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UNIQUENESS OF A VERY SINGULAR SOLUTION TO
NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH

ABSORPTION FOR DIRICHLET BOUNDARY CONDITION

NGUYEN ANH DAO

Abstract. We prove the existence and uniqueness of singular solutions (fun-

damental solution, very singular solution, and large solution) of quasilinear
parabolic equations with absorption for Dirichlet boundary condition. We

also show the short time behavior of singular solutions as t tends to 0.

1. Introduction

This article concerns the nonnegative singular solutions of the degenerated par-
abolic equation

∂tu−∆(um) + uq = 0, in Ω× (0,∞),

u = 0, on ∂Ω× (0,∞),
(1.1)

where q > m > 1, and Ω is a smooth bounded domain in RN . Here, singular
solutions refer to the large solution, the very singular solution, and the solution
with initial Dirac measure.

Our main purpose is to consider the uniqueness of very singular solution (in
short VSS) of equation (1.1), which has not been proved before for any bounded
domain. Roughly speaking, a VSS of (1.1) is a solution which is more singular
than solutions with initial Dirac measures. This terminology is introduced first by
Brezis et al. [4]. This solution has been intensively studied during last decades.

In the sequel, we assume without loss of generality that 0 ∈ Ω, and such a VSS
has a singularity at x = 0. Most of papers have studied the existence and uniqueness
of VSS for the Cauchy problems, i.e: Ω = RN , see e.g. [4, 7, 13, 14, 15, 18, 2, 3], and
references therein. Note that this kind of solution plays a crucial role in studying the
long time behavior of solutions of the Cauchy problem corresponding to equation
(1.1), see [13, 16].

Let us mention the results involving our problem. Peletier and Terman [18]
showed that there exists a self-similar VSS of equation (1.1) in RN × (0,∞), which
is of the form

W (x, t) = t−
1
p−1 f(|x|t(p−m)/2(p−1)),
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provided 1 < m < p < m + 2
N . In order for W to fulfill the singular condition

above, f must satisfy the condition

(fm)′′ +
N − 1
τ

(fm)′ +
p−m

2(p− 1)
τf ′ +

f

p− 1
− fp = 0,

τ = |x|t(p−m)/2(p−1), f ′(0) = 0,

lim
τ→+∞

τ2/(p−m)f(τ) = 0, f(τ)

{
> 0, if 0 ≤ τ < τ0,

= 0, if τ0 ≤ τ <∞.

(1.2)

for some τ0 > 0, see also Leoni, [12] for the case 0 < m < 1. The uniqueness
result of self-similar solutions of (1.2) was proved by Kamin and Veron, [15] (see
also [17, 14]). The proof of the uniqueness result is intensively based on the self-
similarity in order to lead to solving the ODE (1.2). It is of course that this method
does not work for such a bounded domain Ω.

In this article, we show that (1.1) has a unique VSS. Our idea is to construct a
maximal VSS, and a minimal VSS. Then we show that both solutions are equal. It is
well known that the minimal VSS is the convergence of a non-decreasing sequence
of solutions with initial Dirac measures. While, we construct the maximal VSS,
which is the decreasing convergence of large solutions. This leads to consider large
solutions of (1.1).

Let us discuss large solutions. Crandall, Lions, and Souganidis [8] considered
nonnegative solutions of the equation

∂tu−∆u+ |∇u|q = 0, in Ω× (0,∞),

u = 0, on ∂Ω× (0,∞),
(1.3)

with initial data

u(0) =

{
+∞, in O,
0, in Ω\O,

(1.4)

where O is an open subset of Ω. The initial data is understood as follows: u(x, t)→
+∞, for any x ∈ O, and u(x, t)→ 0, for any x ∈ Ω\O.

This problem is motivated by studying the theory of large deviations of Markov
diffusion processes. The authors showed that there is a unique solution of problem
(1.3), (1.4) when q > 1. Such a solution with initial data (1.4) is called a large
solution. Inspired by their work, and also for our purpose later, we would like to
prove the existence and uniqueness of large solution of problem (1.1).

In the next section, we give the definitions of large solution and VSS, and give
our results.

2. Some definitions and main results

Notation: We denote by B(x, r) the open ball with center at x and radius r > 0.
We also denote by C a general positive constant, possibly varying from line to line.
Furthermore, the constants which depend on parameters will be emphasized by
using parentheses. For example, C = C(λ) means that C depends on λ.

Let us first define a VSS of equation (1.1).
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Definition 2.1. V is called a VSS of equation (1.1) if V ∈ C(Ω× [0,∞)\{(0, 0)})
satisfies (1.1) in the sense of distributions, and V has the following properties:

V (x, 0) = 0, ∀x ∈ Ω\{0},

lim
t→0

∫
B(0,r)

V (x, t)dx =∞, for all r > 0.
(2.1)

Definition 2.2. u is called a large solution of (1.1) if u ∈ C(Ω × (0,∞)) satisfies
(1.1) in the sense of distributions, and u fulfills condition (1.4).

Our first results are the existence and uniqueness of large solutions.

Theorem 2.3. Let q > m > 1. Then, there exists a unique large solution of (1.1).

Concerning VSS, we have the following result.

Theorem 2.4. Let m > 1, and m < p < m+ 2
N . Then, there exists a unique VSS

of (1.1).

Now, we state a result of the short time behavior of the VSS.

Theorem 2.5. Let u be the unique VSS of equation (1.1) in Theorem 2.4. Then

lim
t→0

t
1
p−1u(0, t) = f(0). (2.2)

Remark 2.6. The result of Theorem 2.5 implies that the short time behavior of
VSS of equation (1.1) for a bounded domain and the one in RN are the same.

Of course our results above also hold for m = 1.

In the next section, we give the proof of Theorem 2.3. The proof of Theorem
2.4, and Theorem 2.5 will be given in the last section.

3. Proof of Theorem 2.3

(i) Existence. For any n ≥ 1, we set On = {x ∈ O : dist(x, ∂O > 1
n )}, and

construct a nondecreasing sequence of Lipschitz functions, ψn such that

ψn =

{
n, if x ∈ On,
0, if x ∈ Ω\O.

Now, we consider equation (1.1) with initial data u0 = ψn. By the classical results
(see [19]), there exists a unique solution un ∈ C(Ω × [0,∞)). Clearly, z(t) =
(q − 1)

−1
q−1 t1−q, is a solution of the ODE:

z′(t) + zq(t) = 0, t > 0,

z(0) = +∞,

By the strong comparison principle (see [1]), we obtain

un(x, t) ≤ z(t), ∀(x, t) ∈ Ω× (0,∞). (3.1)

It is obvious that {un}n≥1 is non-decreasing. By (3.1), there is a function u such
that un ↑ u, and u(x, t) is also bounded by z(t) in Ω× (0,∞).

By the boundedness of un, the classical argument allows us to pass to the limit
as n → ∞, in order to obtain u, a weak solution of equation (1.1). The regularity
u ∈ C(Ω× (0,∞)) follows from the regularity results in [9] (see also [19, 10, 11]).
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It remains to show that u(0) fulfills condition (1.4). Indeed, for any x ∈ O,
there is a natural number nx ∈ N such that x ∈ On, for all n ≥ nx. Then the
monotonicity of the sequence {un}n≥1 implies

lim inf
t→0

u(x, t) ≥ lim inf
t→0

un(x, t) = n.

The last inequality holds for any n ≥ nx, thereby proves u(x, 0) = +∞ in O.
Next, we claim that u(t) converges to 0 in Ω\O as t→ 0. Let

−∆α = 1, in B(x0, r),

α = 0, on ∂B(x0, r),
(3.2)

for any x0 ∈ Ω\O, and r > 0 is small enough such that B(x, r) ⊂ Ω\O.
Let w(x, t) = λeCte

1
α(x) , for any λ ∈ (0, 1), and constant C > 0 is chosen later

such that
∂tw −∆(wm) + wq ≥ 0. (3.3)

After this, the comparison principle yields

un(x, t) ≤ w(x, t), in B(x0, r)× (0,∞),

since w = +∞ on ∂B(x0, r), and un(x, 0) = 0 in B(x0, r). The above inequality
implies

u(x, t) ≤ w(x, t), in B(x0, r)× (0,∞), (3.4)

hence
0 ≤ lim sup

t→0
u(x, t) ≤ λe

1
α(x) , in B(x0, r).

Thus, the claim follows as λ→ 0.
Now, we show (3.3). Indeed, computations yield

wt = Cw, ∆(wm) = mwm
(m|∇α|2

α4
+

2|∇α|2

α3
+
−∆α
α2

)
Note that −∆α = 1, so we obtain

wt −∆(wm) + wq = Cw −mwm
(m|∇α|2

α4
+

2|∇α|2

α3
+

1
α2

)
+ wq.

One hand, |∇α| is bounded on B(x0, r). Other hand, w(x, t) → +∞ faster than
α−l(x), for any l ≥ 1, as x→ ∂B(x0, r). Thus

−mwm
(m|∇α|2

α4
+

2|∇α|2

α3
+

1
α2

)
+wq > 0, on the set

{
x ∈ Ω : |x−x0| > r−δ

}
,

for some δ > 0. Note that one can choose δ > 0 so that it is independent of C.
Hence,

wt −∆(wm) + wq > 0, on the set
{
x ∈ Ω : |x− x0| > r − δ

}
.

It remains to choose C = C(λ) > 0 large enough such that

wt −∆(wm) + wq > 0, on the set
{
x ∈ Ω : |x− x0| ≤ r − δ

}
.

Combining the last two inequalities yields (3.3).
(ii) Uniqueness. We use a scaling argument as in [8]. For any λ > 0, we set

uλ(x, t) = λu(λ
q−m

2 x, λq−1t),
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Clearly, uλ is a large solution of problem (1.1) corresponding to (λ
q−m

2 Ω, λ
q−m

2 O)
instead of (Ω,O). Then, by the routine argument we have for any large solution v
of (1.1),

uλ(x, t) ≥ v(x, t) ≥ uλ′(x, t), ∀(x, t) ∈ Ω× (0,∞), for λ > 1 > λ′ > 0. (3.5)

Letting λ→ 1+ and λ′ → 1− in (3.5) yields

u = v, in Ω× (0,∞).

This completes the proof of Theorem 2.3.

4. Uniqueness of VSS, and short time behavior

Now we give the proof of Theorems 2.4 and 2.5.

Proof. Step 1: First, we construct a maximal VSS. Let uε be a unique large solu-
tion of (1.1) for (Ω, B(0, ε)). It is clear that {uε}ε>0 is a non-decreasing sequence.
Then, there is a function u such that uε ↓ u as ε → 0. We will show that u is a
maximal VSS. Indeed, u is bounded by z(t) in Ω× (0,∞), so the classical argument
implies that u is a weak solution of (1.1).

Next, for any x0 ∈ Ω\{0}, from (3.4) we have

u(x0, 0) ≤ uε(x0, 0) ≤ λe
1

α(x0) ,

Therefore, u fulfills the first condition in (2.1) as λ→ 0.
It remains to prove that u is the maximal solution. This is equivalent to show

that for any ε > 0, and for any VSS v of equation (1.1), it holds

v ≤ uε, in Ω× (0,∞), (4.1)

On the one hand, since v(x, 0) = 0 for any x 6= 0, then proceeding as in the proof
of (3.4) yields that for any τ > 0,

v(x, τ) ≤ λeCτe
1

α(x) , ∀x ∈ Ω, |x| ≥ ε/2.
where α(x) is the solution of (3.2) in B(x, ε/4). Thereby,

v(x, τ) ≤ mελe
Cτ , ∀x ∈ Ω, |x| ≥ ε/2, (4.2)

with mε = supy∈B(x,ε/4)

{
e

1
α(y)
}

.
On the other hand, since uε(x, t) → ∞ uniformly on any compact of B(0, ε) as

t→ 0, there exists then a time s(τ) > 0 such that

v(x, τ) ≤ uε(x, s), for any x ∈ B(0, ε/2), ∀s ∈ (0, s(τ)). (4.3)

By (4.2) and (4.3), we obtain

v(x, τ) ≤ mελe
Cτ + uε(x, s), for any x ∈ Ω, ∀s ∈ (0, s(τ)),

From the comparison principle it follows that

v(x, t+ τ) ≤ mελe
Cτ + uε(x, t+ s), ∀(x, t) ∈ Ω× (0,∞). (4.4)

Inequality (4.4) holds for any s ∈ (0, s(τ)). Then letting s→ 0 yields

v(x, t+ τ) ≤ mελe
Cτ + uε(x, t), ∀(x, t) ∈ Ω× (0,∞).

The above inequality holds for any τ > 0, thereby we obtain after passing to the
limit τ → 0,

v(x, t) ≤ λ+ uε(x, t), ∀(x, t) ∈ Ω× (0,∞).
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Finally, passing λ→ 0 yields conclusion (4.1). In the sequel, we denote by uΩ
max, the

maximal VSS of (1.1) in Ω× (0,∞). By the construction, the sequence {uBRmax}R>0

is non-decreasing. Note that this sequence is also bounded by z(t). Thus,

uBRmax(x, t) ↑W (x, t), (4.5)

for any (x, t) ∈ RN × (0,∞), as R → ∞. It is not difficult to verify that W is a
self-similar VSS of (1.1) in RN × (0,∞).
Step 2: Now, we construct a minimal VSS, which is the convergence of the in-
creasing sequence of solutions with initial Dirac measures. It is convenient for us
to construct a Dirac solution first. Consider problem (1.1) with the initial data ρn,
ρn(x) = nNρ(nx), and

ρ(x) =

{
Ce

1
|x|2−1 , if |x| < 1,

0, if |x| ≥ 1,

where C is the constant such that
∫

RN ρ(x)dx = 1. It is clear that ρn converges to
Dirac δ0. By the classical result (see [19]), there exists a unique continuous solution
vn. It is not difficult to show that vn converges to u, a unique solution of equation
(1.1) with initial data δ0, see [14, 5].

At the moment, let uΩ
k be the unique solution of (1.1) with initial data kδ0 in

Ω× (0,∞). Clearly, {uΩ
k }k>0 is the non-decreasing sequence, and it is bounded by

z(t). Thus, there is a function, say uΩ
min such that uΩ

k converges to uΩ
min as k →∞.

Note that uΩ
min is the minimal VSS of (1.1), see [14].

By its construction, the sequence {uBRmin}R>0 is non-decreasing, and it converges
to V as R → ∞, a self-similar VSS of equation (1.1) in RN × (0,∞). Since W
and V are two self-similar solutions of the Cauchy equation (1.1), they must satisfy
equation (1.2). It follows from the uniqueness solution of equation (1.2) (see [15, 17])
that

W = V, in RN × (0,∞). (4.6)
Next, we claim that for any k > 0, and for ε > 0 (small)

uBRk (x, t) ≤ uΩ
k (x, t) +mελe

Ct, in BR × (0,∞), (4.7)

for any R > 0 large enough such that Ω ⊂⊂ B(0, R), and mε is as in (4.2).
To prove (4.7), it suffices to consider the case k = 1. By the uniqueness of

fundamental solutions, we only need to show

vBRn (x, t) ≤ vΩ
n (x, t) +mελe

Ct, in BR × (0,∞). (4.8)

Recall that vΩ
n (resp. vBRn ) is the unique solution of (1.1) with initial data ρn in

Ω × (0,∞) (resp. B(0, R) × (0,∞)). In fact, for any n large enough such that
1
n < ε

8 , we note that Supp(vBRn (., 0) = ρn) ⊂ B(0, 1/n). By the same analysis as
(4.2), we also obtain

vBRn (x, t) ≤ mελe
Ct, ∀x ∈ B(0, R), |x| ≥ ε/2, t > 0, (4.9)

On the one hand, (vΩ
n +mελe

Ct) is a super-solution of (1.1) in Ω× (0,∞). On the
other hand, from (4.9) it follows that vBRn (x, t) ≤ mελe

Ct, for any x ∈ ∂Ω, and for
t > 0.

Note that vBRn (x, 0) = vΩ
n (x, 0) = ρn(x). Thus, the strong comparison result

implies
vBRn ≤ vΩ

n +mελe
Ct, in Ω× (0,∞). (4.10)
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By combining (4.9) and (4.10), we obtain

vBRn ≤ vΩ
n +mελe

Ct, in B(0, R)× (0,∞).

Letting n→∞ we obtain (4.8), and proves (4.7).
Next, passing to the limit as k →∞ in (4.7) yields

uBRmin ≤ u
Ω
min +mελe

Ct, in B(0, R)× (0,∞). (4.11)

By (4.6), letting R→∞ in (4.11) we obtain

W = V ≤ uΩ
min +mελe

Ct, in RN × (0,∞). (4.12)

By combining (4.5) and (4.12), we obtain

uΩ
min ≤ uΩ

max ≤W ≤ uΩ
min +mελe

Ct, in Ω× (0,∞). (4.13)

Thanks to the comparison result of Aronson et al. [1], we have∫
Ω

(
uΩ
max(t)− uΩ

min(t)
)+
dx ≤

∫
Ω

(
uΩ
max(s)− uΩ

min(s)
)+
dx

+
∫ t

s

∫
Ω

(
−
(
uΩ
max(τ)

)q +
(
uΩ

min(τ)
)q)+

dx dτ.

Or ∫
Ω

(
uΩ
max(t)− uΩ

min(t)
)
dx ≤

∫
Ω

(
uΩ
max(s)− uΩ

min(s)
)
dx, (4.14)

for any 0 < s < t. From (4.13) and (4.14) it follows that∫
Ω

(
uΩ
max(t)− uΩ

min(t)
)
dx ≤

∫
Ω

mελe
Csdx = mε|Ω|λeCs.

The limit as s→ 0 yields∫
Ω

(
uΩ
max(t)− uΩ

min(t)
)
dx ≤ |Ω|mελ.

The above inequality holds for any λ > 0 small enough, so the uniqueness result
follows.

Finally, we prove the short time behavior result. From (4.13), we have

uΩ
max(0, t) ≤W (0, t) = t

−1
p−1 f(0) ≤ uΩ

max(0, t) +mελe
Ct, ∀t > 0.

Or
t

1
p−1uΩ

max(0, t) ≤ f(0) ≤ t
1
p−1uΩ

max(0, t) +mελt
1
p−1 eCt.

Then, the result follows by passing t→ 0 in the above inequality. �

As a consequence, we have the short time behavior of the unique large solution.

Corollary 4.1. Let uL be the unique large solution of problem (1.1), (1.4). Then,
uL(x, t) has the rate t−

1
p−1 as t→ 0, for any x ∈ O.

Proof. It suffices to show that the result holds for x = 0 ∈ O. Let u be the unique
VSS. Then

u(0, t) ≤ uL(0, t) ≤ (q − 1)
−1
q−1 t−

1
p−1 .

Since u(0, t) has the rate t−
1
p−1 as t→ 0, we obtain the conclusion. �

Remark 4.2. A potential alternative proof for the uniqueness result of VSS by
using the finite speed of propagation suggested by Professor Kamin could be con-
sidered in the future for general nonlinear absorption term.
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