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REGULARIZED TRACE FORMULA FOR HIGHER ORDER
DIFFERENTIAL OPERATORS WITH UNBOUNDED

COEFFICIENTS

ERDOĞAN ŞEN, AZAD BAYRAMOV, KAMIL ORUÇOĞLU

Abstract. In this work we obtain the regularized trace formula for an even-

order differential operator with unbounded operator coefficient.

1. Introduction

The first work about the theory of regularized traces of differential operators
belongs to Gelfand and Levitan [1]. They considered the Sturm-Liouville operator

−y′′ + [q(x)− λ]y = 0,

with boundary conditions
y′(0) = y′(π) = 0,

where q(x) ∈ C1[0, π]. Under the condition
∫ π

0
q(x)dx = 0 they obtained the

formula
∞∑
n=0

(µn − λn) =
1
4

(q(0) + q(π)).

Gul [2] obtained the formula

lim
m→∞

nm∑
k=1

(λk − µk) =
1
4

[trQ(π)− trQ(0)]

for the regularized trace of the second order differential operator

l[y] = −y′′(x) +Ay(x) +Q(x)y(x)

with unbounded operator coefficient and with the boundary conditions y(0) =
y′(π) = 0. Here λk and µk are the eigen-elements of the operators

l0[y] = −y′′(x) +Ay(x)

l[y] = −y′′(x) +Ay(x) +Q(x)y(x)

with the same boundary conditions y(0) = y′(π) = 0 respectively.
Adıgüzelov and Sezer [3] obtained a regularized trace formula for a self-adjoint

differential operator of higher order with unbounded operator coefficient. Articles
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2 E. ŞEN, A. BAYRAMOV, K. ORUÇOĞLU EJDE-2016/31

[4, 5, 6, 7, 8] are devoted to study of regularized trace formulas of differential opera-
tors with bounded operator coefficient. Bayramov et al [9] obtained the second reg-
ularized trace formula for the differential operator equation with the semi-periodic
boundary conditions. Makin [10] established a formula for the first regularized trace
of the Sturm-Liouville equation with a complex-valued potential and with irregular
boundary conditions.

Let H be a separable Hilbert space and let H1 = L2(H; [0, π]) denote the set of
all strongly measurable functions f with values in H and such that∫ π

0

‖f(t)‖2Hdt <∞.

and the scalar function (f(t), g) is Lebesgue measurable for every g ∈ H in the
interval [0, π]. Here (·, ·) denotes the inner product in H and ‖ · ‖ denotes the norm
in H.

If the inner product of two arbitrary elements f and g of the space H1 is defined
by

(f, g)H1 =
∫ π

0

(f(t), g(t))Hdt, f, g ∈ H1

then H1 becomes a separable Hilbert space [11]. σ∞(H) denotes the set of all
compact operators from H into H. If A ∈ σ∞(H), then AA∗ is a nonnegative self-
adjoint operator and (A∗A)1/2 ∈ σ∞(H). Let the non-zero eigen-elements of the
operator (A∗A)1/2 be s1 ≥ s2 ≥ · · · ≥ sq (0 ≤ q ≤ ∞). Here, each eigen-element
is counted according to its own multiplicity. The numbers s1, s2, . . . , sq are called
s-numbers of the the operator A. σ1(H) is the set of all the operators A ∈ σ∞(H)
such that the s-numbers of which satisfy the condition

∑∞
q=1 sq <∞. An operator

is called a trace class operator if it belongs to σ1(H).
Let us consider the operators l0 and l in H1 defined by

l0[u] = (−1)mu(2m)(t) +Au(t), (1.1)

l[u] = (−1)mu(2m)(t) +Au(t) +Q(t)u(t) (1.2)

with the same boundary conditions y(2i−2)(0) = y(2i−1)(π) = 0 (i = 1, 2, . . . ,m)
respectively. Here A : Ω(A) → H is a densely defined self-adjoint operator in H
with A = A∗ ≥ E where E : H → H is identity operator and A−1 ∈ σ∞(H).
We also should note that our problem’s boundary conditions are different from the
considered problem’s boundary conditions in [3] which arise new difficulties.

Let η1 ≤ η2 ≤ · · · ≤ ηn ≤ . . . be the eigen-elements of the operator A and
ϕ1, ϕ2, . . . , ϕn, . . . be the orthonormal eigenvectors corresponding to these eigen-
elements. Here, each eigenvalue is counted according to its own multiplicity num-
ber. Let Ω(L′0) denote the set of the functions u(t) of the space H1 satisfying the
following conditions:

(a) u(t) has continuous derivative of the 2m order with respect to the norm in
the space H in the interval [0, π];

(b) u(t) ∈ Ω(A) for every t ∈ [0, π] and Au(t) is continuous with respect to the
norm in the space H.

(c) y(2i−2)(0) = y(2i−1)(π) = 0 (i = 1, 2, . . . ,m).

Here Ω(L′0) = H1. Let us consider the linear operator L′0u = l0u from D(L0) to
H1. L′0 is a symmetric operator. The eigen-elements of L′0 are ( 1

2 + k)2m + ηj
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(k = 0, 1, 2, . . . ; j = 1, 2, . . . ). and the orthonormal eigenvectors corresponding to
these eigen-elements are√

2
π

sin
(
(
1
2

+ k)t
)
ϕj(k = 0, 1, 2, . . . ; j = 1, 2, . . . ).

2. Some relations about the eigen-elements and resolvents

Let the eigenvalues of the operators L0 and L be µ1 ≤ µ2 ≤ · · · ≤ µn ≤ . . . and
λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . respectively. Let N(µ) be the number of eigen-elements
of operator L0 which is not greater than a positive number µ. If ηj ∼ ajα as j →∞
(a > 0, α > 2m

2m−1 ) that is, if

lim
j→∞

ηj
ajα

= 1

then using the same method in [12] it can be found that N(µ) ∼ dµ 2m+α
2mα , where

d =
2

αa1/a

∫ π/2

0

(sin τ)
2
α−1(cos τ)1+ 1

m dτ

and hence
µn ∼ d0n

2mα
2m+α as j →∞ (d0 = d

2mα
2m+α ). (2.1)

Let Q(t) be an operator function satisfying the following conditions:
(1) Q(t) : H → H is a self-adjoint operator for every t ∈ [0, π];
(2) Q(t) is weakly measurable in the interval [0, π];
(3) The norm function ‖Q(t)‖ is bounded in the interval [0, π];
(4) Q(t) has weak derivative of the second order in the interval [0, π];
(5) The function (Q′(t)f, g) is continuous for every f, g ∈ H;
(6) Q(i)(t) : H → H (i = 0, 1, 2) are self-adjoint trace class operators and the

functions ‖Q(i)(t)‖σ1(H) (i = 0, 1, 2) are bounded and measurable in the
interval [0, π].

Since Q is a self-adjoint operator from H1 to H1 for every y ∈ H1 we have

|(Qy, y)H1 | ≤ ‖Qy‖H1‖y‖H1 ≤ ‖Q‖H1‖y‖2H1

or
(−‖Q‖y, y)H1 ≤ (Qy, y)H1 ≤ (‖Q‖y, y)H1 .

This means that
−‖Q‖H1E ≤ Q ≤ ‖Q‖H1E.

And so
L0 − ‖Q‖H1E ≤ L = L0 +Q ≤ L0 + ‖Q‖H1E.

In this situation, it is well-known that (Smirnov, [13])

µn − ‖Q‖H1 ≤ λn ≤ µn + ‖Q‖H1 .

According to this, we can write

1− ‖Q‖H1

µn
≤ λn
µn
≤ 1 +

‖Q‖H1

µn
.

By applying limit to each side of this inequality and by considering the equality

lim
n→∞

µn

d0n
2mα

2m+α
,
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we get limn→∞ λn/µn = 1. Thus we have

lim
n→∞

λn

d0n
2mα

2m+α
= lim
n→∞

λn
µn

µn

d0n
2mα

2m+α
= lim
n→∞

λn
µn

lim
n→∞

µn

d0n
2mα

2m+α
= 1

or as n→∞,
λn ∼ d0n

2mα
2m+α . (2.2)

By using the formula (2.1), it is easily seen that the sequence {µn} has a subse-
quence µn1 < µn2 < · · · < µnp < . . . such that

µq − µnp > d0

(
q

2mα
2m+α − n

2mα
2m+α
p

) (
q = np + 1, np + 2, . . . ; d0 = d

2mα
2m+α

)
. (2.3)

Let R0
λ = (L0 − λE)−1, Rλ = (L− λE)−1 be the resolvents of the operators L0

and L respectively. If α > 2m
2m−1 then, by the formulas (2.1) and (2.2), R0

λ and Rλ
are trace class operators for λ 6= λq, µq (q = 1, 2, . . . ). In this situation

tr(Rλ −R0
λ) = trRλ − trR0

λ =
∞∑
q=1

(
1

λq − λ
− 1
µq − λ

), (2.4)

see Cohberg and Krein [14].
Let |λ| = dp = 2−1(µnp+1 + µnp). It is easy to see that for large values of p

the inequalities µnp < dp < µnp+1 and λnp < dp < λnp+1 are satisfied. The series∑∞
q=1

λ
λq−λ and

∑∞
q=1

λ
µq−λ are uniform convergent on the circle |λ| = dp. Hence

with the help of inequality (2.3), we obtain
np∑
q=1

(λq − µq) = − 1
2πi

∫
|λ|=dp

λ tr(Rλ −R0
λ)dλ, (2.5)

where i2 = −1.

Lemma 2.1. If ηj ∼ ajα as j → ∞ (a > 0, α > 2m
2m−1 ) then ‖R0

λ‖σ1(H1) <

2d−1
0

(2δ+1)

δnδ−1
p

(δ = 2mα
2m+α − 1) on the circle |λ| = dp.

Proof. For λ /∈ {µq}∞q=1, since R0
λ is a normal operator we have ‖R0

λ‖σ1(H1) =∑∞
q=1

1
|µq−λ| [14]. On the circle |λ| = dp we have

‖R0
λ‖σ1(H1)

≤
∞∑
q=1

1
||λ| − µq|

=
np∑
q=1

2
µnp + µnp+1 − 2µq

+
∞∑

q=np+1

2
2µq − µnp − µnp+1

≤
np∑
q=1

2
µnp+1 − µq

+
∞∑

q=np+1

2
2µq − µnp

=
np∑
q=1

2
µnp+1 − µq

+ 2Dp,

(2.6)

where Dp =
∑∞
k=np+1(µk−µnp)−1 (p = 1, 2, . . . ). By using the inequality (2.3) we

obtain
np∑
q=1

2
µnp+1 − µq

<
np

µnp+1 − µnp
<

np

d0((np + 1)1+δ − n1+δ
p )

<
np

d0(np + 1)δ
<
n1−δ
p

d0
,

(2.7)
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Dp =
∞∑

k=np+1

(µk − µnp)−1 <
1
d0

∞∑
k=np+1

1
k1+δ − n1+δ

p

= d−1
0 [

1
((np + 1)1+δ − n1+δ

p )
+

∞∑
k=np+2

1
k1+δ − n1+δ

p

].

(2.8)

It is easy to see that
∞∑

k=np+2

1
k1+δ − n1+δ

p

≤
∫ ∞
np+1

dt

t1+δ − n1+δ
p

,

∫ ∞
np+1

dt

t1+δ − n1+δ
p

<
1

δ[((np + 1)1+δ − n1+δ
p )]

δ
1+δ

.

Taking into account the inequality (2.8) we obtain

Dp < d−1
0

δ + 1

δ[((np + 1)1+δ − n1+δ
p )]

δ
1+δ

< d−1
0

δ + 1

δn
δ2
1+δ
p

. (2.9)

With the help of (2.6), (2.7) and (2.9), it follows that on the circle |λ| = dp,

‖R0
λ‖σ1(H1) < 2d−1

0

(2δ + 1)
δnδ−1

p

.

�

Lemma 2.2. If the operator function Q(t) satisfies the conditions (1)–(3), and
ηj ∼ ajα as j →∞ (a > 0, α > 2m

2m−1 ), then for |λ| = dp and large values of p,

‖Rλ‖H1 < 4d−1
0 n−δp .

Proof. Since the s-numbers of the trace class operator Rλ are { 1
λ1−λ ,

1
λ2−λ , . . . ,

1
λq−λ , . . . }, it follows that

‖Rλ‖H1 = max{ 1
λ1 − λ

,
1

λ2 − λ
, . . . ,

1
λq − λ

, . . . }. (2.10)

On the circle |λ| = dp,∣∣|λq| − |λ|∣∣ =
∣∣|λq| − 2−1(µnp + µnp+1)

∣∣ = 2−1
∣∣µnp + µnp+1 − 2|λq|

∣∣. (2.11)

Using the inequality q ≤ np and for the large values of p, since |λq| ≤ λnp , we have

µnp + µnp+1 − 2|λq|
≥ µnp + µnp+1 − 2λnp = µnp+1 − µnp + 2(µnp − λnp)

≥ µnp+1 − µnp − 2|µnp − λnp |.
(2.12)

Considering |µq − λq| ≤ ‖Q‖H1 (q = 1, 2, . . . ) by (2.12) we obtain

µnp + µnp+1 − 2|λq| ≥ µnp+1 − µnp − 2‖Q‖H1 (q ≤ np). (2.13)

With the help of inequality q ≥ np + 1 and for the large values of p, since |λq| =
λq ≥ λnp+1 then

2|λq| − µnp − µnp+1 ≥ 2λnp+1 − µnp − µnp+1

= 2(λnp+1 − µnp+1) + µnp+1 − µnp
≥ µnp+1 − µnp − 2|λnp+1 − µnp+1|.
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Using the above inequality,

2|λq| − µnp − µnp+1 ≥ µnp+1 − µnp − 2‖Q‖H1 (q ≥ np + 1). (2.14)

Taking into account that limp→∞(µnp+1 − µnp) = ∞ and by (2.11), (2.13) and
(2.14), on the circle |λ| = dp we have∣∣|λq| − |λ|∣∣ > 4−1(µnp+1 − µnp). (2.15)

By (2.3) and (2.15) we obtain∣∣|λq| − |λ|∣∣ > 4−1d0((np + 1)1+δ − n1+δ
p ) > 4−1d0(np + 1)δ.

From the above inequality and |λ| = dp for the sufficiently large values of p, we
have

|λq − λ| > 4−1d0n
δ
p.

From (2.10) and the above inequality we have 4d−1
0 n−δp . �

3. Regularized trace formula

We know from operator theory that for the resolvents of the operators L0 and
L the following formula holds:

Rλ = R0
λ −RλQR0

λ (λ ∈ ρ(L0) ∩ ρ(L)).

Using the above formula and (2.5), it can be easily shown that
np∑
q=1

(λq − µq) =
s∑
j=1

Upj + U (s)
p , (3.1)

where

Upj =
(−1)j

2πij

∫
|λ|=dp

tr[(QR0
λ)j ]dλ (i2 = −1; j = 1, 2, . . . ), (3.2)

U (s)
p =

(−1)s

2πi

∫
|λ|=dp

λtr[Rλ(QR0
λ)s+1]dλ (i2 = −1). (3.3)

Theorem 3.1. If the operator function Q(t) satisfies the the conditions (1)–(3)
and ηj ∼ ajα as j →∞ (a > 0, α > 2m(1+

√
2)

2
√

2m−
√

2−1
) then

lim
p→∞

Upj = 0 (j = 2, 3, 4, . . . ).

Proof. According to (3.2) for Up2 we have the equality

Up2 =
1

2πi

np∑
j=1

∞∑
k=np+1

[ ∫
|λ|=dp

dλ

(λ− µj)(λ− µk)

]
(Qψj , ψk)H1(Qψk, ψj)H1 . (3.4)

Therefore,
|Up2| ≤ ‖Q‖2H1

Dp. (3.5)
By (2.9) and (3.5) we obtain

lim
p→∞

Up2 = 0 (α >
2m

2m− 1
). (3.6)

Let us show that
lim
p→∞

Up3 = 0. (3.7)
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By using (3.2) it follows that

Up3 =
np∑
J=1

np∑
k=1

∞∑
s=np+1

[G(j, k, s) +G(s, k, j) +G(j, s, k]

+
np∑
J=1

∞∑
k=np+1

∞∑
s=np+1

[G(j, k, s) +G(s, k, j) +G(k, j, s],

(3.8)

where

G(j, k, s) = g(j, k, s)(Qψj , ψk)H1(Qψk, ψs)H1(Qψs, ψj)H1 ,

g(j, k, s) =
1

6πi

∫
|λ|=dp

dλ

(λ− µj)(λ− µk)(λ− µs)
.

Taking into account g(j, k, s) = g(j, k, s) and Q = Q∗ we obtain

G(s, k, j) = G(j, k, s), G(k, j, s) = G(j, k, s), G(j, s, k) = G(j, k, s). (3.9)

With the help of (3.8) and (3.9) we obtain

Up3 = E1 + E2

with

E1 =
np∑
J=1

np∑
k=1

∞∑
s=np+1

(G(j, k, s) + 2G(j, k, s)),

E2 =
np∑
J=1

∞∑
k=np+1

∞∑
s=np+1

(G(j, k, s) + 2G(j, k, s))

and

E1 = E11 + E11, E2 = E21 + E21, (3.10)

with

E11 =
np∑
J=1

np∑
k=1

∞∑
s=np+1

G(j, k, s),

E21 =
np∑
J=1

∞∑
k=np+1

∞∑
s=np+1

G(j, k, s).

It is not hard to see that the following inequalities hold:

|E11| ≤
1 + δ

d2
0δ
‖Q‖3H1

n
1−2δ2
1+δ
p , (3.11)

|E21| ≤ (
1 + δ

d0δ
)2‖Q‖3H1

n
−2δ2
1+δ
p . (3.12)

It follows that

lim
p→∞

Up3 = 0.



8 E. ŞEN, A. BAYRAMOV, K. ORUÇOĞLU EJDE-2016/31

Now, let us show that the equality limp→∞ Upj = 0 (j = 4, 5, . . . ) holds. According
to (3.2),

|Upj | ≤
1

2πj

∫
|λ|=dp

| tr(QR0
λ)j ||dλ|

≤
∫
|λ|=dp

‖(QR0
λ)j‖σ1(H1)|dλ|

≤
∫
|λ|=dp

‖(QR0
λ)‖σ1(H1)‖(QR0

λ)j−1‖H1 |dλ|

≤
∫
|λ|=dp

‖Q‖H1‖R0
λ‖σ1(H1)‖(QR0

λ)j−1‖H1 |dλ|

≤ ‖Q‖H1

∫
|λ|=dp

‖R0
λ‖σ1(H1)‖(QR0

λ)‖j−1
H1
|dλ|

≤ const.
∫
|λ|=dp

‖R0
λ‖σ1(H1)‖R0

λ‖
j−1
H1
|dλ|.

(3.13)

Since Rλ = R0
λ for Q(t) ≡ 0 according to Lemma 2.2, on the circle |λ| = dp,

‖R0
λ‖H1 < 4d−1

0 n−δp (δ =
2mα

2m+ α
− 1). (3.14)

Using Lemma 2.1 and the inequalities (3.13) and (3.14) one obtains

|Upj | < const.n1−δj
p

∫
|λ|=dp

|dλ| < const.n1−δj
p dp.

For the sufficiently large values of p, since dp = 2−1(µnp + µnp+1) ≤ const.n1+δ
p ,

then we obtain
|Upj | < const.n2−δ(j−1)

p .

It is easy to see that if δ > 2
3 or α > 10m

6m−5 , then

lim
p→∞

Upj = 0 (j = 4, 5, . . . ). (3.15)

However, if
2m(1 +

√
2)

2
√

2m−
√

2− 1
>

10m
6m− 5

,

considering (3.6) and (3.7) as α > 2m(1+
√

2)

2
√

2m−
√

2−1
one obtains limp→∞ Upj = 0 (j =

2, 3, . . . ). �

Since the eigen-elements of the operator L0 are(
k +

1
2
)2m + ηj (k = 0, 1, 2, . . . ; j = 1, 2, . . . ),

then for q = 1, 2, . . . ,

µq =
(
kq +

1
2
)2m + ηjq . (3.16)

Theorem 3.2. If the operator function Q(t) satisfies the conditions (4)–(6)and
ηj ∼ ajα as j →∞ (a > 0, α > 2m(1+

√
2)

2
√

2m−
√

2−1
) then

lim
p→∞

np∑
q=1

[
λq − µq − π−1

∫ π

0

(Q(t)ϕjq , ϕjq )dt
]

= 4−1[trQ(π)− trQ(0)]
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where {jq}∞q=1 is a set of natural numbers satisfying (3.16).

Proof. From (3.2),

Up1 = − 1
2πi

∫
|λ|=dp

tr(QR0
λ)dλ. (3.17)

Since QR0
λ is a trace class operator for each λ ∈ ρ(L0) and {Ψ1(t),Ψ2(t), . . . } is an

orthonormal basis of the space H1, then

tr(QR0
λ) =

∞∑
q=1

(QR0
λΨq,Ψq)H1 .

By putting tr(QR0
λ) into (3.17) and considering

R0
λΨq = (L0 − λE)−1Ψq = (µq − λ)−1Ψq,

one obtains

Up1 = − 1
2πi

∫
|λ|=dp

[
∞∑
q=1

(QR0
λΨq,Ψq)H1 ]dλ

= − 1
2πi

∫
|λ|=dp

[
∞∑
q=1

(µq − λ)−1(QΨq,Ψq)H1 ]dλ

= [
∞∑
q=1

(QΨq,Ψq)H1 ]
1

2πi

∫
|λ|=dp

(λ− µq)−1dλ.

(3.18)

Since the orthonormal eigenvectors according to the eigen-elements (k+ 1
2 )2m + ηj

(k = 0, 1, 2, . . . ; j = 1, 2, . . . ) of the operator L0 are
√

2
π sin((k + 1

2 )t)ϕj (k =
0, 1, 2, . . . ; j = 1, 2, . . . ), it follows that

Ψq(t) =

√
2
π

sin
(
(k +

1
2

)t
)
ϕjq q = 1, 2, . . . . (3.19)

Further,
1

2πi

∫
|λ|=dp

(λ− µq)−1dλ =

{
1, q ≤ np,
0, q > np

(3.20)

and by using (3.18)–(3.20) we find that

Up1 =
np∑
q=1

(QΨq,Ψq)H1 =
np∑
q=1

∫ π

0

(Q(t)Ψq(t),Ψq(t))

=
np∑
q=1

∫ π

0

(
Q(t)

√
2
π

sin
(
(kq +

1
2

)t
)
ϕjq ,

√
2
π

sin
(
(kq +

1
2

)t
)
ϕjq

)
dt

=
2
π

np∑
q=1

∫ π

0

sin2
(
(kq +

1
2

)t
)
(Q(t)ϕjq , ϕjq )dt

=
1
π

np∑
q=1

∫ π

0

(
1− cos

(
(2kq + 1)t

))(
Q(t)ϕjq , ϕjq

)
dt

=
1
π

np∑
q=1

∫ π

0

(Q(t)ϕjq , ϕjq )dt−
1
π

np∑
q=1

∫ π

0

cos((2kq + 1)t)(Q(t)ϕjq , ϕjq )dt.
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By subtracting and adding the expression (Q(t)ϕjq , ϕjq ) cos(2kqt) into the second
integral on the right side of last equality one obtains

Up1 =
1
π

np∑
q=1

∫ π

0

(Q(t)ϕjq , ϕjq )dt+
1
π

np∑
q=1

∫ π

0

cos(2kqt)(Q(t)ϕjq , ϕjq )dt

− 1
π

np∑
q=1

∫ π

0

[cos((2kq + 1)t) + cos(2kqt)](Q(t)ϕjq , ϕjq )dt

We can write the expresssion

− 1
π

np∑
q=1

∫ π

0

cos(rqt)(Q(t)ϕjq , ϕjq )dt,

instead of first term in the right-hand side of the above equality. Thus, we have

Up1 =
1
π

np∑
q=1

∫ π

0

(Q(t)ϕjq , ϕjq )dt+
1
π

np∑
q=1

∫ π

0

cos(2kqt)(Q(t)ϕjq , ϕjq )dt

− 1
π

np∑
q=1

∫ π

0

cos(rqt)(Q(t)ϕjq , ϕjq )dt.

We can write this equation in the form

lim
p→∞

Up1 =
1
π

∞∑
j=1

∫ π

0

(Q(t)ϕj , ϕj)dt−
1
π

∞∑
j=1

∞∑
r=1

∫ π

0

cos(rt)(Q(t)ϕj , ϕj)dt

+
1

2π

∞∑
j=1

∞∑
k=1

[ ∫ π

0

cos(kt)(Q(t)ϕj , ϕj)dt

+ (−1)k
∫ π

0

cos(kt)(Q(t)ϕj , ϕj)dt
]

and so we have

lim
p→∞

Up1 =
1
π

∞∑
j=1

∫ π

0

(Q(t)ϕj , ϕj)dt

− 1
2

∞∑
j=1

{ ∞∑
r=1

[ 2
π

∫ π

0

(Q(t)ϕj , ϕj) cos rt dt
]

cos r0
}

+
1
4

∞∑
j=1

{ ∞∑
k=1

[ 2
π

∫ π

0

(Q(t)ϕj , ϕj) cos ktdt
]

cos k0

+
∞∑
k=1

[ 2
π

∫ π

0

(Q(t)ϕj , ϕj) cos kt dt
]

cos kπ
}
.

(3.21)

The sum with respect to r in the first term on the right side of this expression in the
value at 0 of Fourier series according to functions {cos rx}∞r=0 in the interval [0, π] of
the function

∫ π
0

(Q(t)ϕj , ϕj)H having the derivative of second order. Analogically,
the sums in the second term with respect to k are the values at the points 0 and π
respectively of Fourier series with respect to the functions {cos kx}∞k=0 in the same
interval of that function.
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Also∣∣ p∑
j=1

(Q(t)ϕj , ϕj)
∣∣ ≤ p∑

j=1

|(Q(t)ϕj , ϕj)| ≤ ‖Q(t)‖σ1(H), (p = 1, 2, . . . ). (3.22)

Since the norm function ‖Q(t)‖σ1(H) is bounded and measurable in the interval
[0, π], we have ∫ π

0

‖Q(t)‖σ1(H)dt <∞. (3.23)

By using (3.22), (3.23) and Lebesgue theorem we obtain
∞∑
j=1

∫ π

0

(Q(t)ϕj , ϕj)dt =
∫ π

0

[ ∞∑
j=1

(Q(t)ϕj , ϕj)
]
dt =

∫ π

0

trQ(t)dt. (3.24)

Furthermore, as in the proof of (3.15) by Lemma 2.1 and Lemma 2.2, we can show
that

lim
p→∞

U (s)
p = 0 (s >

3
δ

) . (3.25)

Therefore by (3.1), (3.21), (3.24) and (3.25), we obtain

lim
p→∞

np∑
q=1

[
λq − µq − π−1

∫ π

0

(Q(t)ϕjq , ϕjq )dt
]

= 4−1[trQ(π)− trQ(0)]. (3.26)

�

The limit on the left hand side of the equality (44) is said to be regularized trace
of the operator L (see [1]).
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