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Abstract. The aim of this paper is the solvability of a class of higher order dif-
ferential equations with initial conditions and an integral boundary condition

on the half line. Using coincidence degree theory by Mawhin and constructing
suitable operators, we prove the existence of solutions for the posed resonance

boundary value problems.

1. Introduction

In this article, we are concerned with the existence of solutions of the higher-
order ordinary differential equation

x(n)(t) = f(t, x(t)), t ∈ (0,∞), (1.1)

with the integral boundary value conditions

x(i)(0) = 0, i = 0, 1, . . . , n− 2, x(n−1)(∞) =
n!
ξn

∫ ξ

0

x(t)dt , (1.2)

where n ≥ 3 is an integer, ξ > 0 and f : [0,∞) × R → R is a given function
satisfying certain conditions.

A boundary value problem (BVP for short) is said to be at resonance if the
corresponding homogeneous boundary value problem has a non-trivial solution.
Resonance problems can be formulated as an abstract equation Lx = Nx, where L
is a noninvertible operator. When L is linear, as is known, the coincidence degree
theory of Mawhin [19] has played an important role in dealing with the existence
of solutions for these problems. For more recent results, we refer the reader to
[3, 5, 6, 6, 8, 9, 14, 20, 22, 24, 25] and the references therein.

Moreover boundary value problems on the half line arise in many applications
in physics such that in modeling the unsteady flow of a gas through semi-infinite
porous media, in plasma physics, in determining the electrical potential in an iso-
lated neutral atom, or in combustion theory. For an extensive literature of results
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as regards boundary value problems on unbounded domains, we refer the reader to
the monograph by Agarwal and O’Regan [1].

Recently, there have been many works concerning the existence of solutions for
the boundary value problems on the half-line. For instance see [2, 4, 10, 11, 12,
13, 15, 16, 17, 18, 21, 23] and the references therein. By the way, much of work on
the existence of solutions for the boundary value problems on unbounded domains
involves second or third-order differential equations.

However, for the resonance case, there is no work done for the higher-order
boundary value problems with integral boundary conditions on the half-line, such
as BVP (1.1)-(1.2).

The remaining part of this paper is organized as follows. We present in Section
2 some notations and basic results involved in the reformulation of the problem. In
Section 3, we give the main theorem and some lemmas, then we will show that the
proof of the main theorem is an immediate consequence of these lemmas and the
coincidence degree of Mawhin.

2. Preliminaries

For the convenience of the readers, we recall some notation and two theorems
which will be used later.

Let X,Y be two real Banach spaces and let L : domL ⊂ X → Y be a linear
operator which is Fredholm map of index zero, and let P : X → X, Q : Y → Y be
continuous projectors such that ImP = kerL, kerQ = ImL. Then X = kerL ⊕
kerP , Y = ImL ⊕ ImQ. It follows that L|domL∩kerP : domL ∩ kerP → ImL is
invertible, we denote the inverse of that map by KP . Let Ω be an open bounded
subset of X such that domL∩Ω 6= ∅, the map N : X → Y is said to be L-compact
on Ω if the map QN(Ω) is bounded and KP (I −QN) : Ω→ X is compact.

Theorem 2.1 ([19]). Let L be a Fredholm operator of index zero and N be L-
compact on Ω. Assume that the following conditions are satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1).
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω.
(3) deg(QN |kerL,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

Since the Arzelá-Ascoli theorem fails in the noncompact interval case, we use
the following result in order to show that KP (I −QN) : Ω→ X is compact.

Theorem 2.2 ([1]). Let F be a subset of C∞ = {y ∈ C([0,+∞)), limt→∞ y(t) exists}
that is equipped with the norm ‖y‖∞ = sup

t∈[0,+∞)

|y(t)|. Then F is relatively compact

if the following conditions hold:
(1) F is bounded in X.
(2) The functions belonging to F are equi-continuous on any compact subinter-

val of [0,∞).
(3) The functions from F are equi-convergent at +∞.

Let

X =
{
x ∈ Cn−1[0,+∞), lim

t→∞
e−t|x(i)(t)| exist, 0 ≤ i ≤ n− 1

}
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endowed with the norm ‖x‖ = max0≤i≤n−1

(
supt∈[0,+∞) e

−t|x(i)(t)|
)
. Then X is a

Banach space.

Lemma 2.3. Let M ⊂ X, then M is relatively compact in X if the following
conditions hold:

(1) M is bounded in X.
(2) The family V i = {yi : yi(t) = e−tx(i)(t), t ≥ 0, x ∈ M} is equicontinuous

on any compact subinterval of [0,+∞) for i = 0, . . . , n− 1.
(3) The family V i = {yi : yi(t) = e−tx(i)(t), t ≥ 0, x ∈ M} is equiconvergent

at ∞ for i = 0, . . . , n− 1.

Proof. Let (xk)k be a sequence in M and set yi,k(t) = e−tx
(i)
k (t). Since the set V i,

for every i = 0, . . . , n− 1 is relatively compact in C∞ (see Theorem 2.2), then from
the sequence (y0,k)k ⊂ V 0, we can extract a subsequence denoted also by (y0,k)k,
that converges to y∗0 in C∞. Set x∗0(t) = ety∗0(t), then

lim
k→∞

sup
t∈[0,∞)

e−t|xk(t)− x∗0(t)| = 0.

Now let y1,k(t) = e−tx′k(t) then the sequence (y1,k)k ⊂ V 1 and we can extract
from it a subsequence denoted also by (y1,k)k, that converges to y∗1 in C∞. Set
x∗1(t) = ety∗1(t), then limk→∞ supt∈[0,∞) e

−t|x′k(t)−x∗1(t)| = 0, from the fact that the
convergence is uniform on [0, T ], T > 0, we get that x∗0 is differentiable on [0,+∞)
and x∗1 = (x∗0)′. Reasoning the same way, we obtain x∗i = (x∗0)(i), i = 0, . . . , n− 1,
and limk→∞ ‖xk − x∗0‖ = 0. Then M is relatively compact. �

Let Y = L1[0,+∞) with norm ‖y‖1 =
∫ +∞
0
|y(t)|dt. Denote ACloc[0,+∞) the

space of locally absolutely continuous functions on the interval [0,+∞). Define the
operator L : domL ⊂ X → Y by Lx = x(n), where

domL =
{
x ∈ X,x(n−1) ∈ ACloc[0,+∞), x(i)(0) = 0, i = 0, n− 2

x(n−1)(∞) =
n!
ξn

∫ ξ

0

x(t)dt, x(n) ∈ Y
}
⊂ X,

then L maps domL into Y . Let N : X → Y be the operator Nx(t) = f(t, x(t)),
t ∈ [0,+∞), then (1.1)-(1.2) can be written as Lx = Nx.

3. Main results

We can now state our results on the existence of a solution for (1.1)-(1.2).

Theorem 3.1. Assume that the following conditions are satisfied:

(H1) There exists functions α, β ∈ L1[0,∞), such that for all x ∈ R and t ∈
[0,∞),

|f(t, x)| ≤ e−tα(t)|x|+ β(t). (3.1)

(H2) There exists a constant M > 0, such that for x ∈ domL, if |x(n−1)(t)| > M ,
for all t ∈ [0,∞), then∫ ∞

0

f(s, x(s))ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, x(s))ds 6= 0. (3.2)
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(H3) There exists a constant M∗ > 0, such that for any x(t) = c0t
n−1 ∈ kerL

with |c0| > M∗/(n− 1)!, either

c0

[ ∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
]
< 0, (3.3)

or

c0

[ ∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
]
> 0. (3.4)

Then (1.1)-(1.2), has at least one solution in X, provided

1− 2Mn‖α‖1 > 0, (3.5)

where Mn = max0≤i≤n−1

(
supt∈[0,∞) e

−ttn−1−i).
To prove Theorem 3.1, we need to prove some Lemmas.

Lemma 3.2. The operator L : domL ⊂ X → Y is a Fredholm operator of index
zero. Furthermore, the linear projector operator Q : Y → Y can be defined by

Qy(t) = ae−t
[ ∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds
]
,

where
1
a

= 1− 1
ξn

∫ ξ

0

(ξ − s)ne−sds = 1−
n∑
k=0

(−1)k
n!

(n− k)!ξk
+ (−1)nn!

e−ξ

ξn

and the linear operator KP : ImL→ domL ∩ kerP can be written as

Kpy(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds, y ∈ ImL.

Furthermore,
‖Kpy‖ ≤Mn‖y‖1, for every y ∈ ImL. (3.6)

Proof. It is clear that

kerL =
{
x ∈ domL : x = ctn−1, c ∈ R, t ∈ [0,∞)

}
.

Now we show that

ImL =
{
y ∈ Y :

∫ ∞
0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds = 0
}
. (3.7)

The problem
x(n)(t) = y(t) (3.8)

has a solution x(t) that satisfies the conditions x(i)(0) = 0, for i = 0, 1, . . . , n − 2,
and x(n−1)(∞) = n!

ξn

∫ ξ
0
x(t)dt if and only if∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds = 0. (3.9)

In fact from (3.8) and the boundary conditions (1.2) we have

x(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

=
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ ctn−1.
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From x(n−1)(∞) = n!
ξn

∫ ξ
0
x(t)dt, we obtain∫ ∞

0

y(s)ds =
1
ξn

∫ ξ

0

(ξ − s)ny(s)ds.

On the other hand, if (3.9) holds, setting

x(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ ctn−1

where c is an arbitrary constant, then x(t) is a solution of (3.8). Hence (3.7) holds.
Setting

Ry =
∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds,

define Qy(t) = ae−tRy, it is clear that dim ImQ = 1. We have

Q2y = Q(Qy) = ae−t(a.Ry)
(∫ ∞

0

e−sds− 1
ξn

∫ ξ

0

(ξ − s)ne−sds
)

= ae−tRy = Qy,

which implies the operator Q is a projector. Furthermore, ImL = kerQ.
Let y = (y − Qy) + Qy, where y − Qy ∈ kerQ = ImL, Qy ∈ ImQ. It follows

from kerQ = ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we have
Y = ImL ⊕ ImQ. Thus dim kerL = 1 = dim ImQ = codim ImL = 1, this means
that L is a Fredholm operator of index zero. Now we define a projector P from X
to X by setting

Px(t) =
x(n−1)(0)
(n− 1)!

tn−1.

Then the generalized inverse KP : ImLdomL ∩ kerP of L can be written as

Kpy(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds.

Obviously, ImP = kerL and P 2x = Px. It follows from x = (x − Px) + Px that
X = kerP + kerL. By simple calculation, we obtain that kerL ∩ kerP = {0}.
Hence X = kerL⊕ kerP .

From the definitions of P and KP , it is easy to see that the generalized inverse
of L is KP . In fact, for y ∈ ImL, we have

(LKp)y(t) = (Kpy(t))(n) = y(t),

and for x ∈ domL ∩ kerP , we know that

(KpL)x(t) = (Kp)x(n)(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1x(n)(s)ds

= x(t)− [x(0) + x′(0)t+ · · ·+ x(n−2)(0)
(n− 2)!

tn−2 +
x(n−1)(0)
(n− 1)!

tn−1].

In view of x ∈ domL ∩ kerP , x(i)(0) = 0, for i = 0, 1, . . . , n− 2, and Px = 0, thus

(KpL)x(t) = x(t).
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This shows that Kp = (L|domL∩kerP )−1. From the definition of Kp, we have for
i = 0, . . . , n− 1,

e−t|(Kpy)(i)(t)| ≤ e−t

(n− 1− i)!

∫ t

0

(t− s)n−1−i|y(s)|ds ≤Mn‖y‖1,

which leads to

‖Kpy‖ = max
0≤i≤n−1

(
sup

t∈[0,∞)

e−t|(Kpy)i(t)|
)
≤Mn‖y‖1.

This completes the proof. �

Lemma 3.3. Let Ω1 = {x ∈ domL\ kerL : Lx = λNx for some λ ∈ [0, 1]}. Then
Ω1 is bounded.

Proof. Suppose that x ∈ Ω1, and Lx = λNx. Thus λ 6= 0 and QNx = 0, so that∫ ∞
0

f(s, x(s))ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, x(s))ds = 0.

Thus, by condition (H2), there exists t0 ∈ R+, such that |x(n−1)
(t0)| ≤ M . It

follows from the absolute continuity of x(n−1) that

|x
(n−1)

(0)| =
∣∣x(n−1)

(t0)−
∫ t0

0

x(n)(s)ds
∣∣,

then, we have

|x
(n−1)

(0)| ≤M +
∫ ∞

0

|Lx(s)|ds ≤M +
∫ ∞

0

|Nx(s)|ds = M + ‖Nx‖1. (3.10)

Again for x ∈ Ω1 and x ∈ domL\ kerL, we have (I − P )x ∈ domL ∩ kerP and
LPx = 0; thus from Lemma 3.2,

‖(I − P )x‖ = ‖KpL(I − P )x‖
≤Mn‖L(I − P )x‖1
= Mn‖Lx‖1 ≤Mn‖Nx‖1.

(3.11)

So
‖x‖ ≤ ‖Px‖+ ‖(I − P )x‖ = Mn|x(n−1)(0)|+Mn‖Nx‖1, (3.12)

again from (3.10) and (3.11), (3.12) becomes

‖x‖ ≤MnM +Mn‖Nx‖1 +Mn‖Nx‖1 ≤MnM + 2Mn‖Nx‖1. (3.13)

On the other hand by (3.1) we have

‖Nx‖1 =
∫ ∞

0

|f(s, x(s))|ds ≤ ‖x‖‖α‖1 + ‖β‖1. (3.14)

Therefore, (3.13) and (3.14), it yield

‖x‖ ≤MnM + 2Mn‖x‖‖α‖1 + 2Mn‖β‖1;

since 1− 2Mn‖α‖1 > 0, we obtain

‖x‖ ≤ MnM

1− 2Mn‖α‖1
+

2Mn‖β‖1
1− 2Mn‖α‖1

.

So Ω1 is bounded. �

Lemma 3.4. The set Ω2 = {x ∈ kerL : Nx ∈ ImL} is bounded.
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Proof. Let x ∈ Ω2. Then x ∈ kerL implies x(t) = ctn−1, c ∈ R, and QNx = 0;
therefore ∫ ∞

0

f(s, csn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, csn−1)ds = 0.

From condition (H2), there exists t1 ∈ R+, such as |x(n−1)(t1)| ≤ M . We have
(n− 1)!|c| ≤M so |c| ≤ M

(n−1)! . On the other hand

‖x‖ = |c| max
0≤i≤n−1

(
sup

t∈[0,∞)

e−t(tn−1)(i)
)
≤MMn <∞,

so Ω2 is bounded. �

Lemma 3.5. Suppose that the first part of Condition (H3) holds. Let

Ω3 = {x ∈ kerL : −λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]}
where J : kerL→ ImQ is the linear isomorphism given by J(ctn−1) = ce−t, for all
c ∈ R t ≥ 0. Then Ω3 is bounded.

Proof. In fact x0 ∈ Ω3, means that x0 ∈ kerL i.e. x0(t) = c0t
n−1 and λJx0 =

(1− λ)QNx0. Then we obtain

λc0 = (1− λ)a
(∫ ∞

0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
)
.

If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗/(n− 1)!, in view of (3.3) one has

λc20 = (1− λ)ac0
(∫ ∞

0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
)
< 0,

which contradicts the fact that λc20 ≥ 0. So |c0| ≤M∗/(n− 1)!, moreover

‖x0‖ = |c0| max
0≤i≤n−1

(
sup

t∈[0,∞)

e−t|(tn−1)(i)|
)
≤M∗Mn.

Therefore Ω3 is bounded. �

Lemma 3.6. Suppose that the second part of Condition (H3) holds. Let

Ω3 = {x ∈ kerL : λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]}
where J : kerL→ ImQ is the linear isomorphism given by J(ctn−1) = ce−t, for all
c ∈ R, t ≥ 0. Then Ω3 is bounded, here J is as in Lemma 3.5.

Proof. Similar to the above argument, we can verify that Ω3 is bounded. �

Lemma 3.7. Suppose that Ω is an open bounded subset of X such that dom(L) ∩
Ω 6= ∅. Then N is L-compact on Ω.

Proof. Suppose that Ω ⊂ X is a bounded set. Without loss of generality, we may
assume that Ω = B(0, r), then for any x ∈ Ω, ‖x‖ ≤ r. For x ∈ Ω, and by condition
(3.1), we obtain

|QNx| ≤ ae−t
[ ∫ ∞

0

|f(s, x(s))|ds+
1
ξn

∫ ξ

0

(ξ − s)n|f(s, x(s))|ds
]

≤ ae−t
[ ∫ ∞

0

e−sα(s)|x(s)|+ β(s)ds

+
1
ξn

∫ ξ

0

(ξ − s)n(e−sα(s)|x(s)|+ β(s))ds
]
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≤ ae−t
[
r

∫ ∞
0

α(s)ds+
∫ ∞

0

β(s)ds+ r

∫ ξ

0

α(s)ds+
∫ ξ

0

β(s)ds
]

≤ ae−t[2r‖α‖1 + 2‖β‖1]

≤ 2a[r‖α‖1 + ‖β‖1];

thus,
‖QNx‖1 ≤ 2a[r‖α‖1 + ‖β‖1], (3.15)

which implies that QN(Ω) is bounded. Next, we show that KP (I − Q)N(Ω) is
compact, for this we use Lemma 2.3 . Let x ∈ Ω, by (3.1) we have

‖Nx‖1 =
∫ ∞

0

|fs, x(s)|ds ≤ [r‖α‖1 + ‖β‖1]; (3.16)

on the other hand, from the definition of KP and together with (3.6), (3.15) and
(3.16) one obtain

‖KP (I −Q)Nx‖ ≤Mn‖(I −Q)Nx‖1 ≤Mn[‖Nx‖1 + ‖QNx‖1]

≤Mn[r(1 + 2a)‖α‖1 + (1 + 2a)‖β‖1].

It follows that KP (I −Q)N(Ω) is uniformly bounded.
Let us prove that T is equicontinuous. For any x ∈ Ω and any t1, t2 ∈ [0, T ] with

t1 < t2 and T ∈ [0,∞), we have for 0 ≤ i ≤ n− 2:∣∣e−t1(KP (I −Q)Nx)(i)(t1)− e−t2(KP (I −Q)Nx)(i)(t2)
∣∣

=
∣∣ ∫ t2

t1

[e−s(KP (I −Q)Nx)(i)(s)]′ds
∣∣

=
∣∣ ∫ t2

t1

[−e−s(KP (I −Q)Nx)(i)(s) + e−s(KP (I −Q)Nx)(i+1)(s)]ds
∣∣

≤ 2(t2 − t1)‖KP (I −Q)Nx‖
≤ 2(t2 − t1)Mn[r(1 + 2a)‖α‖1 + (1 + 2a)‖β‖1]→ 0, as t1 → t2.

For i = n− 1, we obtain∣∣e−t1(KP (I −Q)Nx)(n−1)(t1)− e−t2(KP (I −Q)Nx)(n−1)(t2)
∣∣

=
∣∣e−t1 ∫ t1

0

(I −Q)Nx(s)ds− e−t2
∫ t2

0

(I −Q)Nx(s)ds
∣∣

≤
∫ t1

0

(e−t1 − e−t2)|(I −Q)Nx(s)|ds+
∫ t2

t1

e−t2 |(I −Q)Nx(s)|ds

≤ (t2 − t1)
∫ t1

0

|(I −Q)Nx(s)|ds+
∫ t2

t1

|(I −Q)Nx(s)|ds→ 0,

as t1 → t2. So KP (I −Q)N(Ω) is equicontinuous on every compact subinterval of
[0,∞). In addition, we claim that KP (I −Q)N(Ω) is equiconvergent at infinity. In
fact, for x ∈ Ω, i = 0, . . . , n− 1, we have∣∣e−t(Kp(I −Q)Nx)(i)(t)

∣∣
≤ e−t

(n− 1− i)!

∫ t

0

(t− s)n−1−i|(I −Q)Nx(s)|ds

≤ e−ttn−1−i
∫ t

0

|(I −Q)Nx(s)|ds ≤ e−ttn−1−i‖(I −Q)Nx‖1
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≤ e−ttn−1−i[‖Nx‖1 + ‖QNx‖1] ≤ e−ttn−1−i(1 + 2a)[r‖α‖1 + ‖β‖1
]
,

thus, limt→∞ e−t(Kp(I −Q)Nx)(i)(t) = 0, for every i = 0, . . . , n− 1, which means
that KP (I −Q)N(Ω) is equiconvergent at infinity. �

Now we are able to give the proof of Theorem 3.1, which is an immediate con-
sequence of Theorem 2.1 and the above lemmas.

Proof of Theorem 3.1. We shall prove that all conditions of Theorem 2.1 are satis-
fied. Set Ω to be an open bounded subset of X such that ∪3

i=1Ωi ⊂ Ω. We know
that L is a Fredholm operator of index zero and N is L-compact on Ω. By the
definition of Ω we have

(i) Lx 6= λNx pour tout (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL pour tout x ∈ kerL ∩ ∂Ω.

At last we prove that condition (iii) of Theorem 2.1 is satisfied. To this end, let

H(x, λ) = ±λJx+ (1− λ)QNx

By the definition of Ω we know that Ω3 ⊂ Ω, thus H(x, λ) 6= 0 for every x ∈
kerL ∩ ∂Ω. Then, by the homotopy property of degree, we obtain

deg(QN |kerL,Ω ∩ kerL, 0) = deg(H(·, 0),Ω ∩ kerL, 0)

= deg(H(·, 1),Ω ∩ kerL, 0)

= deg(±J,Ω ∩ kerL, 0) 6= 0.

So, the third assumption of Theorem 2.1 is fulfilled and Lx = Nx has at least one
solution in domL ∩ Ω; i.e. (1.1)-(1.2) has at least one solution in X. The prove is
complete. �
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11. Introduction

In this paper, we are concerned with the existence of solutions of the higher-order
ordinary differential equation

x(n)(t) = f(t, x(t)), t ∈ (0,∞), (11.1)

with the integral boundary value conditions

x(i)(0) = 0, i = 0, 1, . . . , n− 2, x(n−1)(∞) =
n!
ξn

∫ ξ

0

x(t)dt , (11.2)

where n ≥ 3 is an integer, ξ > 0 and f ∈ C([0,∞)× R,R).
A boundary value problem (BVP for short) is said to be at resonance if the

corresponding homogeneous boundary value problem has a non-trivial solution.
Resonance problems can be formulated as an abstract equation Lx = Nx, where L
is a noninvertible operator. When L is linear, as is known, the coincidence degree
theory of Mawhin [19] has played an important role in dealing with the existence
of solutions for these problems. For more recent results, we refer the reader to
[3, 5, 6, 6, 8, 9, 14, 20, 22, 24, 25] and the references therein.
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Moreover boundary value problems on the half line arise in many applications
in physics such that in modeling the unsteady flow of a gas through semi-infinite
porous media, in plasma physics, in determining the electrical potential in an iso-
lated neutral atom, or in combustion theory. For an extensive literature of results
as regards boundary value problems on unbounded domains, we refer the reader to
the monograph by Agarwal and O’Regan [1].

Recently, there have been many works concerning the existence of solutions for
the boundary value problems on the half-line. For instance see [2, 4, 10, 11, 12,
13, 15, 16, 17, 18, 21, 23] and the references therein. By the way, much of work on
the existence of solutions for the boundary value problems on unbounded domains
involves second or third-order differential equations.

However, for the resonance case, there is no work done for the higher-order
boundary value problems with integral boundary conditions on the half-line, such
as BVP (11.1)-(11.2).

The remaining part of this paper is organized as follows. We present in Section
2 some notations and basic results involved in the reformulation of the problem. In
Section 3, we give the main theorem and some lemmas, then we will show that the
proof of the main theorem is an immediate consequence of these lemmas and the
coincidence degree of Mawhin.

12. Preliminaries

For the convenience of the readers, we recall some notation and two theorems
which will be used later.

Let X,Y be two real Banach spaces and let L : domL ⊂ X → Y be a linear
operator which is Fredholm map of index zero, and let P : X → X, Q : Y → Y be
continuous projectors such that ImP = kerL, kerQ = ImL. Then X = kerL ⊕
kerP , Y = ImL ⊕ ImQ. It follows that L|domL∩kerP : domL ∩ kerP → ImL is
invertible, we denote the inverse of that map by KP . Let Ω be an open bounded
subset of X such that domL∩Ω 6= ∅, the map N : X → Y is said to be L-compact
on Ω if the map QN(Ω) is bounded and KP (I −QN) : Ω→ X is compact.

Theorem 12.1 ([19]). Let L be a Fredholm operator of index zero and N be L-
compact on Ω. Assume that the following conditions are satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1).
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω.
(3) deg(QN |kerL,Ω ∩ ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such

that ImL = kerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

Since the Arzelá-Ascoli theorem fails in the noncompact interval case, we use
the following result in order to show that KP (I −QN) : Ω→ X is compact.

Theorem 12.2 ([1]). Let F ⊂ X. Then F is relatively compact if the following
conditions hold:

(1) F is bounded in X.
(2) The functions belonging to F are equi-continuous on any compact interval

of [0,∞).
(3) The functions from F are equi-convergent at +∞.
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Let AC[0,+∞) denote the space of locally absolutely continuous functions on
the interval [0,+∞). Let

X =
{
x ∈ Cn−1[0,+∞) : x(n−1) ∈ ACloc[0,+∞), lim

t→∞
e−t|x(t)| exists

}
endowed with the norm ‖x‖ = supt∈[0,+∞) e

−t|x(t)|. Let Y = L1[0,+∞) with
norm ‖y‖1 =

∫ +∞
0
|y(t)|dt.

Define the operator L : domL ⊂ X → Y by Lx = x(n), where

domL =
{
x ∈ X : x(i)(0) = 0, i = 0, n− 2, x(n−1)(∞) =

n!
ξn

∫ ξ

0

x(t)dt
}
.

Let N : X → Y be the operator Nx = f(t, x(t)), t ∈ [0,+∞), then the BVP
(11.1)–(11.2) can be written as Lx = Nx.

13. Main results

We can now state our results on the existence of a solution for (11.1)-(11.2).

Theorem 13.1. Assume that the following conditions are satisfied:
(H1) There exists functions α, β ∈ L1[0,∞), such that for all x ∈ R and t ∈

[0,∞),
|f(t, x)| ≤ e−tα(t)|x|+ β(t). (13.1)

(H2) There exists a constant M > 0, such that for x ∈ domL, if |x(n−1)(t)| > M ,
for all t ∈ [0,∞), then∫ ∞

0

f(s, x(s))ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, x(s))ds 6= 0. (13.2)

(H3) There exists a constant M∗ > 0, such that for any x(t) = c0t
n−1 ∈ kerL

with |c0| > M∗/(n− 1)!, either

c0

[ ∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
]
< 0, (13.3)

or

c0

[ ∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
]
> 0. (13.4)

Then (11.1)-(11.2), has at least one solution in C[0,∞), provided

1− 2Mn‖α‖1 > 0, (13.5)

where Mn = supt∈[0,∞) e
−ttn−1 = (n−1

e )n−1.

To prove Theorem 13.1, we need to prove some Lemmas.

Lemma 13.2. The operator L : domL ⊂ X → Y is a Fredholm operator of index
zero. Furthermore, the linear projector operator Q : Y → Y can be defined by

Qy(t) = ae−t
[ ∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds
]
,

where

1/a = 1−
n∑
k=0

(−1)k
n!

(n− k)!ξk
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and the linear operator KP : ImL→ domL ∩ kerP can be written as

Kpy(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds, y ∈ ImL.

Furthermore
‖Kpy‖ ≤

Mn

(n− 1)!
‖y‖1, for every y ∈ ImL. (13.6)

Proof. It is clear that

kerL = {x ∈ domL : x = ctn−1, c ∈ R, t ∈ [0,∞)
}
.

Now we show that

ImL =
{
y ∈ Y :

∫ ∞
0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds = 0
}
. (13.7)

The problem
x(n)(t) = y(t) (13.8)

has a solution x(t) that satisfies the conditions x(i)(0) = 0, for i = 0, 1, . . . , n − 2,
and x(n−1)(∞) = n!

ξn

∫ ξ
0
x(t)dt if and only if∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds = 0. (13.9)

In fact from (13.8) and the boundary conditions (11.2) we have

x(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

=
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ ctn−1.

From x(n−1)(∞) = n!
ξn

∫ ξ
0
x(t)dt, we obtain∫ ∞

0

y(s)ds =
1
ξn

∫ ξ

0

(ξ − s)ny(s)ds.

On the other hand, if (13.9) holds, setting

x(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds+ ctn−1

where c is an arbitrary constant, then x(t) is a solution of (13.8). Hence (13.7)
holds. Setting

Ry =
∫ ∞

0

y(s)ds− 1
ξn

∫ ξ

0

(ξ − s)ny(s)ds,

define Qy(t) = ae−tRy, it is clear that dim ImQ = 1. We have

Q2y = Q(Qy) = ae−t(a.Ry)(
∫ ∞

0

e−sds− 1
ξn

∫ ξ

0

(ξ − s)ne−sds)

= ae−tRy = Qy,

that implies the operator Q is a projector. Furthermore, ImL = kerQ.
Let y = (y − Qy) + Qy, where y − Qy ∈ kerQ = ImL, Qy ∈ ImQ. It follows

from kerQ = ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we have
Y = ImL ⊕ ImQ. Thus dim kerL = 1 = dim ImQ = codim ImL = 1, this means
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that L is a Fredholm operator of index zero. Now we define a projector P from X
to X by setting

Px(t) =
x(n−1)(0)
(n− 1)!

tn−1.

Then the generalized inverse KP : ImL→ domL ∩ kerP of L can be written as

Kpy =
1

(n− 1)!

∫ t

0

(t− s)n−1y(s)ds.

Obviously, ImP = kerL and P 2x = Px. It follows from x = (x − Px) + Px that
X = kerP + kerL. By simple calculation, we obtain that kerL ∩ kerP = {0}.
Hence X = kerL⊕ kerP .

From the definitions of P and KP , it is easy to see that the generalized inverse
of L is KP . In fact, for y ∈ ImL, we have

(LKp)y(t) = (Kpy(t))(n) = y(t),

and for x ∈ domL∩ kerP , we know that

(KpL)x(t) = (Kp)x(n)(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1x(n)(s)ds

= x(t)− [x(0) + x′(0)t+ . . . . . . .
x(n−2)(0)
(n− 2)!

tn−2 +
x(n−1)(0)
(n− 1)!

tn−1].

In view of x ∈ domL ∩ kerP , x(i)(0) = 0, for i = 0, 1, . . . , n− 2, and Px = 0, thus

(KpL)x(t) = x(t).

This shows that Kp = (L|domL∩kerP )−1. From the definition of Kp, we have

‖Kpy‖ = sup
t∈[0,∞)

e−t|Kpy| ≤ sup
t∈[0,∞)

e−t

(n− 1)!

∫ t

0

(t− s)n−1|y(s)|ds

<
Mn

(n− 1)!

∫ ∞
0

|y(s)|ds =
Mn

(n− 1)!
‖y‖1.

This completes the proof. �

Lemma 13.3. Let Ω1 = {x ∈ domL\ kerL : Lx = λNx for some λ ∈ [0, 1]}.
Then Ω1 is bounded.

Proof. Suppose that x ∈ Ω1, and Lx = λNx. Thus λ 6= 0 and QNx = 0, so that∫ ∞
0

f(s, x(s))ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, x(s))ds = 0.

Thus, by condition (H2), there exists t0 ∈ R+, such that |x(n−1)
(t0)| ≤ M . It

follows from the absolute continuity of x(n−1) that

|x
(n−1)

(0)| =
∣∣x(n−1)

(t0)−
∫ t0

0

x(n)(s)ds
∣∣,

then, we have

|x
(n−1)

(0)| ≤M +
∫ ∞

0

|Lx(s)|ds ≤M +
∫ ∞

0

|Nx(s)|ds = M + ‖Nx‖1. (13.10)
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Again for x ∈ Ω1 and x ∈ domL\ kerL, we have (I − P )x ∈ domL ∩ kerP and
LPx = 0; thus from Lemma 13.2,

‖(I − P )x‖ = ‖KpL(I − P )x‖

≤ Mn

(n− 1)!
‖L(I − P )x‖1

=
Mn

(n− 1)!
‖Lx‖1 ≤

Mn

(n− 1)!
‖Nx‖1.

(13.11)

So

‖x‖ ≤ ‖Px‖+ ‖(I − P )x‖ = Mn|x(n−1)(0)|+ Mn

(n− 1)!
‖Nx‖1, (13.12)

again from (13.10) and (13.11), (13.12) becomes

‖x‖ ≤MnM +Mn‖Nx‖1 +
Mn

(n− 1)!
‖Nx‖1 ≤MnM + 2Mn‖Nx‖1. (13.13)

On the other hand by (13.1) we have

‖Nx‖1 =
∫ ∞

0

|f(s, x(s))|ds ≤ ‖x‖‖α‖1 + ‖β‖1. (13.14)

Therefore, (13.13) and (13.14), it yield

‖x‖ ≤MnM + 2Mn‖x‖‖α‖1 + 2Mn‖β‖1;

since 1− 2Mn‖α‖1 > 0, we obtain

‖x‖ ≤ MnM

1− 2Mn‖α‖1
+

2Mn‖β‖1
1− 2Mn‖α‖1

.

So Ω1 is bounded. �

Lemma 13.4. The set Ω2 = {x ∈ kerL : Nx ∈ ImL} is bounded.

Proof. Let x ∈ Ω2, then x ∈ kerL implies x(t) = ctn−1, c ∈ R, and QNx = 0;
therefore ∫ ∞

0

f(s, csn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, csn−1)ds = 0.

From condition (H2), there exists t1 ∈ R+, such as |x(n−1)(t1)| ≤M . We have

(n− 1)!|c| ≤M

so |c| ≤ M
(n−1)! . On the other hand

‖x‖ = sup
t∈[0∞)

e−t|x(t)| = |c| sup
t∈[0∞)

e−ttn−1 = |c|Mn,

i.e. ‖x‖ ≤ MnM
(n−1)! <∞, so Ω2 is bounded. �

Lemma 13.5. Suppose that the first part of Condition (H3) holds. Let

Ω3 = {x ∈ kerL : −λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]}

where J : kerL → ImQ is the linear isomorphism given by J(ctn−1) = ctn−1, for
all c ∈ R t ≥ 0. Then Ω3 is bounded.
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Proof. In fact x0 ∈ Ω3, means that x0 ∈ kerL i.e. x0(t) = c0t
n−1 and λJx0 =

(1− λ)QNx0. Then we obtain

λc0t
n−1 = (1− λ)ae−t

(∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds
)
.

If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗, in view of (13.3) one has

λc20t
n−1 = (1− λ)ae−tc0(

∫ ∞
0

f(s, c0sn−1)ds− 1
ξn

∫ ξ

0

(ξ − s)nf(s, c0sn−1)ds) < 0,

which contradicts the fact that λc20 ≥ 0. So |c0| ≤M∗, moreover

‖x0‖ = sup e−t|c0|tn−1 = |c0|Mn ≤M∗Mn.

Therefore Ω3 is bounded. �

Lemma 13.6. Suppose that the second part of Condition (H3) holds. Let

Ω3 = {x ∈ kerL : λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]}
where J : kerL → ImQ is the linear isomorphism given by J(ctn−1) = ctn−1, for
all c ∈ R, t ≥ 0. Then Ω3 is bounded here J as in Lemma 13.5. Similar to the
above argument, we can verify that Ω3 is bounded.

Lemma 13.7. Suppose that Ω is an open bounded subset of X such that dom(L)∩
Ω 6= ∅. Then N is L-compact on Ω.

Proof. Suppose that Ω ⊂ X is a bounded set. Without loss of generality, we may
assume that Ω = B(0, r), then for any x ∈ Ω, ‖x‖ ≤ r. For x ∈ Ω, and by condition
(13.1), we obtain

e−t|QNx| ≤ ae−2t
[ ∫ ∞

0

|f(s, x(s))|ds+
1
ξn

∫ ξ

0

(ξ − s)n|f(s, x(s))|ds
]

≤ ae−2t
[ ∫ ∞

0

e−sα(s)|x(s)|+ β(s)ds

+
1
ξn

∫ ξ

0

(ξ − s)n(e−sα(s)|x(s)|+ β(s))ds
]

≤ ae−2t
[
r

∫ ∞
0

α(s)ds+
∫ ∞

0

β(s)ds+ r

∫ ξ

0

α(s)ds+
∫ ξ

0

β(s)ds
]

≤ ae−2t[2r‖α‖1 + 2‖β‖1]

≤ 2a[r‖α‖1 + ‖β‖1];

thus,
‖QNx‖1 ≤ 2a[r‖α‖1 + ‖β‖1], (13.15)

which implies that QN(Ω) is bounded. Next, we show that KP (I − Q)N(Ω) is
compact. For x ∈ Ω, by (13.1) we have

‖Nx‖1 =
∫ ∞

0

|fs, x(s)|ds ≤ [r‖α‖1 + ‖β‖1]; (13.16)

on the other hand, from the definition of KP and together with (13.6), (13.15) and
(13.16) one gets

‖KP (I −Q)N‖ ≤Mn‖(I −Q)N‖1 ≤Mn[‖Nx‖1 + ‖QNx‖1]

≤Mn[r(1 + 2a)‖α‖1 + (1 + 2a)‖β‖1].
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It follows that KP (I −Q)N(Ω) is uniformly bounded.
Let us prove that T is equicontinuous. For any x ∈ Ω and any t1, t2 ∈ [0, T ] with

t1 < t2 and T ∈ [0,∞), we have

|e−t1KP (I −Q)Nx(t1)− e−t2KP (I −Q)Nx(t2)|

=
1

(n− 1)!

∣∣∣ ∫ t1

0

e−t1(t1 − s)n−1(I −Q)Nx(s)ds

−
∫ t2

0

e−t2(t2 − s)n−1(I −Q)Nx(s)ds
∣∣∣

≤ 1
(n− 1)!

[
∫ t1

0

e−t2(t2 − s)n−1 − e−t1(t1 − s)n−1|(I −Q)Nx(s)|ds

+
∫ t2

t1

e−t2(t2 − s)n−1|(I −Q)Nx(s)|ds]

≤ 1
(n− 1)!

[ ∫ t1

0

(e−(t2−s)(t2 − s)n−1 − e−(t1−s)(t1 − s)n−1)

× e−s|(I −Q)Nx(s)|ds

+
∫ t2

t1

e−(t2−s)(t2 − s)n−1e−s|(I −Q)Nx(s)|ds
]

≤ 1
(n− 1)!

[M ′n(t2 − t1)
∫ t1

0

e−s|(I −Q)Nx(s)|ds

+ e−t2(t2 − t1)n−1

∫ t2

t1

|(I −Q)Nx(s)|ds
]
→ 0, as t1 → t2.

SoKP (I−Q)N(Ω) is equicontinuous on every compact subset of [0,∞). In addition,
we claim that KP (I −Q)N(Ω) is equiconvergent at infinity. In fact,

|e−tKp(I −Q)Nx(t)|

≤ 1
(n− 1)!

∫ t

0

e−(t−s)(t− s)n−1e−s|(I −Q)Nx(s)|ds

≤ Mn

(n− 1)!

∫ t

0

|(I −Q)Nx(s)|ds ≤ Mn

(n− 1)!
‖(I −Q)Nx‖1

≤ Mn

(n− 1)!
[‖Nx‖1 + ‖QNx‖1] <∞;

thus, limt→∞ |e−tKp(I − Q)Nx(t)| < ∞. Which means that KP (I − Q)N(Ω) is
equiconvergent �

Now we are able to give the proof of Theorem 13.1, which is an immediate
consequence of Theorem 12.1 and the above lemmas.

Proof of Theorem 13.1. We shall prove that all conditions of Theorem 12.1 are
satisfied. Set Ω to be an open bounded subset of X such that ∪3

i=1Ωi ⊂ Ω. We
know that L is a Fredholm operator of index zero and N is L-compact on Ω. By
the definition of Ω we have

(i) Lx 6= λNx pour tout (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL pour tout x ∈ kerL ∩ ∂Ω.
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At last we prove that condition (iii) of Theorem 12.1 is satisfied. To this end, let

H(x, λ) = ±λJx+ (1− λ)QNx

By the definition of Ω we know that Ω3 ⊂ Ω, thus H(x, λ) 6= 0 for every x ∈
kerL ∩ ∂Ω. Then, by the homotopy property of degree, we obtain

deg(QN |kerL,Ω ∩ ∩ kerL, 0) = deg(H(·, 0),Ω ∩ ∩ kerL, 0)

= deg(H(·, 1),Ω ∩ ∩ kerL, 0)

= deg(±J,Ω ∩ ∩ kerL, 0) 6= 0.

So, the third assumption of Theorem 12.1 is fulfilled and Lx = Nx has at least one
solution in domL ∩ Ω; i.e. (11.1)-(11.2) has at least one solution in X. The prove
is complete. �
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