 - x_1 = (2u_+ + 1)(t_3 - t_1),$$
(3.10)

which implies

$$x_{3} = \frac{\varepsilon(u_{+} + u_{-} - 2u_{m})(u_{+} + u_{-})}{(u_{-} - u_{+})(u_{-} - u_{+} - 1)} + \frac{\varepsilon(3u_{m} - 3u_{+} - 1)(u_{+} + u_{-})}{(u_{m} - u_{+} + 1)(u_{-} - u_{+} - 1)} + \frac{\varepsilon(2u_{m} - u_{+} - u_{-})}{(u_{-} - u_{+})},$$

$$t_{3} = \frac{\varepsilon(u_{-} + u_{+} - 2u_{m})}{(u_{-} - u_{+})(u_{-} - u_{+} - 1)} + \frac{\varepsilon(3u_{m} - 3u_{+} - 1)}{(u_{m} - u_{+} + 1)(u_{-} - u_{+} - 1)}.$$
(3.11)

After  $\delta S$  passes through  $(x_3, t_3)$ , it still propagates with the invariant speed  $u_- + u_+$ and overtakes  $J_2$  at the intersection  $(x_4, t_4)$ , which is determined by

$$x_4 - x_2 = (u_- + u_+)(t_4 - t_2),$$
  

$$x_4 - \varepsilon = (2u_+ + 1)t_4,$$
(3.12)

such that we have

$$(x_4, t_4) = \left(\frac{2\varepsilon(2u_+ + 1)(u_- - u_m)}{(u_- - u_+)(u_- - u_+ - 1)} + \varepsilon, \frac{2\varepsilon(u_- - u_m)}{(u_- - u_+)(u_- - u_+ - 1)}\right).$$
 (3.13)

After the time  $t_4$ , the delta shock wave passes through  $J_2$  and moves forwards with the same speed as before.

Thus, the strength of delta shock wave  $\delta S$  can be calculated respectively by

$$\beta(t) = \left( (u_{-} - u_{+})(v_{-} + v_{3}) - (v_{3} - v_{-}) \right) (t - t_{2}), \quad \text{for } t_{2} \le t \le t_{3}, \qquad (3.14)$$

$$\beta(t) = \beta(t_3) + \left( (u_- - u_+)(v_- + v_2) - (v_2 - v_-) \right) (t - t_3), \quad \text{for } t_3 < t \le t_4,$$
(3.15)

$$\beta(t) = \beta(t_4) + \left( (u_- - u_+)(v_- + v_+) - (v_+ - v_-) \right) (t - t_4), \quad \text{for } t > t_4.$$
(3.16)

Otherwise, if  $u_- - 1 < u_+ < u_-$ , then a new shock wave (denotes by  $S_4$ ) followed by a new contact discontinuity (denotes by  $J_4$ ) appears after the time  $t_2$  (see Figure 2(b)). The propagation speed of  $S_4$  is  $\sigma_4 = u_- + u_+$ , which leads to  $\sigma_3 < \sigma_4 < \sigma_1$ for  $u_+ < u_m < u_-$ . The propagation speed of  $J_4$  is still  $2u_+ + 1$ , which is equal to those of  $J_3$  and  $J_2$ . It is clear that the intermediate state between  $S_4$  and  $J_4$  is given by

$$(u_4, v_4) = \left(u_+, -v_- \cdot \frac{u_+ - u_- - 1}{u_+ - u_- + 1}\right). \tag{3.17}$$

Thus, the global solutions of the perturbed Riemann problem (1.1) and (1.3) can be illustrated by Figure 2(a) for  $u_{-} - 2 < u_{+} < u_{-} - 1$  and Figure 2(b) for  $u_{-} - 1 < u_{+} < u_{-}$ , respectively. The proof is complete.

**Case 3.2:** R + J and S + J. In this case, we investigate the interaction between a rarefaction wave followed by a contact discontinuity starting from  $(-\varepsilon, 0)$  and a shock wave followed by a contact discontinuity starting from  $(\varepsilon, 0)$  (see Figure 3). This case happens if and only if  $u_{-} < u_m$  and  $u_{+} < u_m < u_{+} + 1$ , such that we have  $u_{-} - 1 < u_{+}$ . The propagation speed of the contact discontinuity  $J_1$  is  $\tau_1 = 2u_m + 1$  and that of the shock wave  $S_1$  is  $\sigma_1 = u_m + u_{+}$ . Thus, it is easy to see that  $J_1$  and  $S_1$  intersect in finite time. The intersection  $(x_1, t_1)$  is also given by (3.2) which is the same as that of Case3.1.

Analogously, the new local Riemann problem will also be formulated at  $(x_1, t_1)$ , which also gives rise to a new shock wave  $S_2$  and a new contact discontinuity  $J_3$ after the time  $t_1$ . For the propagation speed of the shock wave  $S_2$  is  $\sigma_2 = u_m + u_+$ and that of the wave front in the rarefaction wave R is  $2u_m$ ,  $S_2$  and R will meet whose first intersection  $(x_2, t_2)$  is determined by

$$x_2 + \varepsilon = 2u_m t_2,$$
  

$$x_2 - \varepsilon = (u_m + u_+)t_2,$$
(3.18)

which means that

$$(x_2, t_2) = \left(\frac{\varepsilon(3u_m + u_+)}{u_m - u_+}, \frac{2\varepsilon}{u_m - u_+}\right).$$
(3.19)

The shock wave begins to enter the rarefaction wave fan after the interaction of  $S_2$  and R happens. At the same time, the new shock wave  $S_3$  and contact discontinuity  $J_4$  are generated and propagate forwards. Here we use  $\Gamma : x = x(t)$ to express the curve of  $S_3$  who has the changing state variables  $(u_4, v_4)$  on the left-hand side and  $(u_5, v_5)$  on the right-hand side. It follows from (2.1) that

$$v_4 \cdot e^{2u_4} = v_- \cdot e^{2u_-},$$
  

$$x + \varepsilon = 2u_4 t,$$
(3.20)

which enables us to have

$$(u_4, v_4) = \left(\frac{x+\varepsilon}{2t}, v_- \exp\left(2u_- - \frac{x+\varepsilon}{t}\right)\right). \tag{3.21}$$

On the other hand, we always have  $u_5 = u_3 = u_+$  for all the characteristic lines in the rarefaction wave become the contact discontinuities when across the shock wave  $S_3$ . In addition, if the matched state  $(u_5, v_5)$  can be connected to the corresponding one  $(u_4, v_4)$  by a shock wave, then they should satisfy

$$\frac{v_5}{v_4} = \frac{u_4 - u_5 + 1}{u_5 - u_4 + 1}.$$
(3.22)

Through a tedious and detailed calculation, one obtains

l

$$(u_5, v_5) = \left(u_+, v_- \cdot \frac{x + \varepsilon - 2t(u_+ - 1)}{2t(u_+ + 1) - x - \varepsilon} \cdot \exp\left(2u_- - \frac{x + \varepsilon}{t}\right)\right).$$
(3.23)

Thus, the curve of  $S_3$  is determined by

$$\sigma_3(t) = \frac{dx}{dt} = u_+ + \frac{x + \varepsilon}{2t}, \qquad (3.24)$$

in which the initial condition  $x(t_2) = x_2$  is given by (3.19), whose unique solution may be written as

$$x(t) = 2u_+t + 2\sqrt{2\varepsilon t(u_m - u_+)} - \varepsilon, \qquad t \ge t_2.$$
(3.25)

It follows from (3.24) and (3.25) that

$$\frac{d^2x}{dt^2} = -\frac{1}{2}\sqrt{\frac{2\varepsilon(u_m - u_+)}{t^3}} < 0, \tag{3.26}$$

which means that  $S_3$  begins to decelerate and is not a straight line any more after the time  $t_2$ .

Taking into account the comparison of values between  $u_{-}$  and  $u_{+}$ , let us also use the following lemma to explain that if  $S_3$  is able to cancel the rarefaction wave R completely or not.



FIGURE 3. Interaction between R+J and S+J for two situations where both  $u_{-} < u_{m}$  and  $u_{+} < u_{m} < u_{+} + 1$  should be satisfied.

**Lemma 3.2.** If  $u_- - 1 < u_+ < u_-$ , then the shock wave  $S_3$  has the ability to cancel the whole rarefaction wave R completely in finite time. Otherwise, if  $u_+ > u_-$ , then the shock wave  $S_3$  has no ability to penetrate the rarefaction wave R completely in finite time and finally takes the line  $x + \varepsilon = 2u_+t$  as its asymptote.

Proof. If  $u_{-} - 1 < u_{+} < u_{-}$ , then the shock wave  $S_{3}$  is continuous to penetrate the rarefaction wave R and is able to cancel the whole rarefaction wave R completely in finite time (see Figure 3(a)). During the process of penetration, the local Riemann problem will be formulated on every point of the shock curve  $S_{3}$  and new contact discontinuities will be continuously produced along with the shock curve  $S_{3}$ . This is due to the fact that the shock curve  $S_{3}$  has the varying left state  $(u_{4}, v_{4})$  supported on each characteristic line in the rarefaction wave fan R which should be connected with the matched right state  $(u_{5}, v_{5})$  exactly by a shock wave followed by a contact discontinuity. It is clear to see that all the contact discontinuities have the same propagation speed  $2u_{+} + 1$ , thus they are parallel to each other. Finally,  $S_{3}$  will meet the wave back in the rarefaction wave R at the intersection  $(x_{3}, t_{3})$ , which can be calculated by

$$x_{3} + \varepsilon = 2u_{-}t_{3},$$
  

$$x_{3} = 2u_{+}t_{3} + 2\sqrt{2\varepsilon t_{3}(u_{m} - u_{+})} - \varepsilon.$$
(3.27)

Thus, we have

$$(x_3, t_3) = \left(\frac{4\varepsilon u_-(u_m - u_+)}{(u_- - u_+)^2} - \varepsilon, \frac{2\varepsilon (u_m - u_+)}{(u_- - u_+)^2}\right).$$
(3.28)

After the time  $t_3$ , the shock wave is denoted with  $S_4$  whose propagation speed is  $\sigma_4 = u_- + u_+$ . The state  $(u_6, v_6)$  between  $S_4$  and  $J_5$  has the same representation as that in (3.17). Consequently, a new shock wave  $S_4$  followed by a contact discontinuity  $J_5$  will be generated after the time  $t_3$ , in which the propagation speeds of  $S_4$  and  $J_5$  are  $\sigma_4 = u_- + u_+$  and  $\tau_5 = 2u_+ + 1$  respectively.

Otherwise, if  $u_+ > u_-$ , then the shock wave  $S_3$  is continuous to penetrate the rarefaction wave R but unable to cancel the whole R completely in finite time (see Figure 3(b)). During the process of penetration, it can be derived from (3.24) and (3.25) that

$$\sigma_3(t) = \frac{dx}{dt} = 2u_+ + \sqrt{\frac{2\varepsilon(u_m - u_+)}{t}}.$$
(3.29)

Thus, it is shown that  $\sigma_3(t) \to 2u_+$  as  $t \to \infty$  for given  $\varepsilon > 0$ . Thus, when  $u_+ > u_-$ , the shock wave  $S_3$  has the characteristic line  $x(t) = 2u_+t - \varepsilon$  in the rarefaction wave fan R as its asymptote in the end.

**Case 3.3:** S + J and R + J. Let us consider the situation that the shock wave  $S_1$  plus the contact discontinuity  $J_1$  emanates from  $(-\varepsilon, o)$  and the rarefaction wave  $R_1$  plus another contact discontinuity  $J_2$  emits from  $(\varepsilon, 0)$  (see Fig.4). The occurrence of this case depends on the conditions  $u_- - 1 < u_m < u_-$  and  $u_m < u_+$ , which implies that  $u_- - 1 < u_+$ . The propagation speed of  $J_1$  is  $\tau_1 = 2u_m + 1$  and that of the wave back in the rarefaction wave  $R_1$  is  $2u_m$ . Thus, it is easy to see that  $J_1$  and  $R_1$  meet at a time. The intersection  $(x_1, t_1)$  is determined by

$$x_1 + \varepsilon = (2u_m + 1)t_1,$$
  

$$x_1 - \varepsilon = 2u_m t_1,$$
(3.30)

which implies

$$(x_1, t_1) = \left(\varepsilon(4u_m + 1), 2\varepsilon\right). \tag{3.31}$$

The contact discontinuity  $J_1$  begins to enter the rarefaction wave fan after the interaction between  $J_1$  and  $R_1$  occurs. It can be derived directly from (2.1) that the state variable  $(u_2, v_2)$  in  $R_1$  can be determined by

1

$$v_m \cdot e^{2u_m} = v_2 \cdot e^{2u_2},$$
  

$$x - \varepsilon = 2u_2 t,$$
(3.32)

which implies

$$(u_2, v_2) = \left(\frac{x - \varepsilon}{2t}, v_m \exp\left(2u_m - \frac{x - \varepsilon}{t}\right)\right). \tag{3.33}$$

It is remarkable that the values of u on the both sides of the contact discontinuity should be equal. In other words, the rarefaction wave cannot change its direction when across  $J_1$ . Thus, the state variable  $(u_3, v_3)$  in  $R_2$  can also be determined by

$$v_1 \cdot e^{2u_1} = v_3 \cdot e^{2u_3},$$
  
 $x - \varepsilon = 2u_3 t,$ 
(3.34)

such that

$$(u_3, v_3) = \left(\frac{x - \varepsilon}{2t}, v_1 \exp\left(2u_1 - \frac{x - \varepsilon}{t}\right)\right), \tag{3.35}$$

in which  $(u_1, v_1)$  is given by (3.4). Therefore, the contact discontinuity  $J_1$  crosses the rarefaction wave  $R_1$  with a varying propagation speed, which is determined by

$$\frac{dx}{dt} = 2u_2 + 1,$$

$$x - \varepsilon = 2u_2 t,$$
(3.36)

together with the initial condition  $x_1 = x(t_1)$  given by (3.31), which enables us to obtain

$$x(t) = t \ln \frac{t}{2\varepsilon} + 2u_m t + \varepsilon.$$
(3.37)

It follows from (3.36) and (3.37) that

$$\frac{d^2x}{dt^2} = \frac{1}{t} > 0, \tag{3.38}$$

which means that  $J_3$  begins to accelerate and is not a straight line any more after the interaction between  $J_1$  and  $R_1$ .

Furthermore, it is shown that the contact discontinuity  $J_1$  has the ability to penetrate the entire rarefaction wave  $R_1$  fully in finite time and the terminal point  $(x_2, t_2)$  can be calculated by

$$x_{2} = t_{2} \ln \frac{t_{2}}{2\varepsilon} + 2u_{m}t_{2} + \varepsilon,$$
  

$$x_{2} - \varepsilon = 2u_{+}t_{2},$$
(3.39)

which implies

$$(x_2, t_2) = \left(4\varepsilon u_+ \exp(2u_+ - 2u_m) + \varepsilon, 2\varepsilon \exp(2u_+ - 2u_m)\right).$$
(3.40)

After the time  $t_2$ , the contact discontinuity is denoted with  $J_3$ . The state between  $J_2$  and  $J_3$  is given by

$$(u_4, v_4) = (u_+, v_m \exp(2u_m - 2u_+)). \tag{3.41}$$

The contact discontinuity  $J_3$  is parallel to  $J_2$  for the reason that  $u_4 = u_+$ . Similarly, the state  $(u_5, v_5)$  between  $R_2$  and  $J_3$  can be calculated by

$$(u_5, v_5) = (u_+, v_1 \exp(2u_1 - 2u_+)). \tag{3.42}$$

Now, let us consider the interaction between  $S_1$  and  $R_2$ . The propagation speed of  $S_1$  is  $\sigma_1 = u_- + u_m$  and that of the wave back in the rarefaction wave  $R_2$  is still equal to  $2u_m$ . Thus, it is easy to see that  $S_1$  catches up with  $R_2$  in finite time and the interaction  $(x_3, t_3)$  can be calculated by

$$x_3 - \varepsilon = 2u_m t_3,$$
  

$$x_3 + \varepsilon = (u_- + u_m)t_3,$$
(3.43)

which implies

$$(x_3, t_3) = \left(\frac{\varepsilon(3u_m + u_-)}{u_- - u_m}, \frac{2\varepsilon}{u_- - u_m}\right).$$
(3.44)

After the time  $t_3$ , the shock wave enters the region of the rarefaction wave fan  $R_2$  and is denoted with  $S_2$  during the process of penetration. It is noticed that the state on the right-hand side of the shock wave  $S_2$  is  $(u_3, v_3)$ , in which  $u_3$  varies from  $u_m$  to  $u_+$  for  $u_1 = u_m$  and  $u_5 = u_+$ . To study the problem that the shock wave  $S_2$  penetrates the rarefaction wave  $R_2$  is essential to study infinitely many local Riemann problems. There is still a shock wave followed by a contact discontinuity for a local Riemann problem provided that  $u_- - 1 < u_3 < u_-$ . Thus, there are

15

infinitely many contact discontinuities generated during the process of penetration. As before, the value  $u_3$  does not change when these contact discontinuities pass through the rarefaction wave  $R_2$ . Therefore, the curve of the shock wave  $S_2$  can be determined by

$$\frac{dx}{dt} = u_{-} + u_3,$$

$$x - \varepsilon = 2u_3 t,$$
(3.45)

and the initial condition  $x_3 = x(t_3)$  is given by (3.44), which has a unique solution

$$x(t) = 2u_{-}t - 2\sqrt{2\varepsilon t(u_{-} - u_{m})} + \varepsilon.$$
(3.46)

It follows from (3.45) and (3.46) that

$$\frac{d^2x}{dt^2} = \frac{1}{2}\sqrt{\frac{2\varepsilon(u_- - u_m)}{t^3}} > 0, \qquad (3.47)$$

which means that  $S_2$  also accelerates during the process of penetration.

As in Lemma 3.2, according to the values  $u_+$  and  $u_- - 1$ , let us also use the following lemma to explain that if  $S_2$  is able to cancel the rarefaction wave  $R_2$  completely or not.



FIGURE 4. Interactions between S + J and R + J for two different situations when both  $u_- - 1 < u_m < u_-$  and  $u_m < u_+$  should be satisfied.

**Lemma 3.3.** If  $u_{-} - 1 < u_{+} < u_{-}$ , then the shock wave  $S_{2}$  has the ability to cancel the whole rarefaction wave  $R_{2}$  completely in finite time and a new shock wave followed by a new contact discontinuity will be generated at last. Otherwise, if  $u_{+} > u_{-}$ , then the shock wave  $S_{2}$  is unable to pass through the whole  $R_{2}$  completely and finally takes the line  $x - \varepsilon = 2u_{-}t$  as its asymptote.

*Proof.* If  $u_{-} - 1 < u_{+} < u_{-}$ , then the shock wave  $S_{2}$  is able to penetrate the whole  $R_{2}$  fully at  $(x_{4}, t_{4})$  (see Figure 4(a)), which can be calculated by

$$x_4 - \varepsilon = 2u_+ t_4, x_4 = 2u_- t_4 - 2\sqrt{2\varepsilon t_4 (u_- - u_m)} + \varepsilon,$$
(3.48)

namely

$$(x_4, t_4) = \left(\frac{4\varepsilon u_+(u_- - u_m)}{(u_- - u_+)^2} + \varepsilon, \frac{2\varepsilon (u_- - u_m)}{(u_- - u_+)^2}\right).$$
(3.49)

After the time  $t_4$ , we denote the shock wave by  $S_3$  whose propagation speed is  $\sigma_3 = u_- + u_+$ . Obviously, a new contact discontinuity  $J_4$  will be produced with the speed  $\tau_4 = 2u_+ + 1$ . In addition, the state  $(u_6, v_6)$  between  $S_3$  and  $J_4$  is given by

$$(u_6, v_6) = \left(u_+, -v_- \cdot \frac{u_+ - u_- - 1}{u_+ - u_- + 1}\right). \tag{3.50}$$

Otherwise, if  $u_+ > u_-$ , then the shock wave  $S_2$  is unable to cancel the whole  $R_2$  completely in finite time and ultimately has  $x(t) = 2u_-t + \varepsilon$  as its asymptote (see Figure 4(b)).

**Case 3.4:** R+J and R+J. In this case, we are concerned with the situation that both a rarefaction wave followed by a contact discontinuity start from the initial points  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$  respectively. The occurrence of this case depends on the condition  $u_{-} < u_{m} < u_{+}$ . For this case, we need only to consider the situation that a contact discontinuity penetrates a rarefaction wave, which can be dealt with similarly to that for Case 3.3. The details are omitted here.

## 4. INTERACTIONS OF DELTA SHOCK WAVES WITH CLASSICAL WAVES

It is known that the delta shock wave occurs in the Riemann solution of (1.1)and (1.2) for some specific Riemann initial data. It is interesting to investigate the interactions between the delta shock wave with the other elementary waves, including shock wave, rarefaction wave and contact discontinuity. As before, we continue to study the perturbed Riemann problem (1.1) and (1.3) but we need to require that at least one delta shock wave generates at  $(-\varepsilon, 0)$  or  $(\varepsilon, 0)$ . More precisely, we need to consider five possibilities when the delta shock wave is involved at the initial time, according to the different combinations from  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$ as follows: (1)  $\delta S$  and S + J; (2) S + J and  $\delta S$ ; (3)  $\delta S$  and  $\delta S$ ; (4)  $\delta S$  and R + J; (5) R + J and  $\delta S$ .

In addition, it should be emphasized that the interactions between the delta shock wave with the other elementary waves for the system (1.4) have been considered in [17] by using the method of split delta function. In order for completeness and self-contained, we utilize a somewhat different technique from that in [17] to study the perturbed Riemann problem (1.1) and (1.3) when the delta shock wave is involved at the initial moment. In addition, the systems (1.1) and (1.4) are derived from very different physical models and used to describe different physical phenomena. Let us see [8, 25] for the detailed comparison and contrast between the two systems.

**Case 4.1:**  $\delta S$  and S + J. For this case, we draw our attention on the interaction between a delta shock wave starting from  $(-\varepsilon, 0)$  and a shock wave followed by a contact discontinuity starting from  $(\varepsilon, 0)$  (see Figure 5(a)). This requires that both  $u_m \leq u_- - 1$  and  $u_m - 1 < u_+ < u_m$  should be satisfied. The propagation speed of the delta shock wave  $\delta S_1$  is  $\sigma_{\delta_1} = u_- + u_m$  and that of the shock wave S is  $\sigma = u_m + u_+$ . Thus,  $\delta S_1$  overtakes S in finite time whose intersection is given by

$$(x_1, t_1) = \left(\frac{\varepsilon(u_- + 2u_m + u_+)}{u_- - u_+}, \frac{2\varepsilon}{u_- - u_+}\right).$$
(4.1)

In addition, the strength of delta shock wave before the time  $t_1$  can be calculated by

$$\beta(t) = \left( (u_{-} - u_{m})(v_{-} + v_{m}) - (v_{m} - v_{-}) \right) t \quad \text{for } 0 \le t \le t_{1}.$$
(4.2)

initial data is formulated at  $(x_1, t_1)$ , in which the initial data are expressed as

$$u|_{t=t_1} = \begin{cases} u_-, & x < x_1, \\ u_1, & x > x_1, \end{cases} \quad v|_{t=t_1} = \beta(t_1)\delta_{(x_1,t_1)} + \begin{cases} v_-, & x < x_1 \\ v_1, & x > x_1, \end{cases}$$
(4.3)

where  $(u_1, v_1) = (u_+, -v_m \cdot \frac{u_+ - u_m - 1}{u_+ - u_m + 1})$  can be calculated by the same formula as in (3.5).

For  $u_1 = u_+ < u_m \le u_- - 1$ , a new delta shock wave  $\delta S_2$  will be generated after the interaction between  $\delta S_1$  and S. The curve of  $\delta S_2$  is determined by the equation

$$\sigma_{\delta_2} = \frac{dx}{dt} = u_- + u_1 = u_- + u_+ \tag{4.4}$$

and the initial condition  $x(t_1) = x_1$  given by (4.1), which enables us to get the unique exact solution

$$x(t) = (u_{-} + u_{+}) \left( t - \frac{2\varepsilon}{u_{-} - u_{+}} \right) + \frac{\varepsilon (u_{-} + 2u_{m} + u_{+})}{u_{-} - u_{+}} \quad \text{for } t \ge t_{1}.$$
(4.5)

The propagation speed of  $\delta S_2$  is  $\sigma_{\delta_2} = u_- + u_+$  and that of the contact discontinuity J is  $\tau = 2u_+ + 1$ . Thus, it is easy to see that  $\delta S_2$  intersects J at a time. The intersection  $(x_2, t_2)$  is determined by

$$x_2 - x_1 = (u_- + u_+)(t_2 - t_1),$$
  

$$x_2 - \varepsilon = (2u_+ + 1)t_2,$$
(4.6)

which means

$$(x_2, t_2) = \left(\frac{2\varepsilon(2u_+ + 1)(u_- - u_m)}{(u_- - u_+)(u_- - u_+ - 1)} + \varepsilon, \frac{2\varepsilon(u_- - u_m)}{(u_- - u_+)(u_- - u_+ - 1)}\right).$$
(4.7)

In addition, the strength of delta shock wave between  $t_1$  and  $t_2$  can also be calculated by

$$\beta(t) = \beta(t_1) + \left( (u_- - u_+)(v_- + v_1) - (v_1 - v_-) \right) (t - t_1) \quad \text{for } t_1 < t \le t_2.$$
 (4.8)

After the time  $t_2$ , the delta shock wave passes through J with the same propagation speed as before, but is at the different growth rates for the strength of delta shock wave. This is due to the fact that the propagation speed of delta shock wave is calculated by  $\sigma_{\delta} = u_l + u_r$  which is controlled completely by the state variable u, where  $u_l$  stands for the state on the left-hand side of delta shock curve and  $u_r$ expresses the state on the right-hand side of delta shock curve. Taking into account  $u_1 = u_+$ , we always have the states  $u_l = u_-$  and  $u_r = u_+$  on two sides of delta shock curve such that the propagation speed of delta shock wave keeps  $u_- + u_+$ invariant after the time  $t_1$ . On the other hand, the strength of delta shock wave depends on both the state variables u and v. Thus, the growth rate of delta shock wave also changes when across J for the reason that the state variable v changes from  $v_1$  to  $v_+$ . After the time  $t_2$ , the strength of delta shock wave can be calculated by

$$\beta(t) = \beta(t_2) + \left( (u_- - u_+)(v_- + v_+) - (v_+ - v_-) \right) (t - t_2) \quad \text{for } t > t_2.$$
(4.9)

**Case 4.2:** S + J and  $\delta S$ . In this case, we are concerned with the situation that a shock wave followed by a contact discontinuity starts from  $(-\varepsilon, 0)$  and a delta

shock wave emits from  $(\varepsilon, 0)$ . This case arises when both  $u_{-} - 1 < u_m < u_{-}$  and  $u_{+} \leq u_m - 1$  occur. This situation can be dealt with similarly to that for Case 4.1. Let us draw Figure 5(b) to illustrate this situation for comparison and then give the detailed explanations for Figure 5(b) below. The propagation speeds of J and  $\delta S_1$  are given by  $\tau = 2u_m + 1$  and  $\sigma_{\delta_1} = u_m + u_+$  respectively, such that they will meet at the intersection given by

$$(x_1, t_1) = \left(\frac{\varepsilon(3u_m + 1 + u_+)}{u_m + 1 - u_+}, \frac{2\varepsilon}{u_m + 1 - u_+}\right).$$
(4.10)



FIGURE 5. Interaction between  $\delta S$  and S + J when  $u_m \leq u_- - 1$ and  $u_m - 1 < u_+ < u_m$  on the left, and interaction between S + Jand  $\delta S$  when  $u_- - 1 < u_m < u_-$  and  $u_+ \leq u_m - 1$  on the right.

The state  $(u_1, v_1)$  between S and J can be calculated by the same formula as in (3.4). For  $u_1 = u_m$ , the delta shock wave  $\delta S_1$  cannot change its direction when across J. Thus, the intersection of S and  $\delta S_1$  can be calculated by

$$x_2 + \varepsilon = (u_- + u_m)t_2,$$
  

$$x_2 - \varepsilon = (u_m + u_+)t_2,$$
(4.11)

in which  $u_{-} + u_{m}$  is the propagation speed of S, such that we have

$$(x_2, t_2) = \left(\frac{\varepsilon(u_- + 2u_m + u_+)}{u_- - u_+}, \frac{2\varepsilon}{u_- - u_+}\right).$$
(4.12)

Consequently, the generalized Riemann problem for the system (1.1) with the delta type initial data is also formulated at  $(x_2, t_2)$ , in which the initial data are expressed as

$$u|_{t=t_2} = \begin{cases} u_{-}, & x < x_2, \\ u_{+}, & x > x_2, \end{cases} \quad v|_{t=t_2} = \beta(t_2)\delta_{(x_2,t_2)} + \begin{cases} v_{-}, & x < x_2 \\ v_{+}, & x > x_2. \end{cases}$$
(4.13)

We can obtain  $u_+ < u_- - 1$  from  $u_m < u_-$  and  $u_+ \le u_m - 1$ , thus the interaction between S and  $\delta S_1$  generates a new delta shock wave denoted with  $\delta S_2$  in Figure 5(b).

In addition, the strength of delta shock wave can be calculated respectively by

$$\beta(t) = \left( (u_m - u_+)(v_m + v_+) - (v_+ - v_m) \right) t \quad \text{for } 0 \le t \le t_1,$$
(4.14)

$$\beta(t) = \beta(t_1) + \left( (u_m - u_+)(v_1 + v_+) - (v_+ - v_1) \right) (t - t_1) \quad \text{for } t_1 < t \le t_2, \ (4.15)$$

$$\beta(t) = \beta(t_2) + \left( (u_- - u_+)(v_- + v_+) - (v_+ - v_-) \right) (t - t_2) \quad \text{for } t > t_2, \quad (4.16)$$

in which  $v_1 = -v_- \cdot \frac{u_m - u_- - 1}{u_m - u_- + 1}$  is given by (3.4).

**Case 4.3:**  $\delta S$  and  $\delta S$ . In this case, we consider the interaction of two delta shock waves starting from  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$  respectively. This case happens if and only if  $u_m \leq u_- - 1$  and  $u_+ \leq u_m - 1$ . Let us use  $\delta S_1$  and  $\delta S_2$  to denote the delta shock waves originating from the initial points  $(-\varepsilon, 0)$  and  $(\varepsilon, 0)$  respectively. The propagation speed of  $\delta S_1$  is  $u_- + u_m$  and that of  $\delta S_2$  is  $u_m + u_+$ , and thus they will meet in finite time and the intersection of  $\delta S_1$  and  $\delta S_2$  can also be calculated by the formula (4.12). Before the time  $t_1 = \frac{2\varepsilon}{u_- - u_+}$ , the strengths of  $\delta S_1$  and  $\delta S_2$  can be calculated respectively by

$$\beta_1(t) = \left( (u_- - u_m)(v_- + v_m) - (v_m - v_-) \right) t, \tag{4.17}$$

$$\beta_2(t) = \left( (u_m - u_+)(v_m + v_+) - (v_+ - v_m) \right) t.$$
(4.18)

At the point  $(x_1, t_1)$ , the delta-type initial data can also be formulated as

$$u|_{t=t_1} = \begin{cases} u_{-}, & x < x_1, \\ u_{+}, & x > x_1, \end{cases} \quad v|_{t=t_1} = \beta(t_1)\delta_{(x_1,t_1)} + \begin{cases} v_{-}, & x < x_1 \\ v_{+}, & x > x_1, \end{cases} \quad (4.19)$$

in which the strength  $\beta(t_1) = \beta_1(t_1) + \beta_2(t_1)$  is the sum of the strengths of  $\delta S_1$  and  $\delta S_2$  at the point  $(x_1, t_1)$  and thus can be calculated by

$$\beta(t_1) = \frac{2\varepsilon}{u_- - u_+} \cdot \left( (u_- - u_m)(v_- + v_m) + (u_m - u_+)(v_m + v_+) - (v_+ - v_-) \right).$$
(4.20)

It can be obtained that  $u_+ \leq u_- - 2$ , thus the wave interaction has a relatively simpler structure for this case, namely two delta shock waves coalesce into one delta shock wave when they meet. Let us use  $\delta S_3$  to denote the new delta shock wave whose strength can be calculated by

$$\beta(t) = \beta(t_1) + \left( (u_- - u_+)(v_- + v_+) - (v_+ - v_-) \right) (t - t_1) \quad \text{for } t > t_1, \quad (4.21)$$

in which  $t_1 = \frac{2\varepsilon}{u_- - u_+}$  and  $\beta(t_1)$  is given by (4.20).

**Case 4.4:**  $\delta S$  and R + J. In this case, let us investigate the interaction between a delta shock wave  $\delta S_1$  emanating from  $(-\varepsilon, 0)$  and a rarefaction wave  $R_1$  followed by a contact discontinuity  $J_1$  starting from  $(\varepsilon, 0)$  (see Fig.6). This is possible to happen if and only if both  $u_m \leq u_- - 1$  and  $u_m < u_+$  hold. The propagation speed of the delta shock wave  $\delta S_1$  is  $\sigma_{\delta_1} = u_- + u_m$  and the wave back in the rarefaction wave propagates with the speed  $2u_m$ . Thus,  $\delta S_1$  and R intersect at the point

$$(x_1, t_1) = \left(\frac{\varepsilon(3u_m + u_-)}{u_- - u_m}, \frac{2\varepsilon}{u_- - u_m}\right),$$
(4.22)

and the strength of delta shock wave at  $(x_1, t_1)$  is given by

$$\beta(t_1) = \left( (u_- - u_m)(v_- + v_m) - (v_m - v_-) \right) t_1.$$
(4.23)

After the time  $t_1$ , the delta shock wave enters the rarefaction wave fan  $R_1$  where it is denoted with  $\delta S_2$ , whose expression can be calculated by

$$\sigma_{\delta_2}(t) = \frac{dx}{dt} = u_- + \frac{x - \varepsilon}{2t}, \qquad (4.24)$$

where the initial condition  $x(t_1) = x_1$  is given by (4.22), which has a unique solution

$$x(t) = 2u_{-}t - 2\sqrt{2\varepsilon t(u_{-} - u_{m})} + \varepsilon, \quad \text{for } t \ge t_{1}.$$

$$(4.25)$$

Thus, we have  $\frac{d^2x}{dt^2} > 0$ , namely  $\delta S_2$  begins to accelerate when it enters the rarefaction wave fan  $R_1$ . As before, it is easy to get that the state  $(u_1, v_1)$  in  $R_1$  and the state  $(u_2, v_2)$  between  $R_1$  and  $J_1$  are given respectively by

$$(u_1, v_1) = \left(\frac{x - \varepsilon}{2t}, v_m \exp(2u_m - \frac{x - \varepsilon}{t})\right), \tag{4.26}$$

$$(u_2, v_2) = \left(u_+, v_m \exp(2u_m - 2u_+)\right). \tag{4.27}$$

In view of the different relations among the values  $u_+$ ,  $u_-$  and  $u_- - 1$ , the discussions should be divided into three different cases which can be fully depicted in the following lemma.



FIGURE 6. Interactions between  $\delta S$  and R + J for two different situations where both  $u_m \leq u_- - 1$  and  $u_m < u_+$  should be satisfied.

**Lemma 4.1.** If  $u_+ < u_- - 1$ , then the delta shock wave is able to cancel the whole rarefaction wave  $R_1$  completely in finite time. Otherwise, if  $u_- - 1 < u_+$ , then the delta shock wave is unable to cancel the whole  $R_1$  completely in finite time and is divided into a shock wave and a delta contact discontinuity when it passes through the characteristic line with the state satisfying  $u_1 = u_- - 1$ .

*Proof.* If  $u_+ < u_- - 1$ , then  $\delta S_2$  is able to cancel the whole  $R_1$  at  $(x_2, t_2)$  which can be calculated by

$$x_{2} - \varepsilon = 2u_{+}t_{2},$$
  

$$x_{2} = 2u_{-}t_{3} - 2\sqrt{2\varepsilon t_{2}(u_{-} - u_{m})} + \varepsilon,$$
(4.28)

namely,

$$(x_2, t_2) = \left(\frac{4\varepsilon u_+(u_- - u_m)}{(u_- - u_+)^2} + \varepsilon, \frac{2\varepsilon (u_- - u_m)}{(u_- - u_+)^2}\right).$$
(4.29)

The strength of  $\delta S_2$  during the process of penetration can be calculated by

$$\beta(t) = \beta(t_1) + \left( (u_- - u_1)(v_- + v_1) - (v_1 - v_-) \right) (t - t_1), \quad \text{for } t_1 < t \le t_2, \ (4.30)$$

in which  $t_1$ ,  $\beta(t_1)$  and  $(u_1, v_1)$  are given by (4.22), (4.23) and (4.26) respectively. After the time  $t_2$ , the situation is similar to that for Case 4.1. In other words, the delta shock wave  $\delta S_3$  propagates with the invariant speed  $u_- + u_+$ , only the strength of  $\delta S_3$  adds up at the different rates when it passes through  $J_1$ .

Otherwise, if  $u_- - 1 < u_+$ , then the delta shock wave is unable to cross the entire  $R_1$  in finite time and should be decomposed into a shock wave S and a delta contact discontinuity  $\delta J$  when it passes through the characteristic line with  $u_1 = u_- - 1$  in the rarefaction wave fan  $R_1$ . This is due to the fact that the inequality  $u - 1 < u_+$  cannot always hold for the varying states (u, v) supported on the characteristic lines in the rarefaction wave fan  $R_1$ . More precisely, the critical point for the decomposition of  $\delta S_2$  into S and  $\delta J$  can be calculated by

$$x_{2} - \varepsilon = 2(u_{-} - 1)t_{2},$$
  

$$x_{2} = 2u_{-}t_{2} - 2\sqrt{2\varepsilon t_{2}(u_{-} - u_{m})} + \varepsilon,$$
(4.31)

which enables us to have

$$(x_2, t_2) = \left(4\varepsilon(u_- - u_m)(u_- - 1) + \varepsilon, 2\varepsilon(u_- - u_m)\right).$$
(4.32)

The curve of the delta contact discontinuity  $\delta J$  can be calculated as

$$\tau_{\delta}(t) = \frac{dx}{dt} = \frac{x - \varepsilon}{t} + 1, \qquad (4.33)$$

in which the initial condition  $x(t_2) = x_2$  is given by (4.32). Analogously, the expression of  $\delta J$  can be given in the form

$$x(t) = t \Big( \ln t - \ln(2\varepsilon(u_{-} - u_{m})) + 2u_{-} - 2 \Big) + \varepsilon, \quad t \ge t_{2}.$$
(4.34)

As in Case 3.3, the delta contact discontinuity  $\delta J$  is able to penetrate the whole  $R_1$  in finite time and finally propagates forwards with the invariant speed  $2u_+ + 1$ .

Let us turn our attention on the shock wave S. Actually, the shock wave S is the continuation of the delta shock wave  $\delta S_2$ . Thus, the curve of the shock wave S can also be expressed by (4.25). Consequently, the shock wave S continues to penetrate the rarefaction wave  $R_2$  and the situation is similar to that for Case 3.3. For the reason that the propagation speed of S depends entirely on the state variable u on both sides of the shock curve, in which the left-hand state variable u is always  $u_-$  and the right-hand state variable u supported on each characteristic line in the rarefaction wave fan remains unchanged when the characteristic line passes through  $\delta J$  and J. That is to say, we need also consider two subcases  $u_- - 1 < u_+ < u_-$  and  $u_+ > u_-$ , which can be illustrated by Lemma 3.3.

**Case 4.5:** R + J and  $\delta S$ . In the end, we study the situation when the rarefaction wave R followed by the contact discontinuity  $J_1$  starts from  $(-\varepsilon, 0)$  and the delta shock wave  $\delta S_1$  starts from  $(\varepsilon, 0)$  (see Fig.7). This case arises when both  $u_- < u_m$  and  $u_+ \leq u_m - 1$  happen. The propagation speeds of  $J_1$  and  $\delta S_1$  are  $\tau_1 = 2u_m + 1$  and  $\sigma_{\delta_1} = u_m + u_+$ , respectively. Thus,  $\delta S_1$  and  $J_1$  meet in finite time whose intersection is

$$(x_1, t_1) = \left(\frac{\varepsilon(3u_m + u_+ + 1)}{u_m - u_+ + 1}, \frac{2\varepsilon}{u_m - u_+ + 1}\right).$$
(4.35)

X. WEI, C. SHEN

The strength of  $\delta S_1$  at  $(x_1, t_1)$  is

$$\beta(t_1) = \left( (u_m - u_+)(v_m + v_+) - (v_+ - v_m) \right) t_1.$$
(4.36)

After the time  $t_1$ , the delta shock wave  $\delta S_1$  passes through  $J_1$  with the same speed as before and consequently enters the rarefaction wave R from the point  $(x_2, t_2)$  which can be obtained as

$$(x_2, t_2) = \left(\frac{\varepsilon(3u_m + u_+)}{u_m - u_+}, \frac{2\varepsilon}{u_m - u_+}\right).$$
(4.37)

The strength of  $\delta S_1$  at  $(x_2, t_2)$  can be calculated as

$$\beta(t_2) = \beta(t_1) + \left( (u_1 - u_+)(v_1 + v_+) - (v_+ - v_1) \right) (t_2 - t_1), \tag{4.38}$$

in which

$$(u_1, v_1) = \left(u_m, v_- \exp(2u_- - 2u_m)\right).$$
(4.39)

After the time  $t_2$ , the delta shock wave enters the rarefaction wave fan R where it is denoted with  $\delta S_2$ . As before, the curve of  $\delta S_2$  is determined by

$$\sigma_{\delta_2}(t) = \frac{dx}{dt} = u_+ + \frac{x + \varepsilon}{2t}, \qquad (4.40)$$

in which the initial condition  $x(t_2) = x_2$  is given by (4.37). It is easy to obtain a unique solution

$$x(t) = 2u_{+}t + 2\sqrt{2\varepsilon t(u_m - u_{+})} - \varepsilon, \qquad t \ge t_2.$$

$$(4.41)$$

It follows from (4.40) and (4.41) that  $\frac{d^2x}{dt^2} < 0$ , which means that  $\delta S_2$  begins to decelerate and is not a straight line any more.

The state  $(u_2, v_2)$  in the rarefaction wave R can be obtained as

$$(u_2, v_2) = \left(\frac{x+\varepsilon}{2t}, v_m \exp\left(2u_- - \frac{x+\varepsilon}{t}\right)\right). \tag{4.42}$$

As in Lemma 4.1, one can see that if  $u_- > u_+ + 1$ , then the delta shock wave is able to cancel the whole rarefaction wave R completely in finite time and consequently propagates with the invariant speed  $u_- + u_+$ . Otherwise, if  $u_- < u_+ + 1$ , then the delta shock wave cannot cross the whole rarefaction wave R completely in finite time and may be also divided into a shock wave and a delta contact discontinuity when it passes through the characteristic line with the state satisfying  $u_2 = u_+ + 1$ in the rarefaction wave fan R.

Analogously, the critical point for the decomposition of  $\delta S_2$  into S and  $\delta J$  can be calculated by

$$x_{3} + \varepsilon = 2(u_{+} + 1)t_{3},$$
  
=  $2u_{+}t_{3} + 2\sqrt{2\varepsilon t_{3}(u_{m} - u_{+})} - \varepsilon,$  (4.43)

which enables us to obtain

$$(x_3, t_3) = \left(4\varepsilon(u_m - u_+)(u_+ + 1) - \varepsilon, 2\varepsilon(u_m - u_+)\right).$$

$$(4.44)$$

Consequently, the curve of  $\delta J$  can be expressed as

 $x_3$ 

$$x(t) = (2u_{+} + 1)(t - 2\varepsilon(u_{m} - u_{+})) + 4\varepsilon(u_{m} - u_{+})(u_{+} + 1) - \varepsilon.$$
(4.45)

On the other hand, the shock wave S is still the continuation of the delta shock wave  $\delta S_2$  and can be expressed by (4.41). Consequently, the shock wave S continues to penetrate the rarefaction wave R. If  $u_+ < u_- < u_+ + 1$ , then the shock wave S





FIGURE 7. Interactions between R + J and  $\delta S$  for two different situations where both  $u_{-} < u_{m}$  and  $u_{+} \leq u_{m} - 1$  should be satisfied.

is able to penetrate the whole R completely in finite time. Otherwise, if  $u_{-} < u_{+}$ , then the shock wave S cannot penetrate R completely in finite time and finally has the line  $x + \varepsilon = 2u_{+}t$  as its asymptote.

#### 5. Discussions and conclusions

So far, the wave interaction problems for the system (1.1) have been investigated in detail. The global solutions of the perturbed Riemann problem (1.1) and (1.3) are constructed fully for all the situations. Now, we are in a position to consider whether the limits of the solutions of the perturbed Riemann problem (1.1) and (1.3) are the corresponding ones of the Riemann problem (1.1) and (1.2) or not as  $\varepsilon \to 0$ . Let us take Case 4.4 as an example to explain our problem in detail.

With  $u_m \leq u_- - 1$  and  $u_m < u_+$  in mind for Case 4.4, we first consider the situation that  $u_{+} \leq u_{-} - 1$ . It is easy to see that all the points  $(-\varepsilon, 0), (\varepsilon, 0), (\varepsilon, 0), (\varepsilon, 0), (\varepsilon, 0), (\varepsilon, 0)$  $(x_1, t_1), (x_2, t_2)$  and  $(x_3, t_3)$  tend to the origin (0, 0) and coincide with each other, such that there is only a delta shock wave with the propagation speed  $u_{-} + u_{+}$  in the limit situation. If  $u_{-} - 1 < u_{+} < u_{-}$ , then the shock wave is able to cancel the whole rarefaction wave completely. It can be seen from (4.23) and (4.30) that  $\beta(t_2)$  tends to zero for the reason that  $t_2$  tends to zero as  $\varepsilon \to 0$ , which implies that the delta shock wave disappears and the delta contact discontinuity becomes the contact discontinuity in the limit situation. Furthermore, we can see that all the contact discontinuities coincide with each other in the limit situation for they have the same propagation speed and start from the origin (0,0). Thus, there is still S+J for  $u_{-}-1 < u_{+} < u_{-}$  in the limit situation. Otherwise, if  $u_{+} > u_{-}$ , then the limit situation is similar and the difference only lies in that the shock wave is unable to cancel the rarefaction wave completely. Thus, there is R + J for  $u_+ > u_-$  in the limit situation. Gathering the above results together, we can see that the limits of the solutions of the perturbed Riemann problem (1.1) and (1.3) are identical with the corresponding ones of the Riemann problem (1.1) and (1.2) as  $\varepsilon \to 0$  for Case 4.4.

The above method can also be generalized to the other cases and one can discover that the large-time asymptotic solutions of the perturbed Riemann problem (1.1)

and (1.3) indeed coincide with the corresponding ones of the Riemann problem (1.1) and (1.2). That is to say, the large-time asymptotic solutions of the perturbed Riemann problem (1.1) and (1.3) is the delta shock wave for  $u_+ \leq u_- - 1$ , the shock wave followed by the contact discontinuity for  $u_- - 1 < u_+ < u_-$  and the rarefaction wave followed by the contact discontinuity for  $u_+ > u_-$ . Let us call that the solutions of the Riemann problem (1.1) and (1.2) are stable with respect to the specific small perturbations (1.3) of the Riemann initial data (1.2) provided that the solutions of the perturbed Riemann problem (1.1) and (1.2) as  $\varepsilon \to 0$  in the sense of distributions in all kinds of situations. In a word, we can summarize our results in the following theorem.

**Theorem 5.1.** The limits of the solutions to the perturbed Riemann problem (1.1) and (1.3) are identical with the corresponding ones to the Riemann problem (1.1) and (1.2) as  $\varepsilon \to 0$  for all kinds of situations. Thus, the conclusion can be drawn that the solutions to the Riemann problem (1.1) and (1.2) are stable with respect to such a local small perturbation (1.3) of the Riemann initial data (1.2).

Acknowledgements. The authors would like to thank the anonymous referees for their useful comments on the original manuscript. This work is partially supported by the Shandong Provincial Natural Science Foundation (ZR2014AM024) and the National Natural Science Foundation of China (11441002).

## References

- G. Q. Chen, H.Liu; Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.
- [2] M. Colombeau; A method of projection of delta waves in Godunov scheme and application to pressureless fluid dynamics, SIAM J. Numer. Anal., 48 (2010), 1900-1919.
- [3] V. G. Danilov, D. Mitrovic; Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, J. Differential Equations, 245 (2008), 3704-3734.
- [4] V. G. Danilov, V. M. Shelkovich; Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations, 221 (2005), 333-381.
- [5] V. G. Danilov, V. M. Shelkovich; Delta-shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.
- [6] L. Guo, L. Pan, G. Yin; The perturbed Riemann problem and delta contact discontinuity in chromatography equations, Nonlinear Analysis, TMA, 106(2014), 110-123.
- [7] L. Guo, Y. Zhang, G.Yin; Interactions of delta shock waves for the Chaplygin gas dynamic equations with split delta functions, J. Math. Anal. Appl., 410 (2014), 190-201.
- [8] B. T. Hayes, P. G. LeFloch; Measure solutions to a strictly hyperbolic system of conservation laws, Nonlinearity, 9 (1996), 1547-1563.
- H. Kalisch, D. Mitrovic; Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.
- [10] H. Kalisch, D. Mitrovic; Singular solutions for the shallow-water equations, IMA J. Appl.Math., 77 (2012), 340-350.
- [11] B. L. Keyfitz, H. C. Kranzer; Spaces of weighted measures for conservation laws with singular shock solutions, J. Differential Equations, 118 (1995), 420-451.
- [12] B. L. Keyfitz, C. Tsikkou; Conservaing the wrong variables in gas dynamics: a Riemann problem with singular shocks, Q. Appl. Math., 70 (2012), 407-436.
- [13] J. Li, T. Zhang, S. Yang; The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 98, Longman Scientific and Technical, 1998.
- [14] M. Nedeljkov; Delta and singular delta locus for one dimensional systems of conservation laws, Math. Meth. Appl.Sci., 27 (2004), 931-955.

- [15] M. Nedeljkov; Singular shock waves in interactions, Q. Appl. Math., 66 (2008), 281-302.
- [16] M. Nedeljkov; Shadow waves: entropies and interactions for delta and singular shocks, Arch. Rational Mech. Anal., 197 (2010), 487-537.
- [17] M. Nedeljkov, M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl., 344 (2008), 1143-1157.
- [18] A.Qu, Z. Wang; Stability of the Riemann solutions for a Chaplygin gas, J. Math. Anal. Appl., 409 (2014), 347-361.
- [19] C. Shen; The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system, J. Nonlinear Math. Phys., 22 (2015), 76-101.
- [20] C. Shen, M. Sun; Interactions of delta shock waves for the transport equations with split delta functions, J. Math. Anal. Appl., 351 (2009), 747-755.
- [21] C. Shen, M. Sun; Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Differential Equations, 249 (2010), 3024-3051.
- [22] C. Shen, M. Sun; Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws, Nonlinear Analysis, TMA, 73 (2010), 3284-3294.
- [23] W. Sheng, T. Zhang; The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137 (N654) (1999), AMS: Providence.
- [24] M. Sun; Interactions of delta shock waves for the chromatography equations, Applied Mathematics Letters, 26 (2013), 631-637.
- [25] D. Tan; Riemann problem for hyperbolic systems of conservation laws with no classical wave solutions, Q. Appl. Math., 53 (1993), 765-776.
- [26] D. Tan, T. Zhang, Y. Zheng; Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32.
- [27] B. Temple; Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.
- [28] H. Yang; Riemann problem for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 159 (1999), 447-484.
- [29] H. Yang, W. Sun; The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws, Nonlinear Analysis, TMA, 67 (2007), 3041-3049.
- [30] A. Yao, W. Sheng; Interaction of elementary waves on boundary for a hyperbolic system of conservation laws, Math. Meth. Appl. Sci., 31 (2008), 1369-1381.

Xuefeng Wei

School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong Province 264025, China

E-mail address: 50816179@qq.com

Chun Shen (corresponding author)

School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong Province 264025, China

*E-mail address*: shenchun3641@sina.com