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INFINITELY MANY SOLUTIONS FOR p-LAPLACIAN
BOUNDARY-VALUE PROBLEMS ON THE REAL LINE

SALEH SHAKERI, ARMIN HADJIAN

Abstract. Under appropriate oscillating behaviour of the nonlinear term, we
prove the existence of multiple solutions for p-Laplacian parametric equations

on unbounded intervals. These problems have a variational structure, so we use

an abstract result for smooth functionals defined on reflexive Banach spaces.

1. Introduction

Boundary value problems (briefly BVPs) on infinite intervals frequently occur
in mathematical modelling of various applied problems. Typically, these problems
arise very frequently in fluid dynamics, aerodynamics, quantum mechanics, elec-
tronics, astrophysics, and other domains of science. As examples we have: the
study of unsteady flow of a gas through a semi-infinite medium [19, 17], heat trans-
fer in the radial flow between parallel circular disks [25], draining flows [1], circular
membranes [3, 12, 13], plasma physics [16], non-Newtonian fluid flows [2], study
of stellar structure, thermal behavior of a spherical cloud of gas, isothermal gas
sphere, theory of thermionic currents [9, 11, 31], and modeling of vortex solitons
[14, 26].

Motivated by this interest, the aim of this article is to study the following elliptic
problem on the real line: Find u ∈W 1,p(R) satisfying

−
(
|u′(x)|p−2u′(x)

)′
+B|u(x)|p−2u(x) = λα(x)g(u(x)), x ∈ R,
u(−∞) = u(+∞) = 0,

(1.1)

where λ is a real positive parameter, B is a real positive number, and α, g : R→ R
are two functions such that

α ∈ L1(R), α(x) ≥ 0 for a.e. x ∈ R, α 6≡ 0,

and g is continuous and non-negative.
Our goal in this paper is to obtain some sufficient conditions to guarantee that,

for suitable values of λ, problem (1.1) has infinitely many solutions. To this end, we
require that the potential G of g satisfies a suitable oscillatory behavior either at
infinity (for obtaining unbounded solutions) or at the origin (for finding arbitrarily
small solutions). Our analysis is mainly based on a general critical point theorem
(see Lemma 2.5 below) contained in [4].
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We are motivated by the recent paper of Bonanno et al. [5] in which the existence
and multiplicity of non-negative solutions for problem (1.1) was established.

For more information, we refer the reader to the papers [7, 8, 10, 15, 18, 21, 32]
where the existence and multiplicity of solutions for BVPs (parametric or other-
wise) on unbounded intervals using variational methods and critical point theory
is proved. In conclusion, we cite a recent monograph by Kristály, Rădulescu and
Varga [20] as a general reference on variational methods adopted here. Here, as an
example, we state a special case of our results.

Theorem 1.1. Let α be a continuous function on R and

lim inf
ξ→+∞

∫ ξ
0
g(t)dt
ξp

= 0, lim sup
ξ→+∞

∫ ξ
0
g(t)dt
ξp

= +∞.

Then, for each λ > 0, problem (1.1) admits an unbounded sequence of non-negative
classical solutions.

This article is organized as follows. In Section 2, we present some necessary
preliminary facts that will be needed in the paper. In Section 3 our main result
(see Theorem 3.1) and some significative consequences (see Corollaries 3.3, 3.5 and
3.6) are presented.

2. Preliminaries

In this section, we first introduce some necessary definitions and notation which
will be used here.

Let (E, | · |) be a real Banach space. We denote by E∗ the dual space of E, while
〈·, ·〉 stands for the duality pairing between E∗ and E. We denote by | · | and by | · |t
the usual norms on R and on Lt(R), for all t ∈ [1,+∞], while W 1,p(R) indicates
the closure of C∞0 (R) with respect to the norm

‖u‖1,p :=
(
|u′|pp + |u|pp

)1/p
.

When p = 2 the norm is induced by the scalar product

(u, v) = (u′, v′)L2 + (u, v)L2 .

It is well known that W 1,p(R) ≡ W 1,p
0 (R) and W 1,p(R) is embedded in Lt(R) for

any t ∈ [p,+∞]. Also, the embedding W 1,p(R) ↪→ C([−R,R]), R > 0, is compact
and the embedding W 1,p(R) ↪→ L∞(R) is continuous.

In the following, we consider E := W 1,p(R) endowed with the norm

‖u‖ :=
(∫

R
(|u′(x)|p +B|u(x)|p) dx

)1/p

,

which is equivalent to the usual norm, that is, when B = 1. The following propo-
sition corresponds to [5, Proposition 2.2].

Proposition 2.1. One has
|u|∞ ≤ cB‖u‖ (2.1)

for all u ∈W 1,p(R), where

cB := 2(p−2)/p
(p− 1

p

)(p−1)/p( 1
B

)(p−1)/p2

. (2.2)
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Definition 2.2. We say that a function u ∈ E is a (weak) solution of problem
(1.1) if∫

R

(
|u′(x)|p−2u′(x)v′(x) +B|u(x)|p−2u(x)v(x)

)
dx− λ

∫
R
α(x)g(u(x))v(x)dx = 0

for all v ∈ E. Moreover, when α is, in addition, a continuous function on R, the
(weak) solutions of (1.1) are actually classical, as standard computations show.

Definition 2.3. Let Φ,Ψ : E → R be two continuously Gâteaux differentiable
functionals. Put Iλ := Φ − λΨ, λ > 0, and fix r ∈ [−∞,+∞]. We say that the
functional Iλ satisfies the Palais-Smale condition cut off upper at r (in short, the
(PS)[r]-condition) if any sequence {un} ⊂ E such that

• {Iλ(un)} is bounded,
• limn→+∞ ‖I ′λ(un)‖∗ = 0,
• Φ(un) < r for all n ∈ N,

has a convergent subsequence.

Remark 2.4. Clearly, if r = +∞, then (PS)[r]-condition coincides with the clas-
sical (PS)-condition. Moreover, if Iλ satisfies (PS)[r]-condition, then it satisfies
(PS)[ρ]-condition for all ρ ∈ [−∞,+∞] such that ρ ≤ r. So, in particular, if
Iλ satisfies the classical (PS)-condition, then it satisfies (PS)[ρ]-condition for all
ρ ∈ [−∞,+∞].

We shall prove our results applying the following lemma by Bonanno [4, Theorem
7.4], which improves [30, Theorem 2.5]. We point out that Ricceri’s variational
principle generalizes the celebrated three critical point theorem by Pucci and Serrin
[27, 28] and is an useful result that gives alternatives for the multiplicity of critical
points of certain functions depending on a parameter.

Lemma 2.5. Let X be a real Banach space and let Φ,Ψ : X → R be two continuous
Gâteaux differentiable functionals with Φ bounded from below. For r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:
(a) If γ < +∞ and for every λ ∈ (0, 1/γ) the functional Iλ := Φ− λΨ satisfies

the (PS)[r]-condition for all r ∈ R, then, for each λ ∈ (0, 1/γ), the following
alternative holds: either
(1) Iλ possesses a global minimum, or
(2) there is a sequence {un} of critical points (local minima) of Iλ such

that limn→+∞ Φ(un) = +∞.
(b) If δ < +∞ and for every λ ∈ (0, 1/δ) the functional Iλ := Φ− λΨ satisfies

the (PS)[r]-condition for all r > infX Φ, then, for each λ ∈ (0, 1/γ), the
following alternative holds: either
(1) there is a global minimum of Φ which is a local minimum of Iλ, or
(2) there is a sequence {un} of pairwise distinct critical points (local min-

ima) of Iλ such that limn→+∞ Φ(un) = infX Φ.
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We also refer the interested reader to the papers [6, 23, 24], in which Ricceri’s
variational principle and its variants have been successfully used to obtain the
existence of solutions for different boundary value problems; see also the related
papers [22, 29].

3. Main results

In this section we establish the main abstract result of this article. We set

G(ξ) :=
∫ ξ

0

g(t)dt, ∀ξ ∈ R.

Our hypotheses on g guarantee that G ∈ C1(R) and G′(ξ) = g(ξ) ≥ 0 for all ξ ∈ R,
so G is non-decreasing. Now, we put

α0 :=
∫ 1

−1

α(x)dx,

l := cB

(
22p−1 +

B

2(p+ 1)
+ 2B

)1/p

,

B∞ := lim sup
ξ→+∞

G(ξ)
ξp

.

With the above notation, we are able to prove the following result.

Theorem 3.1. Assume that there exist two sequences {an} and {bn} in ]0,+∞[,
with limn→+∞ bn = +∞, such that

(H1) an <
bn

l for each n ∈ N;
(H2) A∞ := limn→+∞

|α|1G(bn)−α0G(an)
bp

n−(anl)p < α0
lp B

∞.

Then, for each

λ ∈ 1
pcpB

] lp

α0B∞
,

1
A∞

[
,

problem (1.1) admits an unbounded sequence of non-negative solutions in E.

Proof. Our aim is to apply Lemma 2.5(a) to problem (1.1). To this end, let the
functionals Φ,Ψ : E → R be defined by

Φ(u) :=
1
p
‖u‖, Ψ(u) :=

∫
R
α(x)G(u(x))dx,

and put
Iλ(u) := Φ(u)− λΨ(u),

for every u ∈ E.
It is clear that the assumptions on α and g guarantee that the functional Ψ is

well defined.
It is well known that Φ and Ψ are continuous Gâteaux differentiable functionals

whose Gâteaux derivatives at the point u ∈ E are

Φ′(u)(v) =
∫

R

(
|u′(x)|p−2u′(x)v′(x) +B|u(x)|p−2u(x)v(x)

)
dx,

Ψ′(u)(v) =
∫

R
α(x)g(u(x))v(x)dx,
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for every v ∈ E. Thus, a critical point of the functional Iλ is a solution of (1.1).
Moreover, it is proved in [5, Lemma 2.8] that the functional Iλ satisfies (PS)[r]-
condition for all r ∈ R.

Fix λ as in the statement of the theorem. First, we show that λ < 1/γ. To this
end, write

rn :=
1
p

(
bn
cB

)p
, ∀n ∈ N. (3.1)

Then, for all u ∈ E with Φ(u) < rn, taking Proposition 2.1 into account, one has

|u|∞ ≤ cB‖u‖ < cB(prn)1/p = bn, ∀n ∈ N.

Then, for every n ∈ N, it follows that

ϕ(rn) ≤ inf
Φ(u)<rn

∫
R α(x) sup|ξ|<bn

G(ξ)dx−
∫

R α(x)G(u(x))dx
1
p

(
bn

cB

)p − 1
p‖u‖p

≤ (pcpB) inf
Φ(u)<rn

|α|1G(bn)−
∫

R α(x)G(u(x))dx
bpn − (cB‖u‖)p

.

For n ∈ N, let

wn(x) :=


4an(x+ 1) + an x ∈ [− 5

4 ,−1[,
an x ∈ [−1, 1],
4an(1− x) + an x ∈]1, 5

4 ],
0 otherwise.

Clearly, wn ∈ E. Moreover, one has

‖wn‖p =
∫

R
|w′n(x)|pdx+B

∫
R
|wn(x)|pdx

=
(4an)p

2
+B

( 1
2(p+ 1)

+ 2
)
apn

= apn

(
22p−1 +

B

2(p+ 1)
+ 2B

)
=
(anl
cB

)p
.

Hence, by assumption (H1), one has Φ(wn) < rn. Moreover,

Ψ(wn) =
∫ 5

4

− 5
4

α(x)G(wn(x))dx

≥
∫ 1

−1

α(x)G(wn(x))dx

= α0G(an),

for each n ∈ N. Then, it follows that

ϕ(rn) ≤ (pcpB)
|α|1G(bn)− α0G(an)

bpn − (anl)p
,

for every n ∈ N. Hence, bearing in mind assumption (H2), we can write

0 ≤ γ ≤ lim
n→+∞

ϕ(rn) ≤ pcpBA∞ < +∞.
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Taking into account the above relation, since

λ <
1

pcpBA∞
,

we also have λ < 1/γ.
Now, we claim that the functional Iλ is unbounded from below. Since

1
λ
<
pcpBα0

lp
B∞,

there exist a sequence {ηn} of positive numbers and τ > 0 such that limn→+∞ ηn =
+∞ and

1
λ
< τ <

pcpBα0

lp
G(ηn)
ηpn

,

for each n ∈ N large enough. For n ∈ N, let sn ∈ E defined by

sn(x) :=


4ηn(x+ 1) + ηn x ∈ [− 5

4 ,−1[,
ηn x ∈ [−1, 1],
4ηn(1− x) + ηn x ∈]1, 5

4 ],
0 otherwise.

Thus, we obtain

Iλ(sn) = Φ(sn)− λΨ(sn)

≤ 1
p

(
ηnl

cB

)p
− λα0G(ηn)

<
1
p

(
ηnl

cB

)p
(1− λτ),

for every n ∈ N large enough. Since λτ > 1 and limn→+∞ ηn = +∞, we have

lim
n→+∞

Iλ(sn) = −∞.

Then, the functional Iλ is unbounded from below, and it follows that Iλ has no
global minimum. Therefore, by Lemma 2.5(a), there exists a sequence {un} of
critical points of Iλ such that

lim
n→+∞

‖un‖ = +∞.

Finally, it is proved in [5, proof of Theorem 3.1] that the critical points of the energy
are non-negative. The proof is complete. �

Put

B0 := lim sup
ξ→0+

G(ξ)
ξp

.

Arguing as in the proof of Theorem 3.1 and applying part Lemma 2.5 (b), we obtain
the following result.

Theorem 3.2. Assume that there exist two sequences {cn} and {dn} in ]0,+∞[,
with limn→+∞ dn = 0, such that

(H3) cn <
dn

l for each n ∈ N;
(H4) A0 := limn→+∞

|α|1G(dn)−α0G(cn)
dp

n−(cnl)p < α0
lp B

0.
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Then, for each

λ ∈ 1
pcpB

] lp

α0B0
,

1
A0

[
,

problem (1.1) admits a sequence of non-trivial and non-negative solutions which
converges strongly to zero in E.

Now, we point out some consequences of Theorem 3.1. First, by setting

A∞ := lim inf
ξ→+∞

G(ξ)
ξp

,

we obtain the following result.

Corollary 3.3. Assume that
(H5) A∞ < α0

|α|1lpB
∞.

Then, for each

λ ∈ 1
pcpB

] lp

α0B∞
,

1
|α|1A∞

[
,

problem (1.1) admits an unbounded sequence of non-negative solutions in E.

Proof. Let {bn} be a sequence of positive numbers which goes to infinity such that

lim
n→+∞

G(bn)
bpn

= A∞.

Taking an = 0 for every n ∈ N, by Theorem 3.1 the conclusion follows. �

Remark 3.4. Theorem 1.1 immediately follows from Corollary 3.3.

A special case of Corollary 3.3 is the following.

Corollary 3.5. Assume that
(H6) A∞ < 1

pcp
B |α|1

and B∞ > lp

pcp
Bα0

.

Then, problem (1.1) with λ = 1 admits an unbounded sequence of non-negative
solutions in E.

The next result is a consequence of Theorem 3.1 and guarantees the existence of
infinitely many solutions to (1.1) for each λ which lies in a precise half-line.

Corollary 3.6. Assume that there exist two sequences {an} and {bn} in ]0,+∞[,
with limn→+∞ bn = +∞, such that (H1) holds and

(H7) α0G(an) = |α|1G(bn) for each n ∈ N.
If B∞ > 0, then, for each

λ >
lp

pcpBα0|B∞
,

problem (1.1) admits an unbounded sequence of non-negative solutions in E.

Proof. By (H7) we obtain A∞ = 0. Hence, since B∞ > 0, condition (H2) of
Theorem 3.1 holds and the proof is complete. �

Remark 3.7. From Theorem 3.2 we obtain the same consequences of Theorem
3.1. Namely, substituting ξ → +∞ with ξ → 0+, statements such as Corollaries
3.3, 3.5 and 3.6 can be established.

Next we present an example which is an application of Corollary 3.3.



8 S. SHAKERI, A. HADJIAN EJDE-2016/288

Example 3.8. Put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1
4(n+ 1)!

.

for every n ∈ N, and define the non-negative continuous function g : R→ R by

g(ξ) :=

{
32(n+1)!2[(n+1)!2−n!2]

π

√
1

16(n+1)!2 −
(
ξ − n!(n+2)

2

)2
, if ξ ∈ ∪n∈N[an, bn],

0, otherwise.

One has ∫ (n+1)!

n!

g(t)dt =
∫ bn

an

g(t)dt = (n+ 1)!2 − n!2

for every n ∈ N. Then, one has

lim
n→+∞

G(an)
a2
n

= 0 and lim
n→+∞

G(bn)
b2n

= 4.

Therefore, by a simple computation, we obtain

lim inf
ξ→+∞

G(ξ)
ξ2

= 0 and lim sup
ξ→+∞

G(ξ)
ξ2

= 4.

Also, let α(x) := 1/(1 + x2) for all x ∈ R. Then, α is a non-negative continuous
function with

α0 =
π

2
and |α|1 = π.

We have

0 = lim inf
ξ→+∞

G(ξ)
ξ2

<
α0

|α|1l2
lim sup
ξ→+∞

G(ξ)
ξ2

=
24
61
.

So, from Corollary 3.3, for each λ > 61/(24π), the problem

−u′′ + u = λ
g(u)

1 + x2
, x ∈ R,

u(−∞) = u(+∞) = 0,

admits an unbounded sequence of non-negative classical solutions in W 1,2(R). In
particular, since 1 > 61/(24π), the problem

−u′′ + u =
g(u)

1 + x2
, x ∈ R,

u(−∞) = u(+∞) = 0,

admits an unbounded sequence of non-negative classical solutions.
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