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FRACTIONAL SCHRODINGER-POISSON EQUATIONS WITH
GENERAL NONLINEARITIES

RONALDO C. DUARTE, MARCO A. S. SOUTO

ABSTRACT. In this article we study the existence of positive solutions and
ground state solutions for a class of fractional Schrédinger-Poisson equations
in R3 with general nonlinearity.

1. INTRODUCTION
In this article we consider the Schrodinger-Poisson system
(—=A)su+ V(z)u+ du = f(u), inR>
(=AY =u? inR?
where (—A)® is the fractional Laplacian for o = s,¢. This article was motivated
by [2]. There the authors show the existence of positive solutions for the system
—Au+V(z)u+ du= f(u), inR3
—A¢p =u?, inR?,

(1.1)

where V : R® — R is a continuous periodic potential and positive. Our purpose is to
show that when we consider this system with fractional Laplacian operator instead
of the Laplacian, then we obtain a positive solution and a ground state solution
for the system. We emphasize that we prove the existence of weak solution to the
system and without using results of regularity, we show that the weak solution is
positive almost everywhere in R3. To prove this, we present another version of the
Logarithmic lemma and we deduce a weak comparison principle for the solution of
the system (See Theorem (4.1)).

We use the following assumptions for the potential function V' and the function

fe CR,R):
(A1) V(z) > a >0, Vo € R3, for some constant o > 0,
(A2) V(z) =V(z+y), forallz e R3 y e Z3.
(A3) f( Ju >0, u#0;
(A4) limy_o f(u)/u=0;
(A5) there exists p € (4,2%) and C > 0, such that
[f(w)] < Clul + [ulP™1),
for all u € R, where 2% = 3f25'
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(A6) limy— 4o F(u)/u* = +00, where F(u) = [/’ f
(A7) The function u — f(u)/|ul? is 1ncreasmg in |u| 76 O

We will denote g(u) := f(u™) and G(t fo
System ([1.1)) was studied in [IT], where the author consider the one dimensional
system

—Au+ ¢u = alulP"'u, inR,

(_A)t¢ = U2, in Ra
for p € (1,5) and ¢ € (0,1). In [I§], the authors show the existence of positive
solutions for the system

—Au+u+ Apu = f(u), inR3

—A¢ = 2, inR,
for A > 0 and a general critical nonlinearity f. In [I7], the authors proved the
existence of radial ground state solutions of (1.1)) when V' = 0. In [16], the system
was studied, although the sign of the solutions is not considered. In this article,
we prove the existence of positive solutions for (|1.1). Using a Nehari manifold, we

ensure the existence of a ground state solution for the problem. Our main result
reads as follows.

Theorem 1.1. Suppose that s € (3/4,1), t € (0,1), and (A1)—(AT7) are satisfied.
Then (1.1) has a positive solution and a ground state solution.

The hypothesis s € (3/4,1) is required to ensure that the interval (4,2%) is
nondegenerate.

Remark 1.2. Condition (A7) implies that H(u) = wf(u)—4F (u) is a non-negative
function.

In [I0, Lemma 2.3], the authors proved the following version of the Lions lemma,
which will be needed to prove our result.

Lemma 1.3. If {uy, }nen is a bounded sequence in H*(R?) such that for some R > 0
and 2 < ¢ < 2% we have

sup / un|? — 0
z€R3 J Br(x)
when n — oo, then u, — 0 in L"(R3) for all r € (2,27).
2. PRELIMINARIES

For s € (0,1), we denote by H*(R?) the homogeneous fractional space. It is
defined as the completion of C§°(R?) under the norm

(u(z) —u(y))® 1/2
= ([, / |x_y‘3+29 dx dy)Y/
and we define

3) = 2(R3) —u(y))?

The space H*(R?) is a Hilbert space w1th the norm

_ ))2 1/2
l[ull= = / |ul dx—l—/Rg /]Rs |z— ‘34—25 dxdy)
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We define the fractional Laplacian operator (—A)* - Hs(Rg) — (H5(R?)) by

((=A)*u,v) = §(u,v) ., where ¢ = ((s) = (fgs 1‘52151)@) and (-,-)gs is an
inner product of H S(R?’). The constant C satisfies
y)(v(z) —v(y)) -1 / 2
drdy =2 s d
I rdy =207 [l FUO P

where Fu is the Fourier transform of u (see [6, Proposition 3.4]). The fractional
Laplacian operator is a bounded linear operator.
A pair (u ¢y is a solution of (1.1] . ) if

(u(z) = Puly)) (w(z) — w(y))  uwde
/]Rs R3 |z — y[3+2¢ dedy*/R3 dx.

for all w € H*(R?), and

((—A)°u,v) +/

V(z)uvdx + / pyuvdr = flwvdx
R3 R3 R3
for all v € H*(R?).

Let us recall some facts about the Schrodinger-Poisson equations (see [141 3], 19, 9]
for instance). We can transform into a fractional Schrédinger problem with
a nonlocal term. For all u € H*(R?), there exists a unique ¢ = ¢,, € H*(R?) such
that

(—A)p = u?.
22F
In fact, since H*(R3) — < [T (R3) (continuously), a simple application of the
Lax-Milgram theorem shows that ¢,, is well defined and

pulle < S2llulls;

2;{71
where || - ||, denotes the LP(R?) norm and S is the best constant of the Sobolev
immersion H*®(R?) — L% (R®); that is
2
I

in £
wefrt(®3)\ {0} ||ull3:
Lemma 2.1. We have:

(i) there exists C > 0 such that || ¢yl 7. < C|lull3. and

2
Rr3 JR3

|1. _ y|3+2t

for all u € H*(R?);
(ii) ¢y >0, Yu € HS(]R3)
(iii) ¢ry = t?¢y, Vt > 0,u € H*(R?).
(iv) If @(z) := u(z + 2) then ¢z(x) = ¢u(x + 2) and

/ dpuldr = pat’dr
R3 R3

for all z € R and u € H*(R?).
(v) If {un} converges weakly to u in H*(R3), then {¢,,} converges weakly to
by in H'(R?).
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The proof of the above lemma is analogous to the case of Poisson equation in
DL2(R?) (See [2 14}, 19)).

At first, we are interested in showing the existence of a positive solution for .
We will consider the Euler—Lagrange functional I : H*(R3) — R given by

(u(z) —u(y))? 1 2
/]1@3/]1@ |$—y|3+25 dx dy +2 3V(3:)ud:l:

qﬁuqux—/ G(u)dzx,
4 s

whose derivative is

) & 0@ — o)
o J T e

+ /]RS V(z)uvdx + /]R3 Pyuvdr — /RS g(u)vdx
= ((—A)°u,v) + V(x)uvdm—&—/ Pyuvdr —/ g(u)vdx.
R3 R3

R3
We remark that critical points of I determine solutions for (L.1)).

Lemma 2.2. The function

(u(e) — u(y))? i)
u— |ul| == /RS/RB |x— |3+2S dx dy + 3V(ac)u dx)

defines a norm in H® (R3) which is equivalent to the standard norm.

The proof of the previous lemma is trivial and therefore we will omit it in this
paper.

3. EXISTENCE OF THE SOLUTION

Theorem 3.1. Suppose that 1 > s > 3/4, t € (0,1), and (A1)—(A6 are satisfied.
Then (1.1) has a nontrivial solution.

Proof. By usual arguments, we prove that the functional I has the mountain pass
geometry. By Montain Pass theorem, there is a Cerami’s sequence for I at the
mountain pass level c. That is, there is {uy, }neny C H*(R?) such that

I(u,) — ¢,
(1 + [[unl) (un) — 0.
where

c=inf sup [ ,
Inf sup (v(1))

I'= {7 € C([(), 1]v HS(RB))vV(O) = 077(1) = 6}7
where e € H*(R3), and e satisfies I(e) < 0. By Remark

AL(up) = I' (un)un = [lun||* + /RS [f (un)un — 4F (un))dz > ||unl|?

Therefore {u,} is bounded in H*(R?). So, there is v € H*(R?) such that {u,}
converges weakly to u. The Lemma (A4), and (A5) imply that u is a critical
point for I. If u # 0 then w is a nontrivial solution for (L.1). Suppose that u = 0.



EJDE-2016/319 FRACTIONAL SCHRODINGER-POISSON EQUATIONS 5

We claim that {u,} does not converge to 0 in L"(R3) for all r € (2,2%). Indeed,
otherwise, by (A4), (A5) and the boundedness of {u,} in L*(R3) we have

/ g(up)updr — 0;
R3
By Lemma [21]
Junl* < Vol + [ Guude = [ gl )uads + T
R3 R3

The right-hand side of the above inequality converges to 0. In this case, u, — 0 in
H*(R3). Consequently

¢ =limI(u,) = 0.
This equality can not occur. Then, we can assume that there are R > 0 and 6 > 0
such that passing to a subsequence if necessary

/ uidw >4,
BR(yn)

for some sequence {y,} C Z* (See Lemma [1.3)). For each n € N, we define
W () = Un (T + Yn).

Note that w, € H*(R?®). Moreover, changing the variables in the integral below,
we have

C/ / un z"_yn _un(y+yn)) 1 2
I(wy,) = dxdy + = Viz)u,(z + yp)“dx
g3 Jrs (T +yn) = (Y +yn) 3128 2 Jps (@)un(@ + )

/¢wnw dx—/ G(un(x + yn))dz

S e [ v
o s \z—w|3+25 dzdw+2 . V(z)un(z)"dz

Jr gi)u u?dx — / G(un(z))dz
4 -
= I(un).
Analogously, for every ¢ € H*(R?),

I (wn)é = g/w /RS (wn(z) _r;n(y;)g,(fz(f) —0(y)) dmder/Rs V(@)wn i

+ / o Wl — /R 9w, ) dde

C Up, x—i—yn — Un(y + yn))(o(x) — &(y))
/]R3 /R3 (T + yn) — (Y + yn) P25 dz dy

+ V(x4 yn)un(x + yn)o(x)dx + /]RB Ou, (T + Yn)un (2 + yn)pdx

R3
- [ stunla+ m)ota)da
_ g (un('z) — un(w)(¢(z — yn) — ¢(w — yn)) wdw
- ~/]Rs\/]R3 ‘Z—’UJ|3+25 dzd

+ /]R3 V(2)un(2)d(z — yn)dz + /]R3 Ou,, (2)un(2)d(z — yn)dz
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- [ atua oz = e
= Il(un)g

where ¢(z) = ¢(z —y,). This implies that {w,,} is a Cerami’s sequence for I at the
level ¢. Analogously, we can show that {w,} is bounded, {w,} converges weakly
to some wy € H*(R3) and that I'(wp) = 0. Passing to a subsequence, if necessary,

we can assume that {w,} converges on L (R?) to wy. Then

/ widr = lim w2dz
Br(0) "= JBr(0)
= lim Up (T 4 yp )?da

= lim un(2)%dz > 4.
noe Br(yn)

Therefore, wy is a nontrivial solution for (1.1)). Thus, if © = 0 we prove that there
is a critical point for I, that is nontrivial. O

4. POSITIVITY OF SOLUTIONS

In this section, we prove that the solution in Theorem is positive. Initially,
we prove a version of a logarithmic lemma. The logarithmic lemma was presented
by Di Castro, Kuusi and Palatucci. [5, lemma 1.3]). In the Logarithmic lemma,
the authors give an estimate for weak solutions of the equation

(—A,)°u=0 inQ
u=g inR"\Q
in By (z9) C Bz () C £, for zp € Qand u > 0 in Bg(o). Following the ideas from

Di Castro, Kuusi and Palatucci, we will show a similar estimate for a supersolution
of the problem

(—AY’u+a(z)u=0 inR"
(See Lemma bellow). Supersolutions are defined as follows
/ / (u(x) — u(y))(v(x) — U(:U)) dx dy +/ CL(SL’)U(.Z‘)U(SL‘)d.’L' >0,

|z —y|rt2e

for all v € H*(R™) with v > 0 almost everywhere. Also, in this situation, we need
not to assume that u > 0 in some subset of R™. With this estimate, we conclude
that the supersolution satisfies u > 0 almost everywhere in R? or v = 0 almost
everywhere in R3.

Lemma 4.1. Suppose that a : R™ — R is a nonnegative function and uw € H*(R™).

If
/ / (u(@) ~ @)@ —vW) 4 40 +/ a(x)u(z)v(z)dz > 0.

|z —y|"t2e

for all v € H*(R™) with v > 0 almost everywhere, then uw > 0 almost everywhere.
In other words, if (—A)*u+ a(x)u > 0 then u > 0 almost everywhere.
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Proof. Define v =u" = max{O7 —u}. By hypothesis

)(U_(x)—u_(y)) - ale (V- (2)de >
[ [ el dedy+ [ a(o)ue)u (@)do > 0
However:

o if u(z) > 0 and u(y) > 0 then (u(z) —u(y))(u™ (z) —u (y)) = 0;
if u(x) < 0 and u(y) < 0 then (u(x) —u(y))(u™ (x) —u (y)) = —(u(x) —
u(y))? < 0;

o if u(z) > 0 and u(y) < 0 then (u(z) — u(y))(u (x) —u (y)) = (u(z) —
u(y))uly) < 0;

o if u(xz) < 0 and u(y) > 0 then (u(z) — u(y)) (v (z) —u (y)) = (u(x) —
u(y))(—u(r)) <0

o if u(x) < 0, then a(z)u(z)u=(z) = —a(x)u?(z) < 0, and a(z)u(r)u™ ()

= 0 in the case u(z) > 0.
We conclude that each one of the integrals above is equal to zero. Therefore

(u(z) — uly))(u”(z) — u(y))

|z —y|nt2s -

Also u~ is constant in H*(R™), that is, u~ = 0. O

Lemma 4.2. Suppose that € € (0,1] and a,b € R™". Then
1+e€
€

laf? < [B* + 2¢[b* + |a — b

Proof. Note taht
lal* < ([b] + la = b])* = [b* +2[blla — b] +[a — b|?
By the Cauchy inequality with e,

— b la — b
blla — b < €|b]? L <e€b]? + ———
blla —b] < efpf? + 1 < o2+ 1
Replacing in the inequality above,
— b|? 1
lal® < |b]* + 2¢[b* + g + Ja —b* = [b]? + 2¢[b]* + %m — b2

Lemma 4.3. With the same assumptions as in Lemma and a € L (R3), we
have that for all r,d > 0 and z¢ € R",

d+u 1
lo )’ dz dy < Crn=2s +/ a(x)dzx, 4.1
fo S Ve (T e et < p,, (e D

where B, = B,(xg) and C = C(n,s) > 0 is a constant.

Proof. Consider ¢ € C’(‘)’O(B%), 0<¢p<1 ¢=1in B, and K > 0 such that
|Délloo < Kr~t. The function

¢2
T uvd
is in H*(R™) and n > (see [6 Lemma 5.3]). By hypothesis,
Rr JR» |z—y\" * n
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/32 /32 x_y|n(+x2)q—77(y)) d dy
o /B M= vy
oS N 23:13@1—”@”
Z¥ &T/? N hyijil_”@”cwdy

+ /Rn a(x)u(z)n(x)de.

We will prove some statements about the five integrals above.

Claim 1. There are constants Cy, C3 > 0, such that, they depend only on n and

s and
(n(z) —n(y))
dr d
Lézﬂﬁ u—yw”* Y

< —02/3 /B 10 d+uE$ )‘ = 1|n+28 min{p(y)?, ¢(x)?} dx dy

lo(z) — ¢(y)|?
+Cs / / dx dy,
Bar. J Ba.. |9’j — y|nr2s

where min{a, b} = a if a < b and min{a,b} = b if a > b, for all a,b € R.
Fix z,y € By, and suppose that u(x) > u(y). Define

_ qulx) —uly)
- u(x) +d

where § € (0,1) is chosen small enough such that ¢ € (0,1). Taking a = ¢(z) and
b= ¢(y) in the Lemma[1.2] we obtain

)2 2 u(z) — u(y) 2 (51 u(z) +d ) — 2
B < o) +28 ot PI6) + (67 s 4 Dl6) — oly)
Then
(u(z) — u(y)) (@) — n(y))
o — e
¢*(x) ¢*(y) 1

:(u(x)_“(y))(u( )+d_ uly) +d’ Jz — y[nt2s
(M>F+2W&gﬁfw<w (67 s 1 1) g () — o(y) 2

< (u(z) —u(y))

(z)+d
) ) 1
() +d) o=y
NS %) u(z) — u@
= (u(z) @”mw+d[*'5 o
o u(x)+d |p(z) — d(y)|*?  u(z)+d 1
O T TV e d
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—uy) U(l’)+d)
u(x) +d u(y) +d

S RO L) N S Y

ule) +d o~y
(u(z) — u(y)) 2
ﬁ)@(ﬁﬂ) = o)l m

(1 425D =) ),

)
[o(y)?
u(e) +dfe g

) 1
+20 Y p(x) — ¢(y)|2|x_yw~

We rewrite the first part of the sum appearing on the right side of the above
inequality as

[p(y)[? 1 u(z) —u(y) u(z)+d
—u(y)) (1+25 - T )

u(z) +d |z —y|nt2s u(z) +d u(y
~u(r) —u(y))? 1 u(z) +d ~u(w) + u(z) +d
- () o ey ey e ¥ ST+ e -
_ul@) — u(y) N )5
= (W)Q‘?( )? |z — y|nt2s [1 _ ugﬁj + 25}

Define the function ¢ : (0,1) — R defined by

1—¢t!
1—t

g(t) =

satisfies g(t) < fig if t € (0,1] and g(t) < —1 for all t € (0,1). We have two

cases. If 40 < 1+ ;en, we conclude that
(o)
(A s s s
< (U | - i(éyijj + 23
[
bt

In the last inequality, we used
(u(x) — )W) +d) _ |

(u(z) + d)? -
Choosing 6 = 1/16 we have
u(z)+d
(U(x) - u(y))2¢( L W o
u(e) +d PR e ST e

u(x)+d
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1u(z) —u(y) 9 1
< _Z
=75 uwrd Y e
1 w(x)+d2,, 1
<= S
< -5l ) oW
Above, we used that (log(t))? <t —1 for all t > 2, and that “E;;ig > 2. But, if
Zgz;ij > 1/2, then using g(t) < —1 and 6 = 1/16,
u(z)+d
— 2 1 1-—
(u( )f( ) oy |x_ |n+25{ Eyiig +26
u(x)+d
u(z) —uy)\? 1
< |\ —F—F — 142/
< (Caorsd ) W 2
7 ru(z) — uly) 1
< (2 P\ - -
- 8( u(z) +d ) o(v)* |z — y|nt2s
7 u(z) +d .72 5 1
<N .
- 32 { Og(u(y) + d)} o) |x — y|nt2s

Here, we used

u(y) +d ( ) d u(z) +d

This is a consequence of the inequality log(1 + ¢) < ¢ for all ¢ > 0, and
_u(@) —uly) _ u(z) —uly)  ule)+ u(z) — u(y)

u(y) +d u(@)+d  uly)+ w(@)+d

Therefore,

|6(y)I> 1 u(e) —uy)  u(x)+d
(u(z) = U(y))u(x) +d |z — y|nt2s (1 +20 u(x)+d  uly)+ d)

1 u(r) +d 12 1
< g [lsGgra)] 0 g

We have proved that: if u(z) > u(y), then

(u(z) = uy))(n(z) = n(y))
|JI _ y|n+2s

1 uw(z)+d

2 9 1 2 1
< 5[y ) o g + 30— s

Integrating on Bs, the above inequality, we obtain

fo ><:z<f;1 ) 4
By J Ba
_ / / u(@) = ) @) = 0w) o
Ba, J{zju(z)>u(y)} |SC —_ y|n+2s
(u(x) — u(y))(n(=) = n(y))
! /Bzr /{x;u(x)<u(y)} |x — y|nt2s dx dy

1 w(x)+da2,, 1
<_= lo - dxd
-8 /BQT /{m;uw»u(y)} { g(U(y) + d)} #) @ —yprtas
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! / / u(y) +d , 1
8 log( H(z)———— dady
8 B, J{z;u(z)<u(y)} (l‘) + d)] ( ) |x — y‘n+23
1
" 32/ / ¢ yP e, da dy.
By J Bay | |

Using that |log(z)| = |log(1)] for all z # 0, we obtain

[1°g(W)] - [mg(W)f

11

1 u(z) +d 2 . 1
-2 /B ) /{ o [og(A ) {60 (0%} o d
1 u(z)+d.q2 . 9 9 1
-3 /B ) /{ o 1og<—u<y)+ D] min o). 60 e
1
2 27d d
/B% /BQT ) @ — y[rizs Y

= uz) +d3? 2 oy 1
- /B /B sG] min (0P 0 — e o dy

1
+32/ / d(x) — p(y)|? ———— dz dy,
5 Bz,-| (z) — ¢(y)] o= e

Thus, we have proved claim 1.

dx dy

w

+

Claim 2. There exist C3 > 0, depending only on s and n, such that

/ / ul)ote) = nty) dedy < Car™™2s
"By, J B, \x — gy|nt2s s .
Indeed,

[, [ O ),

¢* () ?*(y)

/HBQT /n —uly (U($)+diu(y)z—/i-d)|x_y|n+2s dz dy

oo ke ¢<x)'2usc<)x_f £y e

= /" Ba, /n |n+2s dz dy
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In the above equality, we used that u(y) > 0. Therefore

u(@) — u(y)

<1.
u(z)+d —

A simple calculation shows that

n—2s
/n B /n |l. - |’I’L+28 dm dy S C3T
2r

and C3 depends only on n and s. Therefore we obtain Claim 2.

Claim 3.
/ a(@)u(e)n(x)dz < /B ) alz)dx

. Tndeed,
/ ol [ otz )(i) do
- /B ¢2>(+) u) +d "
:/Bh +d¢2(x)dx

IA

[,

We used that supp(n) C Ba,, that ¢(z) € (0,1) and that U&F)ﬂd <1.
Claims 1,2 and 3 1mply

/B% /B D] min{o ) 60 dady

2
< Cs / / (z) = +2)| dx dy + Cr™=2¢ —|—/ a(z)dz.
By /By, T —y|M 2 Ban

for constants C5, Cg. The constants Cs, Cg depend only on n and s. Since ¢ = 1

in B,
d+u(x),|? 1
1 dxd
/ / Og(d+uy) o=y Y

2
< Cr/ / (z) = +2)| dx dy + Cer™ 2 —|—/ a(z)dz
Bar. J Ba,, — y|nt2s Ba,

Finally, we show that

|¢(z) — d(y)I? 2
/; /; |x — y|n+2s dx dy < C7rn s
27 27

By assumption,
[6(x) = o) - / Cr—yl?
dedy < Kr dx dy
/BQT /BQT |z — y|”+25 By J Bay |7 — y|”+2S

2
= dx d
/B‘Zr /B‘Zr |£E _ |n+2 5— 1 Y

72
< Kr~2

= W|Bzr| 077'
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where C7 depends only on n and s. Replacing the above estimate in (4.2), we
obtain the Lemma 3] O

Following the same ideas as in [4, Theorem A.1], we prove the theorem stated
at the beginning of the section.

Theorem 4.4. Suppose that u € H*(R™) and a > 0 with a € L{,_(R™). We assume

that
/ / |x _ )ﬁ:(i) o)) g, dy +/ a(x)u(z)v(z)dr > 0,

for all v € H*(R™) with v > 0 almost everywhere. Then u > 0 almost everywhere
in R™ or u =0 almost everywhere in R™.

Proof. By Lemma [£.1] u > 0. Suppose that zop € R™ and r > 0. Define
Z :={x € By(x0);u(z) =0}
If |Z] > 0, then we define Fj : B,.(z9) — R as

Fi(a) = log(1 + 420
for all § > 0. We have Fs(y) =0 for all y € Z. Therefore, if x € B,(x¢) and y € Z,
|[Fs(x) — Fs(y)I?

2 _ n+2s
|F5(l‘)| - |£L’7y|n+25 | y|

Integrating with respect to y € Z we obtain
2iEs = [ RO, gy < g [ B =TI,
7z |z—y|rtes = ;e -y

Now, integrating with respect to x € B,. we obtain

1 F, F, 2
/ |Fs(2)[2da < —-2r n+25/ —' (@) njgs” dy da
B, (x0) |Z| (o) |z — y|

F — F,
n+25/ / | 6 nigg” dydx
|Z| (z0) J B, (z0) |ff— Y|

— 72,,,71%»25/ / 10 5+U( ) 1
|Z] By (z0) J By.(20) 5+U( )

1
< 2 n+2s n—2s /
< 7|Z| T (CT + ; a(m)dm)

2r

—207%" + —2r"+23/ a(x)dx := L.
|Z| 7 5, @

The number L does not depend on §. In summary, we have proved that

2
/ ’log(l—i—@)‘ de < C
B, (z0) J

for some constant C' > 0 which does not depend on 4. If u(x) # 0 then Fs(x) — oo
when § — 0. By Fatou’s lemma, if |B,. N Z¢| > 0,

+oo < hmlnf/ |F5(x)]? < C.
B,NZ°

6—0
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Therefore |Z| = |B,| and u = 0 almost everywhere in B, (zg). Now, we define
A={B,(z);r >0,z € R",u>0in B.(x)},
B ={B,(x);r >0,z € R", u=01in B.(x)},
S =UyeaV, W =UypegV.

Note that S and W are open sets. Consider x € R™ and r > 0. We have two
possibilities, either « # 0 in B,.(z) or «w = 0 in B,(z). If u # 0 in B, then u > 0 in
B,. In this case, € S. If u =0 in B,.(z), then x € W. Consequently

=SUW.
By connectedness, we should have S = # or W = (). If R® = S then u > 0 almost
everywhere in R™. If R™ = W then v = 0 almost everywhere in R". (]

Corollary 4.5. The solution u found in Theorem is positive almost everywhere
in R3.

Proaf For some v € H?® (R3) with v > 0 almost everywhere, we have

y)(v(z) = v(y))
/RS /RS |a: [ dx dy + /]RS V(z)uvdx + . Pyuv dz

_/RS (v dz > 0.

If we define a(z) = 2(V () + ¢y (x)), we have that a € L] _(R?), because L% (R?) C

¢
Ll (R3) and V is continuous. By (Al) and Lemma- we have a(z) > 0 in R3.

Therefore
y))(v(z) —v(y))
/Rs /Rs |x — y[3+2s dz dy +/ a(x)uvdz > 0.

for all v € H*(R?) with v > 0. But u # 0. Then, Theorem [4.4] implies that u > 0
almost everywhere in R3. O

Remark 4.6. Define ' = {u € HS( 3\ {0}; I'(w)u = 0}, where

(u(z) —u(y)* 1/ 2
dxd |4 d u
/]R@ /]RB |.’1?— |3+25 Tay + 2 Jgrs ( ) I+4 ¢ u’

- /}R:3 F(u)dx.

If f satisfies (A3)—(A7), then

foo = J2 1)
coincides with the mountain pass level associated with I.
Theorem 4.7. If (A1)-(A7) are satisfied, then (1.1) has a ground state solution.
Proof. Deﬁning the Euler—Lagrange functional I : H*(R3) — R by

(u(z) —u(y))® 1/ 2
/R/R |x_ |3+2 dedy+3 | Vi d:z:+4 duu’d

- /R3 F(u)dz,

and following with the ideas in Theorem [3.I] we prove that there is a nonzero
solution u to the system (1.1). Also, we prove that there is a Cerami’s sequence
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{w,} in the mountain pass level associated with I converging to u. By Remark
and Fatou’s lemma

4c = liminf (41 (wy,) — I'(wp)wy,)

n—oo

= lim inf(||w,||? Jr/ H(wy,)dz)
n— o0 R3

> liminf l|lwn||? + liminf/ H(wy)dx
R3

> Jull? + / H(u

= 41 (u) u)u
=41 (u).
where H(u) = uf(u) — 4F(u). By definition v € . Then I(u) < inf,en [(u). By
Remark [A.6]
I(u) = ulélﬁ[](u)

5. ASYMPTOTICALLY PERIODIC POTENTIAL

In this section, we study problem (1.1)), when V satisfies the Assumption (A1)
and

(A8) There is a function V), satisfying (V1) such that

Jim V(@) = V()| =0

(A9) V(z) < V,(x) and there is a open set Q@ C R? with || > 0 and V(z) < V,(z)
in Q.
Here V), is a periodic continuous potential. This case follows the ideas already

studied in Schrédinger-Poisson system with asymptotically periodic potential in
[2]. We are writing this case to make a complete work for the reader.

Theorem 5.1. Suppose that (Al), (A3)-(A9) are satisfied. Then (1.1) has a

ground state solution.

Proof. In H*(R?) we define the norm

ol = (5 [, [ St dray+ [ i)

Consider the functional

1 1
I(u) = §||u||12, + 1 /]Rs pyutde — /]RS F(u)dx.

We claim that there is w, € H*(R?) such that I} (w,) = 0 and I,(w,) = ¢p, where
¢p is the mountain pass level associated with I,. We consider another norm in

H*(R3):
(u(x) —u(y))® / 2, \ /2
dod V(2)u3d .
Il = /]Rs/Rs II— I3+25 T s () x)

1/2
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Then, we define

1 1
1) = gl + 5 [ dwido— [ Pl

The functional I has a mountain pass geometry. If ¢ is the mountain pass level
associated with I then ¢ < ¢,. Indeed, there is a ¢, such that ¢,w, € N (see remark
4.6)) and it is the unique with this property. Then

c < I(t*wp)
< L,(t"wp)

< L(t
< max Iy (twp)

=I(wp) = ¢

Consider {u, }nen @ Cerami’s sequence at the mountain pass level ¢ associated with
I. Similarly to the periodic case, we prove that the sequence {u,} is bounded and
therefore, converges weakly to u € H*(R3). Additionally I’(u) = 0. Now we prove
that w # 0. Suppose that v = 0. Regarding the sequence {u,}, the following
equalities are true

(1) Tt oo V() = V(@) [u2dz = 0

(2) limp o0 [[unll = [lunlp| = 0.

(3) limp—oo [Lp(un) — I(un)| =0

(4) limy, o0 [ (un )ty — I’ (Un )upn| =0
We will prove (1). The limits (2), (3) and (4) are immediate consequences of (1).
Consider € > 0 and A > 0 such that |lu,|3 < A for all n € N. By (A8), there is
R > 0 such that, for all |x| > R we have

V@) - V@l < 57

But {u, } converges weakly to u = 0. Then u,, — 0 in L?(Br(0)). This convergence
implies that there is ng € N such that

[ @ -l < 3
Br(0) 2
for all n > ng. Then, if n > ng

V() = Vy () updo
R3

— / IV (2) - V() ju2dz + / IV (2) - V() [u2de
Br(0) (Br(0))c

< - + £ = €
2 2 7

Consider s, > 0 such that s,u, € N, for every n € N. Where N, = {u €
H*(R?*) \ {0}; I, (u)u = 0}. We claim that limsup,, . s, < 1. Otherwise, there
is 6 > 0 such that, passing to a subsequence if necessary, we can assume that
sp > 146 for all n. € N. By (4) we have I,(u,)u, — 0; that is,

Huan,-&-/ qﬁunuidx:/ f(up)updx + 0,(1)
R3 R3
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From spuy, € N, we have I (s,u,)u, = 0. Equivalently

sn||un|\l2)+sf’l/ d)unuidx:/ f(spup)updx
R3 R3
Therefore,

f(snun) f(un) 1 2
L Gy~ fgpleaete = (g = Dl r o) <o) 5)

If {un }nen converges to 0 in LI(R3) for all ¢ € (2,2%), then by Lemma

lll? < flunl? + / b u2dz = / £ttt + ' 11t
R3 R3

consequently {u,} would have limit 0 in H*(R?) and this would contradict the fact
that ¢ > 0. Therefore, there is a sequence {y,} C Z™, R > 0 and > 0 such that

/ uida: >06>0
BRr(Yn)

Taking v, (z) := up(z+yn) we have ||v,|| = ||un|| and therefore we can assume that
{vn }nen converges weakly to some v € H*(R?). Note that

/ v3dx > 6>0.
Br(0)

The inequality (5.1), Remark and Fatou’s lemma imply that

H(L+0)0)  f()
o< [ s ams ~ Gple

< liminf/
n—oo Jps3 L

— liminf/ [£(5ntn) — f(Un)}u‘ldx
R3 n

n—oo

<liminfo,(1) = 0.

n—oo
The above inequality is a contradiction. Therefore limsup,,_,., sn < 1. Now, we
will prove that for n large enough, s, > 1. Suppose that the statement is false.
In this case, passing to a subsequence if necessary, we can assume that s, < 1 for
all n € N. Note that by (f5), the function H(u) := uf(u) — 4F(u) is increasing in
|u| # 0. Then

de, =4 in]\f] Ip(u)
ueNp
< AI,(snun)

=4I, (spun) — I (Sntin)(Sntin)

= 57 [lunll} +/ F(sntn)(sptin) — 4F (8puy)da
RS
< lually+ [, Fun) ) = 4 ()

< Al(up) — I'(up)un + /11&3 |V (2) — Vy(2)|u2 d.
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This implies 4c, < 4c. But, this last inequality is false, because we have proved
that ¢ < c¢,. Therefore, we have that s, > 1 for n large enough. Then we have
proved that

1 <liminfs, <limsups, <1.

and therefore
lim s, =1. (5.2)

n—oo
The Fundamental Theorem of Calculus implies

/ F(spup)dx — F(up)dx = / [ f(Tun)undm} dr. (5.3)
R? R3 1 R3
Also, by (A5) we obtain C' > 0 such that

F(run)undz < C(snllun )| + sh~ 4 |unP). (5.4)
R3

for all 7 € (1,s,). We have that the sequence {u,} is bounded. Then, by (5.2),
(53) and (5.4),

F(spup)dx — / F(up)dz = o0,(1).

RS R3

Then

Ip(snun) — Ip(un)

2 1 4 1
= Mﬂunﬂz + M/ G, uZdx 7/ F(snun)der/ F(up)dx
2 4 R3 ' R3 R3

= 0, (1)

because {uy,} is bounded and [s ¢u, uZdz = ||¢u, H%{t(RS) < C|lun||*. By (3),

cp < Ip(snun) = Ip(un) + on(1) = I(uy) + 0, (1)

In the limit as n — oo we obtain ¢, < ¢ But, this last inequality is false, because
we have proved that ¢ < ¢,. This contradiction was generated because we assumed
that v = 0. It follows that u is nontrivial. In Particular,

I(u) > ulgjfvl(u)

As in the periodic case
I(u) < c= inf I(u).
ueN

Therefore u is a ground state solution for system ([1.1)). [
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