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GAP SOLITONS IN PERIODIC SCHRÖDINGER LATTICE
SYSTEM WITH NONLINEAR HOPPING

MING CHENG, ALEXANDER PANKOV

Abstract. This article concerns the periodic discrete Schrödinger equation
with nonlinear hopping on the infinite integer lattice. We obtain the existence

of gap solitons by the linking theorem and concentration compactness method

together with a periodic approximation technique. In addition, the behavior
of such solutions is studied as α → 0. Notice that the nonlinear hopping can

be sign changing.

1. Introduction

The discrete nonlinear Schrödinger equation (DNLS) is one of the most impor-
tant inherently discrete models playing a crucial role in the modeling a wide variety
of phenomena in many areas of science ranging from solid-state and condensed mat-
ter physics, and nonlinear optics to biology. For general reviews of such applications
we refer to [2, 3, 4, 7] and references therein. Most publications in this area are
devoted to spatially homogeneous DNLS, i.e., DNLS with complete (discrete) trans-
lation invariance. Majority of results obtained concerns spatially localized standing
wave solution, often called breathers, in which case the evolutionary DNLS reduces
to the stationary one. Methods commonly used in studying DNLS are based on
perturbation analysis, dynamical system approach and numerical simulation. Also
we point out that an exceptional DNLS, the so-called Ablowitz-Ladik equation, is
a completely integrable system. On the other hand, Weinsten [16] made use of
variational techniques, namely constrained minimization, to obtain the existence of
standing waves and to study certain properties of such solutions, still in the fully
translation invariant case. To the best of our knowledge, this is the first application
of variational techniques in the context of DNLS.

Nevertheless spatially non-homogeneous DNLS is not less important than homo-
geneous one. Especially interesting is the case when the equation is periodic with
respect to the spatial variable(s). Notice that we are still interesting in solutions
confined in a finite region of the space. In [9, 10, 11, 13], the second author initi-
ated the study of periodic DNLS with the aid of variational methods. Specifically,
these papers make use of critical point theorems for smooth functionals in combina-
tion with periodic approximations and concentration compactness. This approach
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goes back to [8], where the continuous NLS is considered. Another line of research
[12, 14, 17] is concerned with DNLS with infinitely growing potential.

Let us consider the time dependent DNLS with nonlinear hopping

iψ̇n = −∆dψn + εnψn − βnf(ψn)− αnψn(|ψn+1|2 + |ψn−1|2), n ∈ Z, (1.1)

where ∆dψn = ψn+1−2ψn+ψn−1 stands for the discrete one-dimensional Laplacian
and {εn}, {αn}, {βn} are real sequences. The nonlinearity f is a gauge invariant
complex-valued function of complex variable, i.e. f(eiωu) = eiωf(u) for any ω ∈ R.
We also suppose that f(R) ⊂ R. Because of the gauge invariance, this equation
may possess localized in space standing wave solutions or, in other words, breathers.
Karachalios et al. [5] consider equation (1.1) and its multi-dimensional version in
the fully translation invariant case. Main results of that paper concern energy
thresholds for such solutions. However, the existence of standing waves is obtained
only in the case when the equation is restricted to a finite box, with the Dirichlet
boundary conditions at the faces. This paper also discuss applications of DNLS with
nonlinear hopping in physics and provides a number of relevant references. Recently,
M. Cheng [1] has obtained a proof of existence of localized solitary waves on the
entire lattice. His approach follows [8, 9, 13] and is based on the Nehari manifold
argument combined with periodic approximations and concentration compactness.

Using the standing wave ansatz

ψn = e−iωtun ,

where un ∈ R, we arrive at the equation

−∆dun + εnun − ωun = βnf(un) + αnun(|un+1|2 + |un−1|2)

for the profile sequence {un}. It is convenient to introduce the operator

Lun = −∆dun + εnun .

Then equation (1.1) becomes

Lun − ωun = βnf(un) + αnun(|un+1|2 + |un−1|2). (1.2)

In the remaining part of the paper we study equation (1.2) in its own rights.
Since we are looking for real solutions of this equation, we may and shall assume
that the nonlinearity f is a real function on the real line. Throughout the paper
we assume that the potential {εn} and the coefficient sequences {αn} and {βn} are
periodic. Notice that though we consider equation (1.2) on the one-dimensional
lattice, our approach is not sensitive to the space dimension, and the results extend
straightforwardly to multi-dimensional equations of this type.

Since the coefficients of L are periodic, L is a bounded self-adjoint operator in the
space l2. Moreover, its spectrum σ(L) has the so-called band structure, i. e., is the
union of a finite number of closed intervals which are called bands (see, e.g., [15]).
Bands may touch, but in general, they are separated by open intervals called gaps.
There exists a finite number of open intervals called spectral gaps. Semi-infinite
intervals below and above the spectrum are also considered as gaps.

Under certain assumptions we prove the existence of nontrivial solutions in the
space l2 provided the frequency ω belongs to either finite spectral gap, or lies below
the spectrum of L. Moreover, the solutions obtained are well-localized in the sense
that they decay at infinity exponentially fast. Under certain extra assumptions
we obtain the existence of ground states, i.e., solutions that minimize the energy
among all nontrivial solutions. In view of application to solitary standing waves for
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equation (1.1), these solutions are called gap solitons. Notice that for frequencies
below the spectrum we have two different existence results. Remarkably enough
is that in our main result hopping coefficients αn can be sign-changing, or even
all negative. We do not know whether Assumption (v) below can be dropped or
weakened in the case when the frequency belongs to a finite spectral gap even if
the hopping term is positive. On the other hand, in the case when the frequency is
above the spectrum we provide a simple nonexistence result.

Since equation (1.2) possesses an energy functional (see functional J in Sec-
tion 2), our approach is variational. Following [8, 9], we employ periodic approx-
imations in combination with classical Linking Theorem [18] and elementary con-
centration compactness argument to prove the existence of a nontrivial solution.
Then we deduce the existence of ground state solution, i.e., a solution with mini-
mum energy among all nontrivial solutions. Finally, we provide two simple general
results on nonexistence of solutions and exponential decay, respectively.

2. Main results

Let us introduce our assumptions on the function f .
(i) The function f is continuous.

(ii) There exist p > 2 and C > 0 such that |f(u)| ≤ C(1 + |u|p−1).
(iii) f is superlinear at 0, i.e., f(u) = o(u) as u→ 0.
(iv) There exists q > 2 such that 0 < qF (u) ≤ f(u)u for all u 6= 0, where

F (u) =
∫ u

0

f(s) ds .

(v) There exists a constant µ > 0 such that F (u) ≥ µu4 for all u ∈ R.
Notice that Assumption (iv) is the standard Ambrosetti-Rabinowitz condition.

Assumptions (ii) and (iii) imply that for any given ε > 0, there exists A(ε) > 0 such
that

f(u)u ≤ ε|u|2 +A(ε)|u|p, (2.1)

F (u) ≤ ε

2
|u|2 +

A(ε)
p
|u|p. (2.2)

Notice that the power nonlinearity

f(u) = |u|p−2u , p > 2 ,

satisfies Assumptions (i)–(iv) but (v) holds only when p = 4. On the other hand
f(u) = u3 + u5 satisfies (i)–(v).

Now introduce the following notation. We set

Λ = supσ(L) and λ = inf σ(L) .

These are the top and bottom of the spectrum of L. Also we set

α = max
n
{αn} , α = min

n
{αn} ,

β = max
n
{βn} , β = min

n
{βn} .

The conjugate exponent to p is denoted by p′:
1
p

+
1
p′

= 1 .

For convenience we formulate the following two alternative sets of assumptions.
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(A1) Assume that ω 6∈ σ(L) and ω < Λ, the function f satisfies (i)–(v), β > 0
and α > −µβ(q − 2).

(A2) Assume that ω < λ, f satisfies (i)–(iv), α ≥ 0 and β > 0.
Our main existence result is the following.

Theorem 2.1. Suppose that either Assumption (A1) or (A2) is satisfied. Then
(1.2) has a non-zero solution u ∈ l2. Furthermore, the solution u decays exponen-
tially fast at infinity, i.e.,

|un| ≤ Ce−ν|n|, n ∈ Z
for some constants C > 0 and ν > 0. If, in addition, αn ≥ 0 for all n ∈ Z, then
(1.2) possesses a ground state solution in l2.

The next question we are interesting in is about zero hopping limit in (1.2).
More precisely, we consider a sequence of equations

Lun − ωun = βnf(un) + αmn un(|un+1|2 + |un−1|2) , (2.3)

where limm→∞ αmn = 0 for all n.

Theorem 2.2. Suppose that (2.3) satisfies one of the Assumptions (A1) or (A2)
for all m. Then, there exist nontrivial solutions u(m) ∈ l2 of (2.3) which converge
to a nontrivial solution u ∈ l2 of the equation

Lun − ωun = βnf(un) (2.4)

up to a passage to a subsequence and translations.

It follows from the proof that we can choose as u(m) the solution obtained in
Proposition 5.1. If αmn ≥ 0, then u(m) can be a ground state solution. Notice that
we do not know whether the limit solution in this case is a ground state of equation
(2.4). On the other hand, the existence of ground state for equation (2.4) can be
deduced from the results of [9, 10].

3. Variational setting

We denote by lp the space of p-summable sequences and by ‖ · ‖p the norm on
it. The space l2 is shortly denoted by E and ‖ · ‖ = ‖ · ‖2. The inner product in E
is denoted by (·, ·).

For any integer k > 0, we denote by Ek the space of all kN -periodic sequences.
Let

Pk =
{
n ∈ Z : −[

kN

2
] ≤ n ≤ kN − [

kN

2
]− 1

}
.

On the space Ek we consider the norms

‖u‖(k,p) =
( ∑
n∈Pk

|un|p
)1/p

.

Since Ek is finite dimensional, all these norms are equivalent but not uniformly
with respect to k. However,

‖u‖(k,q) ≤ ‖u‖(k,p), 1 ≤ p ≤ q ≤ ∞.
We denote by ‖·‖k = ‖·‖(k,2) the Euclidean norm on Ek and by (·, ·)k the associated
inner product. Note that, by the periodicity of the potential, L also acts as a self-
adjoint operator in Ek. We denote this operator by Lk. Let us point out that
σ(Lk) ⊂ σ(L).
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Let E+ and E− be the positive and negative spectral subspaces of the operator
L− ω in E, respectively. Similarly, the positive and negative spectral subspaces of
the operator Lk −ω in Ek are denoted by E+

k and E−k , respectively. Then we have
orthogonal decompositions E = E+⊕E− and Ek = E+

k ⊕E
−
k . Furthermore, let us

introduce the orthogonal projectors P± (respectively, P±k ) onto the subspaces E±

(respectively, E±k ). Let
δ = dist(ω, σ(L)) .

It is well-known that

±(Lu− ωu, u) ≥ δ‖u‖2, u ∈ E±,
±(Lku− ωu, u) ≥ δ‖u‖2k, u ∈ E±k .

On the space E we introduce the functional

J(u) =
1
2

(Lu− ωu, u)−
∑
n∈Z

βnF (un)−
∑
n∈Z

αn
2
u2
nu

2
n+1.

A straightforward calculation shows that

(J ′(u), v) = (Lu− ωu, v)−
∑
n∈Z

βnf(un)vn −
∑
n∈Z

αnun(u2
n+1 + u2

n−1)vn .

Therefore, critical points of J are solutions of (1.2) in the space E.
Since we will use periodic approximations to find l2-solutions of (1.2), we intro-

duce the functional

Jk(u) =
1
2

(Lku− ωu, u)k −
∑
n∈Pk

βnF (un)−
∑
n∈Pk

αn
2
u2
nu

2
n+1 .

Its derivative is given by

(J ′k(u), v) = (Lku− ωu, v)k −
∑
n∈Pk

βnf(un)vn −
∑
n∈Pk

αnun(u2
n+1 + u2

n−1)vn .

Critical points of Jk are solutions of equation (1.2) in Ek, i.e., kN -periodic solutions.
It is easily seen that, under the assumptions imposed above, all critical values of
the functionals J and Jk are nonnegative.

Now we derive some estimates for critical points and critical values of the func-
tionals J and Jk.

Lemma 3.1. Let uk ∈ Ek and u ∈ E be critical points of Jk and J , respectively,
with critical values c = J(u) and ck = Jk(uk). Then the following statements hold.

(a) Under Assumption (A1) there exists a constant C > 0 independent of k and
such that

‖u‖ ≤ C(c3/4 + c1/2 + c1/p
′
),

‖uk‖k ≤ C(c3/4k + c
1/2
k + c

1/p′

k ) .

The constant C can be chosen independent of {αn} if all of αn, n ∈ Z, belong to a
compact subinterval of the interval (−µβ(q − 2),∞).

(b) Under Assumption (A2) there exists a constant C > 0 independent of k and
{αn}, and such that

‖u‖ ≤ Cc1/2 and ‖uk‖k ≤ Cc1/2k .
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Proof. We give the proof for the case of functional J , the other one being similar.
(a) By Assumption (iii), there exists a constant C > 0 such that

|u||f(un)| ≥ C ′|f(un)|2

whenever |un| < 1. On the other hand, there exists a constant µ > 0 such that

|unf(un)| = |f(un)||un|(p−1)(p′−1) ≥ µ|f(un)|p
′

for |un| ≥ 1. Note that
α > −(q − 2)βµ.

Then there exists γ > 0 small enough such that

α+ (1− γ)(q − 2)βµ > 0.

Therefore, for any nontrivial critical point u ∈ l2 of J ,

c = J(u)− 1
2

(J ′(u), u)

=
∑
n∈Z

βn
[f(un)un

2
− F (un)

]
+
∑
n∈Z

αn
2
u2
nu

2
n+1

≥ (
1
2
− 1
q

)
∑
n∈Z

βnf(un)un +
min{α, 0}

2
‖u‖44

= (
1
2
− 1
q

)
∑
|un|≥1

γβnf(un)un + (
1
2
− 1
q

)
∑
|un|<1

γβnf(un)un

+ (
1
2
− 1
q

)
∑
n∈Z

(1− γ)βnf(un)un +
min{α, 0}

2
‖u‖44

≥ (
1
2
− 1
q

)
∑
|un|≥1

γβµ|f(un)|p
′
+ (

1
2
− 1
q

)
∑
|un|<1

γβC ′|f(un)|2

+ (
1
2
− 1
q

)
∑
n∈Z

(1− γ)βµq|un|q +
min{α, 0}

2
‖u‖44.

(3.1)

Let u± = P±u be the orthogonal projection of u on E±. Then

0 = (J ′(u), u+)

= ((L− ω)u+, u+)−
∑
n∈Z

βnf(un)u+
n −

∑
n∈Z

αnun(|un+1|2 + |un−1|2)u+
n

and, by the Hölder inequality, we obtain

δ‖u+‖2 ≤ β
∑
n∈Z
|f(un)u+

n |+ 2 max{|α|, |α|}‖u+‖4‖u‖34

≤ 2 max{|α|, |α|}‖u+‖4‖u‖34 + β(
∑
|un|≥1

|f(un)|p
′
)1/p

′
‖u+‖p

+ β(
∑
|un|<1

|f(un)|2)1/2‖u+‖.

Together with (3.1), this implies that

‖u+‖2 ≤ 2 max{|α|, |α|}
δ

( 2c
µβ(q − 2)(1− γ) + min{α, 0}

)3/4

‖u+‖
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+
β

δ

[( 2cq
µγβ(q − 2)

)1/p′

+
( 2cq
C ′γβ(q − 2)

)1/2]
‖u+‖.

Similarly, we obtain

‖u−‖2 ≤ 2 max{|α|, |α|}
δ

( 2c
µβ(q − 2)(1− γ) + min{α, 0}

)3/4

‖u−‖

+
β

δ

[( 2cq
µγβ(q − 2)

)1/p′

+
( 2cq
C ′γβ(q − 2)

)1/2]
‖u−‖.

Since

‖u‖ ≥ 1√
2

(‖u+‖+ ‖u−‖) ,

combining the last two inequalities we obtain that

‖u‖ ≤ 2
√

2 max{|α|, |α|}
δ

( 2c
µβ(q − 2)(1− γ) + min{α, 0}

)3/4

+
β
√

2
δ

[( 2cq
µγβ(q − 2)

) 1/p′
+
( 2cq
C ′γβ(q − 2)

)1/2]
which implies the required.

(b) This case is simpler. We have that

c = J(u)− 1
2

(J ′(u), u)

=
∑
n∈Z

βn
[f(un)un

2
− F (un)

]
+
∑
n∈Z

αn
2
u2
nu

2
n+1

≥ (
1
2
− 1
q

)
∑
n∈Z

βnf(un)un +
∑
n∈Z

αn
2
u2
nu

2
n+1 .

Since

0 = (J ′(u), u)

= ((L− ω)u, u)−
∑
n∈Z

βnf(un)un −
∑
n∈Z

αnun(|un+1|2 + |un−1|2)un ,

the last inequality yields

δ‖u‖2 ≤
∑
n∈Z

βnf(un)un + 2
∑
n∈Z

αnu
2
nu

2
n+1 ≤

(6q − 8)
q − 2

c .

This completes the proof of part (b). �

The next lemma provides a lower bound for nontrivial critical points.

Lemma 3.2. Under the assumptions of Theorem 2.1 there exists a constant κ > 0
independent of k and such that for all nontrivial critical points uk ∈ Ek of Jk and
u ∈ E of J

‖u‖ ≥ κ and ‖uk‖k ≥ κ .
Furthermore, the constant κ can be chosen independent of {αn} provided that all
αn, n ∈ Z, belong to a bounded interval.
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Proof. Assume (A1). As in Lemma 3.1, we have

δ‖u+‖2 ≤ β
∑
n∈Z
|f(un)u+

n |+ 2 max{|α|, |α|}‖u+‖4‖u‖34,

δ‖u−‖2 ≤ β
∑
n∈Z
|f(un)u−n |+ 2 max{|α|, |α|}‖u−‖4‖u‖34 .

Combining these two inequalities and making use of (2.1), we obtain

δ − βε
√

2 ≤ βA(ε)
√

2‖u‖p−2 + 2
√

2 max{|α|, |α|}‖u‖2 .
Similar inequality holds for critical points of the kN -periodic problem with the
same constants. Choosing ε small enough, we complete the proof. The case of
Assumption (A2) is similar and simpler. �

Remark 3.3. By Lemmas 3.1 and 3.2, there exists a constant κ0 > 0 independent
of k such that all positive critical values of the functionals Jk and J belong to
[κ0,∞).

4. Periodic problem

We start with the Palais-Smale condition for the functional Jk. Recall that a
sequence {vj} in Ek is a Palais-Smale sequence for Jk if the sequence {Jk(vj)} is
bounded and J ′k(vj)→ 0 as j →∞.

Lemma 4.1. Under the assumptions of Theorem 2.1, the functional Jk satisfies
the Palais-Smale condition, i.e., every Palais-Smale sequence contains a convergent
subsequence.

Proof. We prove the lemma under Assumption (A1), the other case being similar
and simpler. Since the space Ek is finite dimensional, it is enough to show that
every Palais-Smale sequence is bounded. Replacing L and ω by L+ω0 and ω+ω0,
respectively, we may and will assume that

(Lu, u)k ≥ ‖u‖2k, ∀u ∈ Ek ,
and ω > 0.

Let vj be a Palais-Smale sequence at a level b, i.e., Jk(vj) → b and J ′k(vj) → 0
as j →∞. Choose any λ ∈ (1/4, 1/2). Then, for j large enough,

b+ 1 + λ‖vj‖k
≥ Jk(vj)− λ(J ′k(vj), vj)k

= (
1
2
− λ)(Lvj , vj)k − (

1
2
− λ)ω‖vj‖2k + (2λ− 1

2
)
∑
n∈Pk

αnv
j2
n v

j2
n+1

+ λ
∑
n∈Pk

βnf(vjn)vjn −
∑
n∈Pk

βnF (vjn)

≥ (
1
2
− λ)‖vj‖2k − (

1
2
− λ)ω‖vj‖2k + β(λq − 1)

∑
n∈Pk

F (vjn)

+ 2 min{α, 0}(λ− 1
4

)‖vj‖4(k,4)

≥ (
1
2
− λ)‖vj‖2k − (

1
2
− λ)ω‖vj‖2k +

(
βµ(λq − 1) + 2 min{α, 0}(λ− 1

4
)
)
‖vj‖4(k,4) .
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Since all norms of Ek are equivalent,

b+ 1 ≥ −λ‖vj‖k + (
1
2
− λ)‖vj‖2k − (

1
2
− λ)ω‖vj‖2k

+ C
(
βµ(λq − 1) + 2 min{α, 0}(λ− 1

4
)
)
‖vj‖4k

for some constant C > 0 depending on k. The coefficient in the forth term in the
right hand side is positive and, hence, the sequence {vj} is bounded. �

Now we show that the functional Jk possess the so-called linking geometry (see,
e.g., [18, Chapter 2]). Note that in the case when ω is below the spectrum of L,
then E−k = {0} and we can use its special case known as mountain pass geometry.

First we choose a unit vector zk ∈ E+
k as follows. If the frequency ω is below

the spectrum σ(L), then E+
k = Ek and we define zk as follows

zkn =

{
1 if n = mkN, m ∈ Z ,
0 otherwise .

In the case when ω belongs to a finite spectral gap, the choice of zk is more delicate.
Let Sk be the “periodization” operator that assigns to any sequence u = {un} the
kN -periodic sequence Sku defined by

(Sku)n = un, n ∈ Pk.
Let z ∈ E+ be any unit vector. The results of [9, Appendix A] imply that
‖P+

k Skz‖k → 1. Hence, there exists k0 ∈ N such that for all k ≥ k0

zk =
P+
k Skz

‖P+
k Skz‖k

is a well-defined unit vector in E+
k . Moreover,

‖zk‖(k,p) → ‖z‖lp (4.1)

for all p ∈ [1,∞). For k < k0, we choose as zk any unit vector in E+
k .

Now let us introduce the sets

M = {v = y + tzk : y ∈ E−k , ‖v‖k ≤ r2 and t ≥ 0},
S = {v ∈ E+

k : ‖v‖k = r1} ,
where the constants r1 and r2 satisfying 0 < r1 < r2 will be chosen later. The
boundary of M is

M0 = ∂M = {v = y+ tzk : y ∈ E−k , ‖v‖k = r2 and t > 0 or ‖y‖k ≤ r2 and t = 0} .
The following lemma is a more or less standard consequence of the fact that the

combined local and hopping nonlinearity is superlinear at zero. However, we sketch
its proof because we need an information on the dependence of constants obtained
there on hopping parameters.

Lemma 4.2. Under the assumptions of Theorem 2.1, suppose that r1 satisfies

A( δ
2β

)βrp−2
1

p
+

max{|α|, |α|}r21
2

≤ δ

8
.

Then

Jk(v) ≥ δr21
8
, ∀v ∈ S.
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Proof. Let v ∈ S. Using (2.2) with ε = δ
2β

, we have

Jk(v) =
1
2

(Lkv − ωv, v)k −
∑
n∈Pk

βnF (vn)−
∑
n∈Pk

αn
2
v2
nv

2
n+1

≥ δ

2
‖v‖2k − β(

ε

2
‖v‖k +

A(ε)
p
‖v‖p(k,p))−

∑
n∈Pk

αn
2
v2
nv

2
n+1

≥ δ

4
‖v‖2k −

A( δ
2β

)β

p
‖v‖pk −

max{|α|, |α|}
2

‖v‖4k.

This implies the required inequality. �

Lemma 4.3. Under the assumptions of Theorem 2.1, there exist constants K > 0
and r2 > 0 independent of k such that

Jk(v) ≤ K , ∀v ∈M

and Jk(v) ≤ 0 for v ∈M0.

Proof. Suppose that Assumption (A1) holds. For v = y + tzk ∈M , we have

Jk(y + tzk) =
1
2

((Lk − ω)y, y)k +
t2

2
((Lk − ω)zk, zk)k −

∑
n∈Pk

βnF (yn + tzkn)

−
∑
n∈Pk

αn
2

(yn + tzkn)2(yn+1 + tzn+1)2

≤ −δ
2
‖y‖2k +

t2

2
((Lk − ω)zk, zk)k −

(
βµ+

min{α, 0}
2

)
‖y + tzk‖4(k,4).

Since the norm of any projector is ≥ 1, we have

‖y + tzk‖4(k,4) ≥ ‖tz
k‖4(k,4)

and, hence,

Jk(y + tzk) ≤ −δ
2
‖y‖2k +

t2

2
((Lk − ω)zk, zk)k −

(
βµ+

min{α, 0}
2

)
‖tzk‖4(k,4)

≤ t2

2
‖Lk − ω‖ −

(
βµ+

min{α, 0}
2

)
t4‖zk‖4(k,4).

By the definition of zk and equation (4.1), there exist two positive constants K1

and K2 independent of k and such that

Jk(y + tzk) ≤ K1t
2 −K2t

4 . (4.2)

Hence, Jk(v) ≤ K for all v ∈M , where K > 0 is independent of k.
Now suppose that v = y + tzk ∈M0. Then t2 + ‖y‖2 = r22, and (4.1) yields

Jk(y + tzk) ≤ K1r
2
2 −K2r

4
2 .

This implies immediately the second part of the lemma.
Uner Assumption (A2) the proof is similar. We only mention that instead of

inequality (4.2) we have

Jk(tzk) ≤ K1t
2 −K2t

4 −K3t
q ,

with positive constants Ki, i = 1, 2, 3. �
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Remark 4.4. The constants K, r1 and r2 are independent not only on k but
also on the hopping constants {αn} if we assume that these constants belong to a
compact subinterval of (−µβ(q − 2),∞) in the case of Assumption (A1), or to a
compact subinterval of [0,∞) in the case of Assumption (A2).

Now, we obtain the existence of periodic solutions.

Theorem 4.5. Under the assumptions of Theorem 2.1, for every integer k > 0
there exists a nontrivial critical point u(k) ∈ Ek of Jk such that Jk(u(k)) ≤ K
and ‖u(k)‖k ≤ K0, where K is the constant from Lemma 4.3, while K0 > 0 is
determined in terms of K according to Lemma 3.1.

The above theorem follows immediately from Lemmas 4.1, 4.2, 4.3 and the Link-
ing Theorem [18].

5. Proofs of main results

Theorem 2.1 is a straightforward consequence of the next two propositions and
Proposition 6.2. In the first one we make the passage to the limit as the period of
solutions obtained in Theorem 4.5 tends to infinity.

Proposition 5.1. Under the assumptions of Theorem 2.1, there exists a nontriv-
ial solution u ∈ E of (1.2) such that ‖u‖ ≤ K0, where K0 is the constant from
Theorem 4.5.

Proof. Let u(k) be the k-periodic solution obtained in Theorem 4.5. Then

‖u(k)‖k ≤ K0 .

First we show that, along a subsequence, there exist δ0 > 0 and bk ∈ Z such that
|u(k)

bk | ≥ δ0 for all k. Indeed, assume the contrary, i.e., ‖u(k)‖l∞ → 0. Making use
of the following elementary inequality

‖v‖p(k,p) ≤ ‖v‖
p−2
l∞ ‖v‖

2
k ,

where p > 2, we conclude that ‖u(k)‖(k,p) → 0 for all p > 2. Under Assumption
(A1), for any ε > 0, we have

0 < ck = Jk(u(k))− 1
2

(J ′k(u(k)), u(k))

=
∑
n∈Pk

βn[
f(u(k)

n )u(k)
n

2
− F (u(k)

n )] +
∑
n∈Pk

αn
2

(u(k)
n )2(u(k)

n+1)2

≤ β

2
(ε‖u(k)‖2k +A(ε)‖u‖p(k,p)) +

max{|α|, |α|}
2

‖u(k)‖4(k,4) → 0

Since ε > 0 can be chosen arbitrarily small, this contradicts Remark 3.3. The case
of Assumption (A2) is similar.

From the N -periodicity, after integer translations and further passage to a sub-
sequence we may assume that there exists an integer b ∈ [0, N − 1] such that
|u(k)
b | ≥ δ0 > 0 and u

(k)
n → un for all n ∈ Z. It is easily seen that u ∈ E. Further-

more, |ub| ≥ δ0 > 0 and, hence, u 6= 0. Since equation (1.2) possesses point-wise
limits, u is a solution of (1.2). The inequality ‖u‖ ≤ K0 follows immediately. �

Remark 5.2. In Proposition 5.1 we can not conclude that J(u) ≤ K, in general.
However, this is so if αn ≥ 0 for all n ∈ Z.
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Proposition 5.3. In addition to the assumptions of Theorem 2.1, suppose that
αn ≥ 0 for all n ∈ Z. Then (1.2) possesses a ground state solution in E.

Proof. By Proposition 5.1 and Remark 3.3, the set C of all positive critical values
of J is a non-empty subset of [κ0,∞), κ0 > 0. Let c = inf C > 0. If c ∈ C, we are
done. Otherwise, there exists a sequence c(j) = J(u(j)) ∈ C such that c(j) → c. By
Lemmas 3.1 and 3.2, the norms ‖u(j)‖ are bounded below and above by positive
constants. Arguing as in the proof of Proposition 5.1, we may assume that there
exists an integer b ∈ [0, N − 1] such that, along a subsequence, ‖u(j)‖ ≥ δ0 > 0 and
u

(j)
n → un for all n ∈ Z. Then 0 6= u ∈ E and u is a solution of equation (1.2).

Since u ∈ E is a nontrivial solution of (1.2), then J(u) ≥ c.
On the other hand,

J(u(j)) = J(u(j))− 1
2

(J ′(u(j)), u(j))

=
∑
n∈Z
{βn[

f(u(j)
n )u(j)

n

2
− F (u(j)

n )] +
αn
2

(u(j)
n )2(u(j)

n+1)2}

and

J(u) = J(u)− 1
2

(J ′(u), u)

=
∑
n∈Z
{βn[

f(un)un
2

− F (un)] +
αn
2

(un)2(un+1)2} .

Notice that the summands in the right hand sides of the last two identities are
non-negative. Now the discrete version of the Fatou’s lemma implies immediately
that J(u) ≤ c. Hence, J(u) = c, and the proof is complete. �

Now we are ready to prove our second main result.

Proof of Theorem 2.2. Since αmn → 0 as m→∞ for all n ∈ Z, the constant K0 in
Proposition 5.1 can be chosen independent of m. Denote by u(m) ∈ E the solution
of equation (2.3) obtained in that proposition. Then ‖u(m)‖ ≤ K0.

Using the same arguments as in the proofs of Propositions 5.1 and 5.3, we see
that, after a passage to a subsequence and translations, u(m) → u 6= 0 point-wise.
Moreover, u ∈ E and solves equation (2.4). �

6. Additional results

First, we prove the following nonexistence result.

Proposition 6.1. Let α > −2βµ, β > 0. Assume that Assumptions (i)–(iv) hold
and ω > Λ. Then (1.2) has only the trivial solution in l2.

Proof. Let u be a critical point of J . Since ω > Λ, then E+ = {0}. Then,

0 = (J ′(u), u) = (Lu− ωu, u)−
∑
n∈Z

βnf(un)un − 2
∑
n∈Z

αnu
2
nu

2
n+1

≤ (Lu− ωu, u)− (βqµ+ 2 min{α, 0})‖u‖44
≤ (Lu− ωu, u)

≤ −δ‖u‖2 .
This implies immediately that u = 0. �
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Now we provide a sufficiently general result on exponential decay of solutions to
equations of the form (1.2).

Proposition 6.2. Let f : R → R be a continuous function such that f(0) = 0
and f(u) = o(u) as u → 0. Assume that the sequence {εn} is N -periodic and
ω 6∈ σ(L), while the sequences {αn} and {βn} are bounded. Then for any solution
u = {un} ∈ l2 there exist positive constants C and ν such that

|un| ≤ Ce−ν|n| , n ∈ Z

Proof. Let us introduce the sequence h defined by

hn = −βnu−1
n f(un)− αn(|un+1|2 + |un−1|2) ,

where, by definition, the first term in the right-hand side is 0 whenever f(un) = 0.
Then

(L+ h)u− ωu = 0 , (6.1)
i.e., u is an eigenvector of the operator L+ h with eigenvalue ω. The assumptions
of this proposition imply that lim|n|→∞ hn = 0. Now it is easily seen that, the
multiplication operator by h is compact. Perturbations of such type do not change
the essential spectrum, but may create eigenvalues of finite multiplicity outside (see,
e.g., [6]). Hence,

σess(L+ h) = σess(L)
and ω is of finite multiplicity. It is well-known that eigenvectors, with eigenvalue
of finite multiplicity, of second order self-adjoint difference operators decay expo-
nentially fast [15], and this completes the proof. �
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