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GLOBAL ASYMPTOTIC STABILITY OF A DIFFUSIVE SVIR
EPIDEMIC MODEL WITH IMMIGRATION OF INDIVIDUALS

SALEM ABDELMALEK, SAMIR BENDOUKHA

Abstract. In this article, we consider a spatially SVIR model of infectious
disease epidemics which allows for continuous immigration of all classes of in-

dividuals. We show that the proposed model has a unique steady state that

is asymptotically stable. Using an appropriately constructed Lyapunov func-
tional, we establish its global asymptotic stability. Numerical results obtained

through Matlab simulations are presented to confirm the results.

1. Introduction

In this article, we are concerned with reaction-diffusion models of disease epi-
demics. Of the many models available in the literature, see [3], we will deal with one
of the suceptible-vaccinated-infectious-recovered (SVIR) type, which as the name
suggests takes into consideration four classes of individuals according to their re-
lation to the disease. Numerous recent publications can be found in the literature
regarding the subject. In the following is a brief description of the most relevant of
these studies.

Liu et al. [9] presented two different models to represent the two vaccination
strategies: continuous and pulse and showed that the dynamics of both models
depend on the basic reproduction number. The study of Kuniya [8] considered a
multi-group SVIR model that allows for the heterogeneity of the population and the
effect of immunity induced by the vaccination. Results showed that the long time
behaviour of the model depends on the basic reproductive number. In [5], Duan et
al. examined an ODE SVIR model which allows for the vaccinated individuals to
become suceptible again after a certain period of time as the vaccine loses its cover.
They studied the dynamics of the model based on LaSalle’s invariance principle
and appropriately constructed Lyapunov functionals and showed that the global
stability of the equilibriums depend only upon the basic reproductive number.

In [7], Henshaw and McCluskey studied the local and global asymptotic stability
of an ODE SVIR model with immigration of individuals. The model they proposed
is the basis of the work that will be presented in this paper. Our aim is to show
that the inclusion of spatial spreading in the model does not affect the asymptotic
stability of the equilibrium. The work carried out here is analogous to that of
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Abdelmalek et al. [2], where they studied the asymptotic stability of an SEI model
including immigration of all classes of individuals.

The remainder of this paper consists of three sections. Section 2 will present
the proposed system model and identify its main characteristics and the conditions
on the parameters. Section 3 will examine the main properties of the steady state
solutions. Section 4 will prove that the unique steady state of the model is globally
asymptotically stable using an appropriate Lyapunov functional.

2. System model

In this article, we study the SVIR epidemic model with immigration of individ-
uals,

∂tu− d1∆u = Λ1 − uf(w)− (µ+ α)u := f1(u, v, w) in R+ × Ω,

∂tv − d2∆v = Λ2 + αu− vg(w)− (µ+ β)v := f2(u, v, w) in R+ × Ω,

∂tw − d3∆w = Λ3 + uf(w) + vg(w)− (µ+ γ + δ)w := f3(u, v, w) in R+ × Ω,

∂tR− d4∆R = Λ4 + βv + δw − µR := f4(v, w,R) in R+ × Ω,
(2.1)

where Ω is an open bounded subset of Rn with piecewise smooth boundary ∂Ω. We
assume the initial conditions

u0(x) = u(x, 0), v0(x) = v(x, 0), w0(x) = w(x, 0), R0(x) = R(x, 0), in Ω,
(2.2)

where u0(x), v0(x), w0(x), R0(x) ∈ C2(Ω) ∩ C0(Ω), and homogoneous Neumann
boundary conditions

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
=
∂R

∂ν
= 0 on R+ × ∂Ω, (2.3)

with ν being the unit outer normal to ∂Ω. We will also assume that the initial
conditions u0(x), v0(x), w0(x), R0(x) ∈ R≥0. Note that this model is similar to that
proposed in [7] but with the inclusion of spatial diffusion.

In the proposed model, the positive functions u(x, t), v(x, t), w(x, t), R(x, t) ≥ 0
represent the population distributions of four classes of people: suceptible, vacci-
nated, infectious, and recovered, respectively. However, since the recovered class R
does not have an impact on the remaining classes, it will be omitted in the sequel.
The parameters Λi > 0 denote the growth of the different classes of individuals
whether through birth or immigration and migration. The parameter α denotes
the rate at which the suceptible population is vaccinated. In this model, death can
either be attributed to the infectious disease or to other reasons. The per capita
death rate for the former is denoted by γ, whereas the latter is denoted by µ > 0.
Since in reality, it takes a while for the vaccinated individual to develop full im-
munity, the parameter β has been introduced here indicating an average duration
1
β . The parameter δ is introduced to allow for some of the infected individuals to
recover on their own after a duration 1

δ . We will assume that α, β, γ, δ ≥ 0. The
transfer diagram shown in Figure 2 presents a summary of the proposed model.
The model (2.1)–(2.3) includes the spatial spreading of the individuals. The pa-
rameters di ≥ 0 represent the diffusivity constants modelling the movement of a
certain class as a result of its distribution.
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Figure 1. A transfer diagram of the proposed system model.

The functions f(w) and g(w) are known as the incidence functions allowing for
a nonlinear relation between the first three classes of individuals. We will assume
that the incidence functions satisfy the following conditions for all w ≥ 0:

(H1) f(w), g(w) ≥ 0 with equality if and only if w = 0,
(H2) f ′(w), g′(w) ≥ 0,
(H3) f ′′(w), g′′(w) ≤ 0,
(H4) g(w) ≤ f(w).

In addition, note that for (u, v, w) ∈ R3
≥0, we have

f1(0, v, w) = Λ1 ≥ 0,

f2(u, 0, w) = Λ2 + uf(w) ≥ 0,

f3(u, v, 0) = Λ3 + βv ≥ 0.

Hence, the function (f1, f2, f2)T is essentially nonnegative. Then, the non-negative
octant R3

≥0 is an invariant set (see [6, Proposition 2.1] and [12, page 288]).

3. Steady states and stability

3.1. ODE Case. Before we determine the steady state solutions to our proposed
model (2.1)–(2.3) and their asymptotic stability, let us recall the results obtained by
Henshaw and McCluskey in [7]. We mentioned previously that the fourth equation
of the system (2.1)–(2.3) will be omitted as it has no impact on the remaining three.
In the absence of diffusion, the proposed system reduces to

∂tu = Λ1 − uf(w)− (µ+ α)u,

∂tv = Λ2 + αu− vg(w)− (µ+ β)v,

∂tw = Λ3 + uf(w) + vg(w)− (µ+ γ + δ)w.
(3.1)

First, let us define
Λ = Λ1 + Λ2 + Λ3,

and for any ε ≥ 0,

Dε =
{

(u, v, w) : u, v, w > ε and u+ v + w ≤ Λ
µ

}
. (3.2)
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System (3.1) was shown in [7] to have the positively invariant non-negative octant
R3
≥0 and that there exists a number ε > 0 such that Dε is non-empty, attracting

and positively invariant. Henshaw and McCluskey also showed that the system has
a unique equilibrium in the attraction region (u∗, v∗, w∗) ∈ Dε. This equilibrium is
the solution of the system

Λ1 = u∗f(w∗) + (µ+ α)u∗

Λ2 = −αu∗ + v∗g(w∗) + (µ+ β)v∗

(µ+ γ + δ) =
Λ3 + u∗f(w∗) + vg(w∗)

w∗
.

(3.3)

To determine the local stability of this unique equilibrium, we need to examine
the eigenvalues of the Jacobian. The Jacobian and its second additive compound
(see (6.1)) are

J =

−H0 − µ− α 0 −F2

α −H1 − µ− β −G2

H0 H1 −H2


and

J [2] =

−H0 −H1 − α− β − 2µ −G2 F2

H1 −H0 −H2 − µ− α 0
−H0 α −H1 −H2 − µ− β

 ,

respectively, where

F2 = u∗f ′(w∗) ≥ 0, G2 = v∗g′(w∗) ≥ 0,

H0 = f(w∗) ≥ 0, H1 = g(w∗) ≥ 0,

H2 = (µ+ γ + δ)− u∗f ′(w∗)− v∗g′(w∗) ≥ 0.

(3.4)

The positivity of the terms F2, G2, H0, H1 is trivial. The term H2, however, requires
a careful attention. Note that by applying Proposition 6.2 in the Appendix to f
and g and using the third equation of (3.3), we have

H2 ≥ (µ+ γ + δ)− u∗ f(w∗)
w∗

− v∗ g(w∗)
w∗

=
(µ+ γ + δ)w∗ − u∗f(w∗)− v∗g(w∗)

w∗

=
Λ3

w∗
≥ 0.

For information about the meaning and properties of additive compounds, we
refer to [11]. The local stability of the equilibrium can be examined by looking at
the determinant of the Jacobian det(J), its trace tr(J), and the determinant of its
second additive compound det(J [2]) and ensuring that they are all negative (see
Proposition 6.1). We have

det J = −αF2H1 − (H0 + µ+ α)[(H1 + µ+ β)H2 +G2H1]

− F2(H1 + µ+ β)H0,
(3.5)

tr J = −(H0 +H1 +H2 + α+ β + 2µ), (3.6)

det J [2] = F2[αH1 −H0(H0 +H2 + µ+ α)]−G2H1(H1 +H2 + µ+ β)

− (H0 +H1 + α+ β + 2µ)(H0 +H2 + µ+ α)(H1 +H2 + µ+ β).
(3.7)
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It is evident that detJ < 0 and trJ < 0. However, for det J [2], the term αH1 −
H0(H0+H2+µ+α) needs to be examined. Using condition (H4), we have H1 ≤ H0,
leading to

αH1 −H0(H0 +H2 + µ+ α) ≤ αH0 −H0(H0 +H2 + µ+ α)

= −H0(H0 +H2 + µ) ≤ 0.

Therefore, we see that det J [2] < 0. Hence, as shown in [7], the unique equilibrium
(u∗, v∗, w∗) is in fact locally asymptotically stable.

3.2. Properties of the steady states. In this subsection, we shall discuss the
basic properties of the non-homogeneous steady states of the proposed epidemic
model (2.1)–(2.3). In the presence of diffusion, the steady state solution satisfies

d1∆u+ Λ1 − u∗f(w∗)− (µ+ α)u∗ = 0,

d2∆v + Λ2 + αu∗ − v∗g(w∗)− (µ+ β)v∗ = 0,

d3∆w + Λ3 + u∗f(w∗) + v∗g(w∗)− (µ+ γ + δ)w∗ = 0.
(3.8)

subject to the homogeneous Neumann boundary condition ∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0 for

all x ∈ ∂Ω.
Let 0 = λ0 < λ1 ≤ λ2 ≤ . . . . be the sequence of eigenvalues for the elliptic

operator (−∆) subject to the homogeneous Neumann boundary condition on Ω,
where each λi has multiplicity mi ≥ 1. Also let Φij , 1 ≤ j ≤ mi, (recall that Φ0 =
const and λi → ∞ at i → ∞) be the normalized eigenfunctions corresponding to
λi. That is, Φij and λi satisfy −∆Φij = λiΦij in Ω, with ∂Φij

∂ν = 0 in ∂Ω, and∫
Ω

Φ2
ij(x)dx = 1.

Theorem 3.1. The constant steady state (u∗, v∗, w∗) is asymptotically stable.

Proof. Let us define the linearizing operator

L =

−d1∆− (H0 + µ+ α) 0 −F2

α −d2∆− (H1 + µ+ β) −G2

H0 H1 −d3∆−H2

 .

Similar to the ODE case, the asymptotic stability of the steady state solution
(u∗, v∗, w∗) can be determined by examining the eigenvalues of the operator L.
That is the solution is asymptotically stable if all the eigenvalues of L have negative
real parts. In order to achieve that, suppose (φ(x), ψ(x),Υ(x)) is an eigenfunction
of L corresponding to an eigenvalue ξ. By definition, we have

L(φ(x), ψ(x),Υ(x))t = ξ(φ(x), ψ(x),Υ(x))t,

leading to

(L−ξI)

φψ
Υ

 =

0
0
0

 .

This can be rearranged to the form

∑
0≤i≤∞,1≤j≤mi

(Ai−ξI)

aijbij
cij

Φij =

0
0
0

 ,
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where

φ =
∑

0≤i≤∞,1≤j≤mi

aijΦij , ψ =
∑

0≤i≤∞,1≤j≤mi

bijΦij , Υ =
∑

0≤i≤∞,1≤j≤mi

cijΦij ,

and

Ai =

−d1λi − (H0 + µ+ α) 0 −F2

α −d2λi − (H1 + µ+ β) −G2

H0 H1 −d3λi −H2

 .

The stability of the steady state now reduces to examining the eigenvalues of the
matrices Ai. The negativity of the real parts of every eigenvalue is ensured if the
trace and determinant of Ai and the determinant of its second additive compound
A

[2]
i are all negative. The trace of Ai is given by

trAi = −(d1 + d2 + d3)λi + tr J,

which is clearly negative for all i ≥ 0 since tr J < 0 (see (3.6)). The determinant of
Ai can be shown to be

detAi = −d1d2d3λ
3
i −BAλ2

i − CAλi + det J, (3.9)

where

BA = H2d1d2 + (H0 + µ+ α)d2d3 + (H1 + µ+ β)d1d3 > 0,

CA = (G2H1 + (H1 + µ+ β)H2)d1 + ((H0 + α+ µ)H2 + F2H0)d2

+ (β + µ+H1)(α+ µ+H0)d3 > 0.

Clearly, detAi for all i ≥ 0 since det J < 0. The last thing is to examine detA[2]
i < 0.

The matrix A[2]
i is the second additive compound of Ai given by

A
[2]
i =

−(d1 + d2)λi −A −G2 F2

H1 −(d1 + d3)λi −B 0
−H0 α −(d2 + d3)λi − C

 , (3.10)

where

A = H0 +H1 + 2µ+ α+ β > 0
B = H0 +H2 + µ+ α > 0
C = H1 +H2 + µ+ β > 0.

Therefore,

detA[2]
i = −(d2 + d3)(d1 + d3)(d1 + d2)λ3

i −BA[2]λ2
i − CA[2]λi + det J [2], (3.11)

with

BA[2] = (B + C)d1d2 + (A+B + C)d2d3 + (A+B + C)d1d3 +Ad2
3 +Bd2

2 + Cd2
1,

CA[2] = (AC +BC + F2H0)d1 + (AB +BC +G2H1)d2

+ (AB + F2H0 +AC +G2H1)d3.

We can see that BA[2] , CA[2] > 0, and since det J [2] < 0, it follows that detA[2]
i < 0

for all i ≥ 0. Hence, the steady state solution is locally asymptotically stable. This
concludes the proof of the Proposition. �
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4. Global asymptotic stability

In this section, we study the global asymptotic stability of the steady state
solutions for the proposed system (2.1)–(2.3). In the ODE case, Henshaw and
McCluskey [7] established the global asymptotic stability of the unique equilibrium
using an appropriate Lyapunov functional. The aim here is to show that in the
presence of diffusion, every solution of the system (2.1)–(2.3) with a positive initial
value that is different from the equilibrium point will converge to the equilibrium.
First, let

L(x) = x− 1− ln(x) (4.1)

for x > 0.

Theorem 4.1. Let

V (t) =
∫

Ω

[u∗L(
u

u∗
) + u∗2L(

v

v∗
) + u∗3L(

w

w∗
)]dx.

Then, V (t) is non-negative and is strictly minimized at the unique equilibrium
(u∗, v∗, w∗), i.e. it is a valid Lyapunov functional. Hence, (u∗, v∗, w∗) is globally
asymptotically stable.

Proof. To prove that the steady state solution (u∗, v∗, w∗) is globally asymptoti-
cally stable, we need to establish that V (t) is a Lyapunov functional. First, we
differentiate V (t) with respect to time

dV

dt
=
∫

Ω

[
(1− u∗

u
)
du

dt
+ (1− v∗

v
)
dv

dt
+ (1− w∗

w
)
dw

dt

]
dx.

Substituting the time derivatives with their values from (2.1) yields

dV

dt
=
∫

Ω

(1− u∗

u
)[d1∆u+ Λ1 − uf(w)− (µ+ α)u]dx

+
∫

Ω

(1− v∗

v
)[d2∆v + Λ2 + αu− vg(w)− (µ+ β)v]dx

+
∫

Ω

(1− w∗

w
)[d3∆w + Λ3 + uf(w) + vg(w)− (µ+ γ + δ)w]dx

= I + J.

The first part is

I = I1 + I2 + I3, (4.2)

where

I1 =
∫

Ω

d1(1− u∗

u
)∆u dx,

I2 =
∫

Ω

d2(1− v∗

v
)∆v dx,

I3 =
∫

Ω

d3(1− w∗

w
)∆w dx.



8 S. ABDELMALEK, S. BENDOUKHA EJDE-2016/284

The second part of the derivative is

J =
∫

Ω

(1− u∗

u
)[Λ1 − uf(w)− (µ+ α)u]dx

+
∫

Ω

(1− v∗

v
)[Λ2 + αu− vg(w)− (µ+ β)v]dx

+
∫

Ω

(1− w∗

w
)[Λ3 + uf(w) + vg(w)− (µ+ γ + δ)w]dx,

(4.3)

We start by looking at I. Using Green’s formula and assuming the Neumann
boundary conditions in (2.3), we obtain

I1 =
∫

Ω

d1(1− u∗

u
)∆udx

= −d1

∫
Ω

∇(1− u∗

u
)∇udx

= −d1

∫
Ω

u∗

u2
|∇u|2dx,

I2 =
∫

Ω

d2(1− v∗

v
)∆vdx = −d2

∫
Ω

v∗

v2
|∇v|2dx,

and

I3 =
∫

Ω

d3(1− w∗

w
)∆wdx = −d3

∫
Ω

w∗

w2
|∇w|2dx.

Therefore, by (4.2), we have

I = −
∫

Ω

[
d1
u∗

u2
|∇u|2 + d2

v∗

v2
|∇v|2 + d3

w∗

w2
|∇w|2

]
dx < 0.

The second part of the derivative J can be simplified by replacing Λ1, Λ2, and
(µ+ γ + δ) with their values from (3.3) and rearranging to the form

J =
∫

Ω

(1− u∗

u
)[u∗f(w∗) + (µ+ α)u∗ − uf(w)− (µ+ α)u]dx

+
∫

Ω

(1− v∗

v
)[v∗g(w∗) + (µ+ β)v∗ − αu∗ + αu− vg(w)− (µ+ β)v]dx

+
∫

Ω

(1− w∗

w
)
[
Λ3 + uf(w) + vg(w)− Λ3 + u∗f(w∗) + v∗g(w∗)

w∗
w
]
dx

=
∫

Ω

(1− u∗

u
)
[
u∗f(w∗)

(
1− uf(w)

u∗f(w∗)

)
+ (µ+ α)u∗(1− u

u∗
)
]
dx

+
∫

Ω

(1− v∗

v
)
[
v∗g(w∗)

(
1− vg(w)

v∗g(w∗)

)
+ (µ+ β)v∗(1− v

v∗
) + αu∗(

u

u∗
− 1)

]
dx

+
∫

Ω

(1− w∗

w
)
[
Λ3(1− w

w∗
) + u∗f(w∗)

( uf(w)
u∗f(w∗)

− w

w∗

)
+ v∗g(w∗)

( vg(w)
v∗g(w∗)

− w

w∗

)]
dx.

Further simplification yields

J =
∫

Ω

(µ+ α)u∗(1− u

u∗
)(1− u∗

u
) + Λ3(1− w

w∗
)(1− w∗

w
) (4.4)
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+ u∗f(w∗)
[( uf(w)
u∗f(w∗)

− w

w∗

)
(1− w∗

w
) + (1− u∗

u
)
(

1− uf(w)
u∗f(w∗)

)]
(4.5)

+ v∗g(w∗)
[(

1− vg(w)
v∗g(w∗)

)
(1− v∗

v
) +

( vg(w)
v∗g(w∗)

− w

w∗

)
(1− w∗

w
)
]

(4.6)

+ (µ+ β)v∗(1− v

v∗
)(1− v∗

v
) + αu∗(

u

u∗
− 1)(1− v∗

v
)dx. (4.7)

Now, to show that J is negative, we observe the following equalities

L(
u

u∗
) + L(

u∗

u
) = −(1− u

u∗
)(1− u∗

u
),

− L(
u∗

u
) + L

( f(w)
f(w∗)

)
− L(

w

w∗
)− L

( uf(w)w∗

u∗f(w∗)w
)

=
( uf(w)
u∗f(w∗)

− w

w∗

)
(1− w∗

w
) + (1− u∗

u
)
(
1− uf(w)

u∗f(w∗)
)
,

− L
( w
w∗
)
− L(

vg(w)w∗

v∗g(w∗)w
)− L(

v∗

v
) + L

( g(w)
g(w∗)

)
=
(

1− vg(w)
v∗g(w∗)

)
(1− v∗

v
) +

( vg(w)
v∗g(w∗)

− w

w∗

)
(1− w∗

w
),

L(
u

u∗
)− L(

uv∗

u∗v
) + L(

v∗

v
) = (

u

u∗
− 1)(1− v∗

v
).

Substituting these in (4.7) leads to

J = −
∫

Ω

(µ+ α)u∗
[
L(

u

u∗
) + L(

u∗

u
)
]
dx−

∫
Ω

Λ3
(w − w∗)2

ww∗
dx

−
∫

Ω

u∗f(w∗)
[
L(
u∗

u
)− L(

f(w)
f(w∗)

) + L(
w

w∗
) + L

( uf(w)w∗

u∗f(w∗)w

)]
dx

−
∫

Ω

v∗g(w∗)
[
L(

w

w∗
) + L

( vg(w)w∗

v∗g(w∗)w

)
+ L(

v∗

v
)− L

( g(w)
g(w∗)

)]
dx

− (µ+ β)
∫

Ω

v∗
[
L(

v

v∗
) + L(

v∗

v
)
]
dx

+ α

∫
Ω

u∗
[
L(

u

u∗
)− L(

uv∗

u∗v
) + L(

v∗

v
)
]
dx

Now, using Proposition 6.3 and simplification similar to [7] yields the inequality

J ≤ −
∫

Ω

(µ+ α)u∗
[
L(

u

u∗
) + L(

u∗

u
)
]
dx−

∫
Ω

Λ3
(w − w∗)2

ww∗
dx

−
∫

Ω

u∗f(w∗)
[
L(
u∗

u
) + L

( uf(w)w∗

u∗f(w∗)w

)]
dx

−
∫

Ω

v∗g(w∗)
[
L
( vg(w)w∗

v∗g(w∗)w

)]
dx

− (µ+ β)
∫

Ω

v∗L(
v

v∗
)dx− α

∫
Ω

u∗L(
uv∗

u∗v
)dx.

It is clear that J ≤ 0, which leads to dV
dt ≤ 0; dV

dt = 0 only at the steady state
(u∗, v∗, w∗). Therefore, by Lyapunov’s direct method, the steady state solution
(u∗, v∗, w∗) is globally asymptotically stable. �
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5. Numerical examples

In this section, we present two numerical examples that illustrate and confirm
the findings of this study. The parameters utilized for the examples are stated in
Table 1.

Table 1. Simulation parameters for the stated numerical examples.

Parameters Example 1 Example 2
f(x) x

x+1
x
x+1

g(x) x
2x+2

x
2x+2

Λ1 1 1.5
Λ2 1.2 1.2
Λ3 0.95 0.95
Λ3 0.1 0.1
µ 0.2 0.2
α 0.3 0.3
β 0.45 0.45
γ 0.02 0.005
δ 0.1 0.1
d1 1 100
d2 1.5 600
d3 1.3 1000
d4 1 500
u0 50 sinc[0.2(x2 + y2)] 50 sinc[0.2(x2 + y2)]
v0 15 sinc[0.8(x2 + y2)] 15 sinc[0.8(x2 + y2)]
w0 10 sinc[0.8(x2 + y2)] 10 sinc[0.8(x2 + y2)]
r0 0.1 sinc[0.8(x2 + y2)] 0.1 sinc[0.8(x2 + y2)]

5.1. First Example. We use the parameters from the first column of Table 1.
Solving the system of equations (3.3) numerically yields the equilibrium solution
(u∗, v∗, w∗) = (0.7296, 1.3073, 6.7323, 6.8076). In the ODE case, the initial data
in the ODE case is simply (50, 15, 10) and the equilibrium can be clearly seen to
be asymptotically stable as seen in Figure 2. Figure 3 shows the solutions in the
two-dimensional diffusion case and the steady state solution is again asymptotically
stable. We see that over-time, the solutions tend to the steady state (u∗, v∗, w∗, r∗)
and become close to uniformly distributed in space.

5.2. Second Example. The aim of this example is to show that high diffusiv-
ity constants do not affect the asymptotic stability of the solutions. The system
parameters are shown in the second column of Table 1. Figures 4 and 5 show
the solutions in the ODE and two-dimensional cases, respectively. Observe that
due to the high diffusivities, the solutions reach the equilibrium (u∗, v∗, w∗, r∗) =
(1.0772, 1.3895, 8.2997, 7.7761) in a shorter time and that the solutions remain sta-
ble in both scenarios.
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Figure 2. Solutions of the proposed system (2.1) in the ODE case
using parameters from the first column of Table 1.
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Figure 3. Solutions of the proposed system (2.1) in the two-
dimensional PDE diffusion case using parameters from the first
column of Table 1. The snapshots from top to bottom are taken
at times t = 0, t = 1, and t = 10, respectively.

6. Appendix

Lemma 6.1 ([10]). Let M be a 3×3 real matrix. If tr(M), det(M), and det(M [2])
are all negative, then all of the eigenvalues of M have negative real parts, where
(see [11])

M =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , M [2] =

a11 + a22 a23 −a13

a32 a11 + a33 −a12

−a31 a21 a22 + a33

 . (6.1)
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Figure 4. Solutions of the proposed system (2.1) in the ODE case
using parameters from the second column of Table 1.
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Figure 5. Solutions of the proposed system (2.1) in the two-
dimensional PDE diffusion case using parameters from the second
column of Table 1. The snapshots from top to bottom are taken
at times t = 0, t = 1, and t = 10, respectively.

Proof. Let λj , j = 1, 2, 3 be the eigenvalues of M with <(λ1) ≤ <(λ2) ≤ <(λ3). It
follows from det(M) < 0 that λ1λ2λ3 < 0. Thus, either <(λj) < 0 for j = 1, 2, 3
(which would prove the lemma) or <(λ1) < 0 ≤ <(λ2) ≤ <(λ3). Suppose that the
second set of inequalities holds. Since tr(M) < 0, it follows that λ1 + λ2 + λ3 < 0,
which implies that <(λ1 + λ2) < 0 and <(λ1 + λ3) < 0. The eigenvalues of M [2]

are λi + λj , 1 ≤ i < j ≤ 3, and so

sgn(det(M [2])) = sgn(<(λ1 + λ2)<(λ1 + λ3)<(λ2 + λ3))

= sgn(<(λ2 + λ3)).
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It follows from det(M [2]) < 0 that <(λ2 + λ3) < 0. Thus, it cannot be that
<(λ1) < 0 ≤ <(λ2) ≤ <(λ3), and therefore <(λj) < 0 for j = 1, 2, 3. �

Proposition 6.2 ([13]). f ′(w) ≤ f(w)
w and g′(w) ≤ g(w)

w for all w > 0.

Proof. Let w > 0. Since f(w) is continuous on [0, w] and differentiable on (0, w), the
mean value theorem implies that there exists c ∈ (0, w) such that f ′(c) ≤ f(w)−f(0)

w−0 .

By (H1), we have f ′(c) = f(w)
w . From (H3), f ′ is monotone decreasing. Thus,

f ′(w) ≤ f ′(c) = f(w)
w . The same can be said about g. �

Proposition 6.3 ([7]). Suppose the incidence functions f and g satisfy the criteria
in (H1)–(H4). It follows that if w > 0, then

L
( f(w)
f(w∗)

)
≤ L

( w
w∗
)
, (6.2)

L
( g(w)
g(w∗)

)
≤ L

( w
w∗

)
. (6.3)

Proof. In this proof, we will only establish the property (6.2). However, the same
can be said about (6.3). Let w ≥ w∗ and m(w) = f(w)

w . It follows that

m′(w) =
f ′(w)w − f(w)

w2
≤ f(w)− f(w)

w2
= 0.

Therefore, we conclude that m is decreasing, which leads to m(w) ≤ m(w∗), i.e.,

f(w)
w
≤ f(w∗)

w∗
,

and so
f(w)
f(w∗)

≤ w

w∗
.

Since f is increasing, we have

1 ≤ f(w)
f(w∗)

≤ w

w∗
.

Note that L(x) = 1− 1
x . Hence, L is increasing for x > 1, and

L
( f(w)
f(w∗)

)
≤ L(

w

w∗
).

�
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