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SIGN-CHANGING SOLUTIONS FOR ASYMPTOTICALLY
LINEAR SCHRÖDINGER EQUATION IN BOUNDED DOMAINS

SITONG CHEN, YINBIN LI, XIANHUA TANG

Abstract. In this article we study the Schrödinger equation

−∆u = f(x, u), x ∈ Ω, u ∈ H1
0 (Ω),

where Ω is a bounded domain in RN and f(x, u) is asymptotically linear at

infinity with respect to u. Inspired by the works of Salvatore [14] on sign-
changing solutions, in which f(x, u) is asymptotically linear at zero with re-

spect to u, we prove, via the constraint variational method and the quantitative

deformation lemma, that the equation possesses one sign-changing solution
with exactly two nodal domains.

1. Introduction and statement of main results

In this article, we consider the Schrödinger equation

−∆u = f(x, u), x ∈ Ω,

u ∈ H1
0 (Ω),

(1.1)

where Ω is a bounded domain in RN and f : Ω× R → R is continuous. The main
aim of this paper is to find sign-changing solutions of (1.1) when f is asymptotically
linear. Precisely, we assume that f satisfies the following assumptions:

(A1) f ∈ C(Ω × R), F (x, t) :=
∫ t

0
f(x, s)ds ≥ 0 and f(x, t) = o(|t|) as |t| → 0,

uniformly in x ∈ Ω;
(A2) f(x, t) = V∞(x)t+ f1(x, t), V∞ ∈ C(Ω), and f1(x, t) = o(|t|) as |t| → +∞,

uniformly in x ∈ Ω;
(A3) t 7→ f(x, t)/|t| is strictly increasing on (−∞, 0) ∪ (0,∞) for every x ∈ Ω;
(A4) F̃ (x, t) := 1

2f(x, t)t− F (x, t)→ +∞ as t→ +∞ uniformly in x ∈ Ω.
The nonlinear Schrödinger equation is of interest in many branches of physics.

As we know, the solutions of problems like (1.1) are related to the existence of
standing wave solutions for nonlinear Schrödinger equation like

i~
∂Ψ
∂t

= −~24Ψ + V (x)Ψ− f(x,Ψ) for all x ∈ Ω, (1.2)

where Ω is a domain in RN , ~ > 0 and Ψ is the amplitude of the wave. Equation
(1.2) is one of the main objects of quantum physics, for it appears in problems
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involving nonlinear optics, plasma physics and condensed matter physics, see An-
derson and Bonnedal [1], Chen [6], Chiao et al [8], Gatz and Herrmann [9], Karlsson
[10], Sodha et al [17], Stuart [19] and the references therein.

In recent years, problems like (1.1) have been widely studied under variant as-
sumptions on f , and the existence of positive solutions, ground state solutions,
multiple solutions and semiclassical states were obtained in many papers, see for
example [3, 7, 12, 13, 20, 21, 22, 25, 26] and the references therein. When f is
superlinear at infinity in u, the existence of sign-changing solutions of (1.1) was
established by Bartsch, Liu and Weth in [2]. For more discussions on the existence
of sign-changing solutions of (1.1), in this case, we refer the readers to [4, 5, 11, 27]
and the references therein. When f is asymptotically linear at zero in u, that is, f
satisfies the condition:

µ1 < lim inf
t→0

f(x, t)
t
≤ lim sup

t→0

f(x, t)
t

< µk uniformly for x ∈ Ω, (1.3)

where {µj} is the sequence of eigenvalues of the Schrödinger operator−∆+V (x) and
V is a linear potential, Salvatore [14] proved the existence of sign-changing solutions.
Note that conditions (A1) and (1.3) are quite different and were considered in
different situations. To the best of our knowledge, there are no works concerning
the least energy sign-changing solutions for Problem (1.1) with asymptotically linear
case at infinity, and it is an interesting problem.

Let H1(Ω) be the usual Sobolev space with the standard scalar product and
norm

(u, v) =
∫

Ω

(∇u∇v + uv)dx, ‖u‖2 =
∫

Ω

(
|∇u|2 + u2

)
dx.

Define the energy functional Φ : H1
0 (Ω)→ R by

Φ(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx. (1.4)

Conditions (A1) and (A2) imply that Φ is a well-defined of class C1 functional, and
that

〈Φ′(u), ϕ〉 =
∫

Ω

∇u∇ϕdx−
∫

Ω

f(x, u)ϕdx, ∀u, ϕ ∈ H1
0 (Ω). (1.5)

Clearly, critical points of Φ are the weak solutions of (1.1). Furthermore, if
u ∈ H1

0 (Ω) is a solution of (1.1) and u± 6= 0, then u is a sign-changing solution of
(1.1), where

u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0}.
Using (1.4) and (1.5), it is obvious that

Φ(u) = Φ(u+) + Φ(u−),

〈Φ′(u), u+〉 = 〈Φ′(u+), u+〉, 〈Φ′(u), u−〉 = 〈Φ′(u−), u−〉 .

To obtain a sign-changing solution of (1.1), we first seek a minimizer of the energy
functional Φ under the constraint

M = {u ∈ H1
0 (Ω) : u± 6= 0, 〈Φ′(u), u+〉 = 〈Φ′(u), u−〉 = 0},

then show that the minimizer is a sign-changing solution of (1.1).
To state our results, we make the following assumption:
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(A5) infx∈Ω V∞(x) > µ := infu∈Π max{‖∇u+‖22, ‖∇u−‖22}, where

Π := {u ∈ H1
0 (Ω) : u± 6= 0,

∫
Ω

|u±|2dx = 1}.

Let λ1 be the first eigenvalue of −∆, then for any u ∈ H1
0 (Ω) and u 6= 0,

λ1 ≤
‖∇u‖22
‖u‖22

=
‖∇u+‖22 + ‖∇u−‖22
‖u+‖22 + ‖u−‖22

≤ 2
‖u+‖22 + ‖u−‖22

max{‖∇u+‖22, ‖∇u−‖22}.

By the definition of µ and (A5), one has λ1 ≤ µ < +∞.

Remark 1.1. Using (A1) and (A2), it is obvious that for any ε > 0, there exists
Cε > 0 such that

|f(x, t)| ≤ ε|t|+ Cε|t|p−1 and |F (x, t)| ≤ ε|t|2 + Cε|t|p (1.6)

for all (x, t) ∈ Ω×R, where 2 < p < 2∗ = 2N
N−2 . Furthermore, (A1) and (A3) imply

1
2
f(x, t)t > F (x, t) > 0, ∀t 6= 0, x ∈ Ω. (1.7)

It follows from (A1)–(A3) and (A5) that

f1(x, t)
|t|

→ −V∞(x) < 0 as |t| → 0,

t 7→ f1(x, t)
|t|

is negative, strictly increasing on (−∞, 0) ∪ (0,∞),

which, together with f1(x, t) = o(|t|) as |t| → ∞ uniform in x, yields

tf1(x, t) < 0, ∀t 6= 0. (1.8)

Theorem 1.2. Assume (A1)–(A5) are satisfied. Then (1.1) has a sign-changing
solution u ∈ M such that Φ(u) = infMΦ > 0, which has precisely two nodal
domains.

Now, we give an example to illustrate the feasibility of assumptions (A1)–(A5).
Let

F (x, t) =
V∞(x)

2
t2
(
1− 1

1 + |t|α
)
,∀ x ∈ Ω, t ∈ R,

where α ∈ (0, 2), V∞ ∈ C(Ω), infΩ V∞ > µ. By elementary computations, it is easy
to check that f satisfies (A1)–(A5).

The main tools this article are the minimization argument and the quantitative
deformation lemma. We must point out that the difficulty in proving Theorem 1.2
is to show that M 6= ∅ and the minimizer is a critical point of Φ.

This article organized as follows. In Section 2, we prove several preliminary
lemmas. The proof of Theorem 1.2 will be given in the last section.
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2. Preliminaries

In this section, we prove that the minimizer of the energy functional Φ under
the constraint M is a critical point. To this end, we show M 6= ∅ with the aid of
an important behavior of strictly increasing functions.

Lemma 2.1 ([20, Lemma 2.3]). Suppose that h(x, t) is strictly increasing in t ∈ R
and h(x, 0) = 0 for any x ∈ RN . Then

1− θ2

2
h(x, τ)τ |τ | >

∫ τ

θτ

h(x, s)|s|ds, ∀θ ∈ [0, 1) ∪ (1,∞), τ ∈ R\{0}.

Lemma 2.2. Suppose that (A1)–(A3) are satisfied. Then for any u = u+ + u− ∈
H1

0 (Ω) with u± 6= 0, s, t ≥ 0 and (s− 1)2 + (t− 1)2 6= 0,

Φ(u) > Φ(su+ + tu−) +
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉. (2.1)

Proof. For any x ∈ Ω, from (A3) and Lemma 2.1 it follows that

1− θ2

2
f(x, τ)τ >

∫ τ

θτ

f(x, ξ)dξ, ∀θ ∈ [0, 1) ∪ (1,∞), τ ∈ R\{0}. (2.2)

By (1.4), (1.5) and (2.2), for any u = u+ + u− ∈ H1
0 (Ω) with u± 6= 0, s, t ≥ 0 and

(s− 1)2 + (t− 1)2 6= 0, we have

Φ(u)− Φ(su+ + tu−)

=
1
2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx+
∫

Ω

F (x, su+ + tu−)dx− 1
2

∫
Ω

|∇(su+ + tu−)|2dx

=
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉+

∫
Ω

[1− t2

2
f(x, u−)u−

−
∫ u−

tu−
f(x, ξ)dξ

]
dx+

∫
Ω

[1− s2

2
f(x, u+)u+ −

∫ u+

su+
f(x, ξ)dξ

]
dx

>
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉.

This shows that (2.1) holds. �

From Lemma 2.2, we have the following two corollaries.

Corollary 2.3. Suppose that (A1)–(A3) are satisfied. Then for any u = u+ +u− ∈
M,

Φ(u) ≥ Φ(su+ + tu−), ∀s, t ≥ 0.

Corollary 2.4. Suppose that (A1)–(A3) are satisfied. Then for any u = u+ +u− ∈
M,

Φ(u+ + u−) = max
s,t≥0

Φ(su+ + tu−).

Define the set

E0 =
{
u ∈ H1

0 (Ω) : ‖∇u±‖22 −
∫

Ω

V∞(x)|u±|2dx < 0
}
. (2.3)

Lemma 2.5. Suppose that (A1)–(A3), (A5) are satisfied. Then E0 6= ∅ and M⊂
E0.
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Proof. In view of (A5), the definition of µ implies that there exists v ∈ Π such that

max{‖∇v+‖22, ‖∇v−‖22} ≤ µ+
infΩ V∞ − µ

2
=

infΩ V∞ + µ

2
.

It follows that

‖∇v±‖22 −
∫

Ω

V∞(x)|v±|2dx ≤ max{‖∇v+‖22, ‖∇v−‖22} − inf
Ω
V∞

≤ µ− infΩ V∞
2

< 0.

Hence, we have v ∈ E0. This shows that E0 6= ∅ because of (A5). Moreover, by
(1.5) and (1.8), we can easily derive that for any u ∈M,

‖∇u±‖22 −
∫

Ω

V∞(x)|u±|2dx =
∫

Ω

f1(x, u±)u±dx < 0.

This shows that M⊂ E0. �

Lemma 2.6. Suppose that (A1)–(A3), (A5) are satisfied. If u ∈ E0, then there
exists a unique pair (su, tu) of positive numbers such that suu+ + tuu

− ∈M.

Proof. Let

g1(s) = s2

∫
Ω

|∇u+|2dx−
∫

Ω

f(x, su+)su+dx, (2.4)

g2(t) = t2
∫

Ω

|∇u−|2dx−
∫

Ω

f(x, tu−)tu−dx. (2.5)

Clearly, g1(0) = g2(0) = 0. Using (A1), (A2), (1.6) and (2.3), we conclude that
g1(s) > 0 for s > 0 small, and

g1(s) = s2

∫
Ω

|∇u+|2dx−
∫

Ω

f(x, su+)su+dx

= s2

∫
Ω

[|∇u+|2 − V∞(x)|u+|2]dx−
∫

Ω

f1(x, su+)
su+

(su+)2dx < 0

for s large. From the continuity of g1(·), there is a su > 0 such that g1(su) = 0.
Using (A3), it is easy to verify that su is unique. Then it follows from (1.5) and (2.4)
that 〈Φ′(suu+), u+〉 = 0. Similarly, there is a unique tu > 0 such that g2(tu) = 0,
and so 〈Φ′(tuu−), u−〉 = 0. �

Lemma 2.7. Suppose that (A1)–(A3), (A5) satisfied. Then

inf
u∈M

Φ(u) = m = inf
u∈E0

max
s,t≥0

Φ(su+ + tu−).

Combining Corollary 2.4, Lemmas 2.5 and 2.6, we obtain the proof of the above
lemma.

Lemma 2.8. Suppose that (A1)–(A5) are satisfied. Then m > 0 is achieved.

Proof. Let {un} ⊂ M be such that Φ(un) → m. Next, we prove that {un} is
bounded in H1

0 (Ω). Arguing by contradiction, suppose that ‖un‖ → ∞. Let
vn = un/‖un‖, then ‖vn‖ = 1. By Sobolev imbedding theorem, passing to a
subsequence, we may assume that there exists v ∈ H1

0 (Ω) such that vn ⇀ v weakly
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in H1
0 (Ω), vn → v strongly in Ls(Ω), 2 ≤ s < 2∗. If v = 0, then vn → 0 in Ls(Ω),

2 ≤ s < 2∗. Fix R > [2(1 +m)]1/2, by (1.6), one has

lim sup
n→∞

∫
Ω

F (x,Rvn)dx ≤ R2ε lim
n→∞

‖vn‖22 +RpCε lim
n→∞

‖vn‖pp = 0. (2.6)

Let tn = R/‖un‖. Then by (2.6) and Corollary 2.3, one has

m = Φ(un) + o(1) ≥ Φ(tnun) + o(1)

=
t2n
2
‖un‖2 −

∫
Ω

F (x, tnun)dx+ o(1)

=
R2

2
−
∫

Ω

F (x,Rvn)dx+ o(1)

=
R2

2
+ o(1) > m+ 1 + o(1),

which is a contradiction. Thus v 6= 0.
For x ∈ Ω0 := {y ∈ Ω : v(y) 6= 0}, we have limn→∞ |un(x)| = ∞. Thus, from

(1.4), (1.5), (A3), (A4) and Fatou’s lemma it follows that

m+ 1 ≥ lim
n→∞

[
Φ(un)− 1

2
〈Φ′(un), un〉

]
≥ lim inf

n→∞

∫
Ω0

F̃ (x, un)dx = +∞.

This contradiction shows that {‖un‖} is bounded. Hence, passing to a subsequence,
there exists ũ ∈ H1

0 (Ω) such that u±n ⇀ ũ± weakly in H1
0 (Ω), u±n → ũ± strongly in

Ls(Ω), 2 ≤ s < 2∗. Since un ∈ M, we have 〈Φ′(un), u±n 〉 = 0. In view of (1.6) and
Sobolev embedding theorem, there exists C1 > 0 such that

‖u±n ‖2 =
∫

Ω

f(x, u±n )u±n dx ≤ 1
2
‖u±n ‖2 + C1‖u±n ‖2‖u±n ‖p−2

p ,

which implies ∫
Ω

|u±n |pdx ≥ (
1

2C1
)

p
p−2 .

By the compactness of the embedding H1
0 (Ω) ↪→ Ls(Ω) for 2 ≤ s < 2∗, we obtain∫

Ω

|ũ±|pdx ≥ (
1

2C1
)

p
p−2 .

Thus, ũ± 6= 0. Moreover, (A1), (A2) and [24, A.2] imply

lim
n→∞

∫
Ω

f(x, u±n )u±n dx =
∫

Ω

f(x, ũ±)ũ±dx, (2.7)

lim
n→∞

∫
Ω

F (x, u±n )dx =
∫

Ω

F (x, ũ±)dx, (2.8)

lim
n→∞

∫
Ω

f1(x, u±n )u±n dx =
∫

Ω

f1(x, ũ±)ũ±dx. (2.9)

From (1.8), (2.9) and the weak semicontinuity of norm, we have

‖∇ũ±‖22 −
∫

Ω

V∞(x)|ũ±|2dx ≤ lim inf
n→∞

{
‖∇u±n ‖22 −

∫
Ω

V∞(x)|u±n |2dx
}

= lim inf
n→∞

∫
Ω

f1(x, u±n )u±n dx

=
∫

Ω

f1(x, ũ±)ũ±dx < 0,
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which shows that ũ ∈ E0. By Lemma 2.6, there exist s0 > 0 and t0 > 0 such
that s0ũ

+ + t0ũ
− ∈ M and Φ(s0ũ

+ + t0ũ
−) ≥ m. By (1.5), (2.7) and the weak

semicontinuity of norm, we have

〈Φ′(ũ), ũ±〉 = ‖ũ±‖2 −
∫

Ω

f(x, ũ±)ũ±dx

≤ lim inf
n→∞

{
‖u±n ‖2 −

∫
Ω

f(x, u±n )u±n dx
}

= 0.
(2.10)

From (1.4), (1.5), (2.1), (2.7), (2.10), Fatou’s Lemma and Lemma 2.7 it follows that

m = lim
n→∞

[
Φ(un)− 1

2
〈Φ′(un), un〉

]
= lim
n→∞

∫
Ω

[1
2
f(x, un)un − F (x, un)

]
dx

= lim
n→∞

∫
Ω

[1
2
f(x, ũ)ũ− F (x, ũ)

]
dx = Φ(ũ)− 1

2
〈Φ′(ũ), ũ〉

≥ Φ(s0ũ
+ + t0ũ

−) +
1− s2

0

2
〈Φ′(ũ), ũ+〉+

1− t20
2
〈Φ′(ũ), ũ−〉 − 1

2
〈Φ′(ũ), ũ〉

≥ m− s2
0

2
〈Φ′(ũ), ũ+〉 − t20

2
〈Φ′(ũ), ũ−〉.

This implies that ũ ∈M and Φ(ũ) = m. �

Lemma 2.9. Suppose that (A1)–(A5) are satisfied. If û ∈M and Φ(û) = m, then
û is a critical point of Φ.

Proof. Assume that û = û+ + û− ∈M, Φ(û) = m and Φ′(û) 6= 0. Then there exist
δ > 0 and λ > 0 such that

‖Φ′(u)‖ ≥ λ, for all ‖u− û‖ ≤ 3δ and u ∈ H1
0 (Ω).

Let D = (1/2, 3/2)× (1/2, 3/2). It follows from Lemma 2.2 that

χ := max
(s,t)∈∂D

Φ(sû+ + tû−) < m. (2.11)

For ε := min{(m−χ)/3, λδ/8}, S := B(û, δ), [24, Lemma 2.3] yields a deforma-
tion η ∈ C([0, 1]×H1

0 (Ω)) such that
(i) η(1, u) = u if Φ(u) < m− 2ε or Φ(u) > m+ 2ε;
(ii) η(1,Φm+ε ∩B(û, δ)) ⊂ Φm−ε;

(iii) Φ(η(1, u)) ≤ Φ(u) for all u ∈ H1
0 (Ω).

We claim that
max

(s,t)∈D
Φ(η(1, sû+ + tû−)) < m. (2.12)

Indeed, by Lemma 2.2 and (iii), we have

Φ(η(1, sû+ + tû−)) ≤ Φ(sû+ + tû−) < Φ(û) = m, (2.13)

for all s, t ≥ 0, |s− 1|2 + |t− 1|2 ≥ δ2/‖û‖2.
On the other hand, by Corollary 2.4, we have Φ(sû+ + tû−) ≤ Φ(û) = m for

s, t ≥ 0, then it follows from (ii) that

Φ(η(1, sû+ + tû−)) ≤ m− ε, ∀s, t ≥ 0, |s− 1|2 + |t− 1|2 < δ2/‖û‖2. (2.14)

Both (2.13) and (2.14) imply that (2.12) holds. Define h(s, t) = sû+ + tû−. We
now prove that η(1, h(D))∩M 6= ∅, contradicting to the definition of m. We adopt
the idea from [16]. Let β(s, t) := η(1, h(s, t)) and

Ψ0(s, t) :=
(
Φ′(h(s, t))û+,Φ′(h(s, t))û−

)
,
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Ψ1(s, t) :=
(1
s

Φ′(β(s, t))(β(s, t))+,
1
t
Φ′(β(s, t))(β(s, t))−

)
.

By Lemma 2.6 and degree theory, we can derive that deg(Ψ0, D, 0) = 1. From (2.11)
and (i) it follows that β = h on ∂D. Consequently, deg(Ψ1, D, 0) = deg(Ψ0, D, 0) =
1, and so, Ψ1(s0, t0) = 0 for some (s0, t0) ∈ D, that is η(1, h(s0, t0)) = β(s0, t0) ∈
M, which contradicts (2.12). From this, we conclude that û is a critical point of
Φ. �

3. Sign-changing solutions

Proof of Theorem 1.2. In view of Lemmas 2.8 and 2.9, there exists a u ∈ M such
that Φ(u) = m and Φ′(u) = 0. Now, we show that u has exactly two nodal domains.
Set u = u1 + u2 + u3 and 〈Φ′(u), ui〉 = 0 (i = 1, 2, 3), where

u1 ≥ 0, u2 ≤ 0, Ω1 ∩ Ω2 = ∅, u3|Ω1∪Ω2 = 0,

Ω1 := {x ∈ Ω : u1(x) > 0}, Ω2 := {x ∈ Ω : u2(x) < 0},
(3.1)

and Ω1, Ω2 are connected open subsets of Ω.
Let v = u1 + u2, then v+ = u1, v− = u2, v± 6= 0 and 〈Φ′(v), v±〉 = 0. By (1.4),

(1.5), (1.7), (2.1), (3.1) and Lemma 2.7, we have

m = Φ(u) = Φ(u)− 1
2
〈Φ′(u), u〉

= Φ(v) + Φ(u3)− 1
2

[〈Φ′(v), v〉+ 〈Φ′(u3), u3〉]

≥ sup
s,t≥0

{
Φ(sv+ + tv−) +

1− s2

2
〈Φ′(v), v+〉+

1− t2

2
〈Φ′(v), v−〉

}
+ Φ(u3)− 1

2
[〈Φ′(v), v〉+ 〈Φ′(u3), u3]

= sup
s,t≥0

Φ(sv+ + tv−) +
∫

Ω

[1
2
f(x, u3)u3 − F (x, u3)

]
dx ≥ m,

which shows that u3 = 0. Therefore, u has exactly two nodal domains. �
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