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STRUCTURE AND ASYMPTOTIC EXPANSION OF
EIGENVALUES OF AN INTEGRAL-TYPE NONLOCAL

PROBLEM

ZHONG-CHENG ZHOU, FANG-FANG LIAO

Abstract. We study the structure of eigenvalues of second-order differential

equations with nonlocal integral boundary conditions. Moreover, we consider
the asymptotic expansion of the eigenvalues and the corresponding eigenfunc-

tions, which shows that the eigenfunctions form a Riesz basis for L2([0, 1], R).

1. Introduction

In recent years, many researchers studied different kinds of nonlocal boundary-
value problems of ordinary differential equations, and in particular focused on the
existence and multiplicity of nontrivial solutions for nonlinear nonlocal problems,
see for example, [5, 8, 12, 15, 16, 19] for multi-point boundary-value problems and
[1, 3, 9, 10, 20] for general nonlocal boundary-value problems.

However, the study on the eigenvalue theory of the corresponding nonlocal linear
problems appears to just start. Ma and O’Regan [16] constructed all real eigenvalues
of the problem

−y′′(x) = λy(x), x ∈ (0, 1),

y(0) = 0, y(1) =
m∑
k=1

αky(ηk),
(1.1)

where m ∈ N, α = (α1, · · · , αm) ∈ Rm+ satisfying the nondegeneracy condition∑m
k=1 |αk| < 1 and η = (η1, · · · , ηm) ∈ ∆m := {(η1, · · · , ηm) ∈ Rm : 0 < η1 < · · · <

ηm < 1} are taken as rational. We note that the eigenvalues of (1.1) can be analyzed
using elementary method because all solutions of (1.1) can be found explicitly.
However, even for (1.1), as far as we know, the first complete eigenvalue theory
was proved in [4]. In particular, Gao, Sun and Zhang completely characterized
the structure of eigenvalues of (1.1) for all α ∈ Rm+ and η ∈ ∆m. Moreover, they
gave the complete structure of eigenvalues of general multi-point boundary-value
problem

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, 1),

y(0) = 0, y(1) =
m∑
k=1

αky(ηk),
(1.2)
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where q ∈ L1([0, 1],R) and α ∈ Rm+ , η ∈ ∆m. Note that problems (1.1) and (1.2)
are non-symmetry problems. It was proved in [4] that (1.2) may admit complex
eigenvalues and has always a sequence of real eigenvalues tending to infinity.

We will extend the above results to the general nonlocal integral boundary-value
problem

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, 1),

y(0) = 0, y(1) =
∫ 1

0

k(x)y(x)dx,
(1.3)

where q ∈ L1([0, 1],R) and k ∈ C2([0, 1],R). We will show that the eigenvalues
of the problem (1.3) have the similar structure to those of (1.2). In fact, problem
(1.3) can be considered as a version of (1.2) with continuous boundary condition
of (1.2).

The set of all eigenvalues of (1.3) is denoted by Σqk ∈ C, which is called the
spectrum of operator A, where the linear operator A : D(A)(⊂ L2([0, 1],R)) →
L2([0, 1],R) is defined by

A(y) = −y′′(x) + q(x)y(x)

with

D(A) =
{
y ∈ H2(0, 1) : y(0) = 0, y(1) =

∫ 1

0

k(x)y(x)dx
}
.

When q ≡ 0, Equation (1.3) becomes

−y′′(x) = λy(x), x ∈ (0, 1),

y(0) = 0, y(1) =
∫ 1

0

k(x)y(x)dx.
(1.4)

We can define a linear operator A0 : D(A0)(⊂ L2([0, 1],R))→ L2([0, 1],R) by

A0(y) = −y′′(x), (1.5)

with

D(A0) =
{
y ∈ H2([0, 1],R) : y(0) = 0, y(1) =

∫ 1

0

k(x)y(x)dx
}

and a bounded perturbation linear operator

(B0y)(x) = q(x)y(x), (1.6)

on L1([0, 1],R). The eigenvalues of (1.4) are exact the eigenvalues of the operator
A0, which can be analyzed using elementary method. However, as far as we know,
even for this simple case, the spectrum theory is incomplete in the literature.

For some special functions q and k, we can adopt the backstepping method (which
comes from Krstic) to obtain the existence and explicit expression of eigenvalues via
transferring it into well-known eigenvalue problem, see [13] and related references.
Such similar method can be used to prove Theorem 3.6 for some special functions
q and k. However, for general function pair q and k, this method does not work.
One motivation of this paper is to develop a method for general functions q and
k. The results of (1.3) can be used to study the existence of nonlinear differential
equations with integral boundary condition. Besides, the stabilization controller
design of heat equation by backstepping method strongly depends on the complete
spectrum analysis for the problem (1.3), which is another important motivation of
this paper.
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Basically, eigenvalues of (1.3) are zeros of some entire functions. To study the
distributions of eigenvalues, we will consider (1.3) as a perturbation of (1.4). To
obtain the existence of infinitely many real eigenvalues as in Theorem 3.7, some
properties of almost periodic functions [16, 17] will be used. To pass the results
of (1.4) to those with general potentials q, many techniques will be exploited.
Moreover, some basic estimates for fundamental solutions of (1.4) play an important
role.

This article is organized as follows. In Section 2, we will give some detailed
analysis on problem (1.4). In Section 3, after developing some basic estimates, we
will prove Theorems 3.6 and 3.7. In Section 4, we will give the asymptotic expansion
for the eigenvalues and eigenfunctions of (1.4). In Section 5, we will prove the
existence of eigenvalues for (1.3) and corresponding eigenfunctions forming Riesz
basis for L2([0, 1],R).

2. Structure of eigenvalues of the zero potential

In this section, we first consider the spectrum for (1.4), which has the zero
potential. Let us use Σ0

k to denote the set of all eigenvalues of (1.4).
Let λ ∈ C, the complex solutions of (1.4) satisfying y(0) = 0 are y(x) = cSλ(x),

where c ∈ C and

Sλ(x) :=
sin
√
λx√
λ

=
+∞∑
k=0

(−1)k

(2k + 1)!
λkx2k+1, x ∈ [0, 1].

Notice that Sλ(x) is an entire function of λ ∈ C. Define Cλ(x) := cos(
√
λx) and

M0(λ) := Sλ(1)−
∫ 1

0

k(x)Sλ(x)dx =
sin
√
λ√

λ
−
∫ 1

0

k(x)
sin
√
λx√
λ

dx. (2.1)

Then λ ∈ Σ0
k if and only if λ satisfies

M0(λ) = 0.

We recall some properties of almost periodic functions which will be used later. We
refer the readers to [2] for more information on almost periodic functions. Suppose
that f : R→ R is a bounded continuous function. We say that f is almost periodic
if for any ε > 0, there exists lε > 0 such that for any a ∈ R, there exists b ∈ [a, a+lε]
such that ‖f(· + b) − f(·)‖L∞ < ε. If f : R → R is an almost periodic function,
then for any A ∈ R, we have

inf
u∈[A,∞)

f(u) = inf
u∈R

f(u), sup
u∈[A,∞)

f(u) = sup
u∈R

f(u).

Moreover, if f is non-zero and f̄ = limT→+∞
1
T

∫ T
0
f(u)du = 0, then f is oscillatory

as u→ +∞. In particular, f(u) has a sequence of positive zeros tending to +∞.

Lemma 2.1. If k ∈ C2([0, 1],R), then Σ0
k ∩ R = {λn} which satisfies

λ1 ≤ λ2 ≤ · · ·λn ≤ · · · , lim
n→+∞

λn = +∞.

Proof. Let us first consider possible positive eigenvalues λ = α2 of (1.4), where
α > 0. By equation (1.4), we have

F (α) := sinα−
∫ 1

0

k(x) sin(αx)dx = 0
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It is easy to check the function F (α) is a non-zero, almost periodic function and
has mean value zero. Therefore, F (α) has many positive zeros tending to +∞, and
hence Σ0

k contains a sequence of positive eigenvalues tending to +∞.
Next, we consider possible negative eigenvalues λ = −α2 of (1.4), where α > 0.

By the first equality of (2.3) and (1.4), we have

F̄ (α) := sinhα−
∫ 1

0

k(x) sinh(αx)dx = 0. (2.2)

One has

lim
α→+∞

F̄ (α)
sinhα

= 1,

notice that F̄ (α) is analytic in α, thus F̄ (α) = 0 has at most finitely many positive
solutions. Hence Σ0

k contains at most finitely many negative eigenvalues.
Because both F (α) = 0 and F̄ (α) = 0 have only isolated solutions, the above

two cases show that the result holds. �

Next we show that Σ0
k contains only real eigenvalues if

∫ 1

0
k2(x)dx ≤ 1.

Lemma 2.2. Assume k ∈ C2([0, 1],R) satisfying
∫ 1

0
k2(x)dx ≤ 1. Then Σ0

k con-
tains only real eigenvalues. Moreover, Σ0

k ⊂ (π
2

4 ,+∞).

Proof. Suppose that λ = w2 ∈ Σ0
k, where w = u + iv, u, v ∈ R. We would assert

that v = 0 under the assumption. Otherwise, assume that v 6= 0. We have

sinw −
∫ 1

0

k(x) sin(wx)dx = 0.

Note that the following elementary equalities hold for any u, v ∈ R,

sin(u+ iv) = sinu cosh v + i cosu sinh v, | sin(u+ iv)|2 = sin2 u+ sinh2 v. (2.3)

Then

sinu cosh v =
∫ 1

0

k(x) sin(ux) cosh(vx)dx,

cosu sinh v =
∫ 1

0

k(x) cos(ux) sinh(vx)dx.

It follows from Hölder inequality that

1 = sin2 u+ cos2 u (2.4)

=
(∫ 1

0

k(x) sin(ux)
cosh(vx)

cosh v
dx
)2

+
(∫ 1

0

k(x) cos(ux)
sinh(vx)

sinh v
dx
)2

(2.5)

<

∫ 1

0

k2(x)dx
∫ 1

0

cos2(ux)dx+
∫ 1

0

k2(x)dx
∫ 1

0

sin2(ux)dx (2.6)

=
∫ 1

0

k2(x)dx, (2.7)

which is a contradiction. Thus v = 0. On the other hand,

M0(0) = 1−
∫ 1

0

xk(x)dx ≥ 1−
(∫ 1

0

k2(x)dx
)1/2

> 0, (2.8)
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hence we have Σ0
k ∈ (0,+∞). Finally, for any u ∈ (0, π2 ], by the Hölder inequality,

we know function F (u) satisfies

F (u) = sinu−
∫ 1

0

k(x) sin(ux)dx

≥ sinu−
∫ 1

0

|k(x)| sin(ux)dx

> sinu−
∫ 1

0

|k(x)|dx sinu ≥ 0.

Therefore, we obtain that Σ0
k ∈ (π

2

4 ,+∞). �

3. Structure of eigenvalues of non-zero potentials

Given q ∈ L1((0, 1),R) and complex parameter λ ∈ C, the fundamental solutions
of (1.3) are denoted by ym(x, λ, q),m = 1, 2, which are solutions satisfying the initial
values

y1(0, λ, q) = y′2(0, λ, q) = 1, y′1(0, λ, q) = y2(0, λ, q) = 0. (3.1)

Notice that ym(x, λ, q) are entire functions of λ ∈ C, To study (1.3), we introduce

Mq(λ) := y2(1, λ, q)−
∫ 1

0

k(x)y2(x, λ, q)dx, λ ∈ C. (3.2)

We use Σqk to denote the set of all eigenvalues of (1.3). Then λ ∈ Σqk if and only if
Mq(λ) = 0.

We will need the following basic estimates, whose proofs are much similar to
those of [4, Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4]. Here we only state
them without their proofs.

Lemma 3.1. If β ∈ (0, 1), one has

lim
v∈R,|v|→+∞

| sin(u+ iv)|
exp |v|

=
1
2
,

lim
v∈R,|v|→+∞

| sinβ(u+ iv)|
exp |v|

= 0
(3.3)

uniformly in u ∈ R.

Lemma 3.2. There exists a constant c(k) > 0 and a sequence an of increasing
positive numbers such that an → +∞ and (−1)nF (an) > c(k), where F (u) :=
sinu−

∫ 1

0
k(x) sin(ux)dx.

Lemma 3.3. Given q ∈ L1((0, 1),R) and complex parameter λ ∈ C. Then the
following inequalities hold for all x ∈ [0, 1],

|y1(x, λ, q)− Cλ(x)| ≤ 1
|
√
λ|

exp(| Im
√
λ|x+ ‖q‖L1[0,x]).

|y2(x, λ, q)− Sλ(x)| ≤ 1
|λ|

exp(| Im
√
λ|x+ ‖q‖L1[0,x]).

|y′1(x, λ, q)− C ′λ(x)| ≤ ‖q‖ exp(| Im
√
λ|x+ ‖q‖L1[0,x]).

|y′2(x, λ, q)− S′λ(x)| ≤ ‖q‖
|
√
λ|

exp(| Im
√
λ|x+ ‖q‖L1[0,x]).
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Lemma 3.4. The following estimate holds for Mq(λ),

|Mq(λ)−M0(λ)| ≤ B

|w|2
exp(| Imw|), w :=

√
λ ∈ C. (3.4)

where

B = exp(‖q‖L1[0,1]) + exp(‖q‖L1[0,1])
∫ 1

0

|k(x)|dx.

Lemma 3.5. One has Mq(λ) 6= 0 on R. Consequently, there exists λ0 ∈ R such
that λ0 does not belong to Σqk.

Proof. Otherwise, we have Mq(λ) ≡ 0, Notice that

M0(u2) ≡ F (u)
u

, u > 0. (3.5)

Let λ = a2
n in Lemma 3.2, we have∣∣∣F (an)

an

∣∣∣ = |M0(a2
n)| ≤ B

a2
n

.

Hence, limn→+∞ |F (an)| ≤ limn→+∞
B
an

= 0, which contradicts Lemma 3.2. �

Theorem 3.6. If q ∈ L1([0, 1],R) and k ∈ C2([0, 1],R), then Σqk is composed of a
sequence λn = {λn(q)} ∈ C which satisfies

Reλ1 ≤ Reλ2 ≤ · · ·Reλn ≤ · · · , lim
n→+∞

Reλn = +∞.

Proof. By Lemma 3.5, there exists λ0 ∈ R such that λ0 6∈ Σqk, which implies that
the problem

−y′′(x) + q(x)y(x)− λ0y(x) = 0, x ∈ (0, 1),

y(0) = 0, y(1) =
∫ 1

0

k(x)y(x)dx
(3.6)

has only the trivial solution y = 0.
Let G0(x, u) be the Green function of (3.6). Then λ ∈ Σqk if and only if λ 6= λ0

and
−y′′(x) + (q(x)− λ0)y(x) = (λ− λ0)y(x),

y(0) = 0, y(1) =
∫ 1

0

k(x)y(x) dx,
(3.7)

has a nontrivial solution y. In other words, λ ∈ Σqk if and only if the equation

y = (λ− λ0)Lqy

has a non-trivial solution y, where

Lqy(x) :=
∫ 1

0

G0(x, z)(q(z)− λ0)y(z)dz.

Since Lq is a compact linear operator, one sees that this happens when and only
when

1
λ− λ0

∈ σ(Lq) ⊂ C,

where σ(Lq) is the spectrum of Lq. Hence Σqk consists of a sequence of eigenvalues
which can accumulate only at infinity.
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For λ ∈ C, denote

λ = w2, w =
√
λ = u+ iv, u, v ∈ R.

Suppose that λ ∈ Σqk and λ 6= 0. Then Mq(λ) = 0 and Lemma 3.4 imply that

B

|w|2
exp(|v|) ≥ |Mq(λ)−M0(λ)| = |M0(λ)|

=
∣∣∣ sinw − ∫ 1

0
k(x) sin(wx)dx
w

∣∣∣
≥
| sin(u+ iv)| −

∫ 1

0
|k(x) sin(u+ iv)x|dx
|w|

.

We conclude that all non-zero eigenvalues λ ∈ Σqk satisfy

|w|
| sin(u+ iv)| −

∫ 1

0
|k(x) sin(u+ iv)x|dx

exp |v|
≤ B. (3.8)

Let us derive some sequences from estimate (3.8) for λ ∈ Σqk.
Case 1: Since |w| ≥ |v|, it follows from the uniform limits in (3.3) that

lim
|v|=| Imw|→+∞

|w|
| sin(u+ iv)| −

∫ 1

0
|k(x) sin(u+ iv)x|dx

exp |v|
= +∞. (3.9)

Thus, there exists a constant h > 0 such that

λ ∈ Σqk =⇒ w =
√
λ ∈ Hh := {w ∈ C : | Imw| < h}. (3.10)

The horizontal strip Hh of it in the w-plane is transformed to the half-plane Pr, in
the λ-plane:

Σqk ⊂ Pr := {λ ∈ C : Reλ > r},
where r := −h2.
Case 2: Let r̄ > −h2, next we assert that

Σqk ∩ {λ ∈ C : Reλ ≤ r̄} = Σqk ∩ {λ ∈ C : −h2 < Reλ ≤ r̄}
contains at most finitely many eigenvalues. Otherwise, suppose that

Σqk ∩ {λ ∈ C : −h2 < Reλ ≤ r̄} (3.11)

contains infinitely many λn, n ∈ N. Since Mq(λ) = 0 has only isolated solutions,
we have necessarily | Imλn| → +∞. by denoting

√
λn = un + ivn, one has

−h2 < u2
n − v2

n ≤ r̄, 2|un||vn| → +∞.
In particular, |vn| → +∞, Now estimate (3.8) reads

| sin(un + ivn)|
exp |vn|

≤
∫ 1

0
|k(x) sin(un + ivn)x|dx

exp |vn|
+ o(1), as n→∞.

This is impossible because the estimate in (3.3). Combining Cases 1 and 2, we
know that Σqk can be listed as in Theorem 3.6. �

Theorem 3.7. If q ∈ L1([0, 1],R) and k ∈ C2([0, 1],R), then Σqk ∩ R = {λn =
λn(q)} which satisfies

λ1 ≤ λ2 ≤ · · ·λn ≤ · · · , lim
n→+∞

λn = +∞.
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Proof. We need to only consider the positive eigenvalues of (1.3). Let λ = a2
n in

Lemma 3.4, according to (3.5), we have

|Mq(a2
n)−M0(a2

n)| =
∣∣∣Mq(a2

n)− F (an)
an

∣∣∣ ≤ B

a2
n

, ∀n ∈ N. (3.12)

Since an → +∞, w.l.o,g, we can assume that an ≥ 2B
c(k) for all n ∈ N; therefore,

|anMq(a2
n)− F (an)| ≤ B

an
≤ c(k)

2
, ∀n ∈ N.

by using Lemma 3.2, we conclude that (−1)nMq(a2
n) > 0,∀n ∈ N. Hence Mq(λ) = 0

has at least one positive solution λ̄n in each interval (a2
n, a

2
n+1), n ∈ N. Combining

with Theorem 3.6, we have Σqk∩R consists of a sequence of real eigenvalues tending
to +∞, hence Σqk ∩ R can be listed as in Theorem 3.7. �

4. Asymptotic expansion and Riesz basis

Above we have discussed the structure of eigenvalues of (1.3). In this section,
we give the quantity asymptotic estimate for eigenvalues and eigenfunctions of
(1.4) and (1.3). Moreover, we will show the eigenfunctions forms Resis basis of
L2([0, 1],R). We first make some preparations for the main theory.

Definition 4.1. A sequence {en}∞1 ⊂ L2([0, 1],R) is called a basis in L2([0, 1],R)
if for any g ∈ L2([0, 1],R) there exists a unique sequence {an}∞1 of real numbers
such that g =

∑∞
n=1 anen in L2([0, 1],R). A basis {en}∞1 in L2([0, 1],R) is called

a Riesz basis when the series
∑∞
n=1 anen, with real coefficients an, converges in

L2([0, 1],R) if and only if
∑∞
n=1 a

2
n <∞.

The following Theorem is very useful in checking the Riesz basis for the gener-
alized eigenfunctions of A0.

Theorem 4.2 ([6, 7]). Let T be a densely defined discrete operator, that is (λI −
T )−1 is compact for some λ in a Hilbert space H with {zn}+∞1 being a Riesz basis
for H. If there are an N > 0 and a sequence of generalized eigenvector {xn}+∞N+1

of T such that
∞∑

n=N+1

‖xn − zn‖2 <∞,

then

(i) There are an M > N and generalized eigenvectors {xn0}M1 of T such that
{xn0}M1 ∪ {xn}+∞N+1 forms a Riesz basis for H.

(ii) Let {xn0}M1 ∪{xn}+∞N+1 be eigenvalues {σn}+∞1 of T . Then σ(T ) = {σn}+∞1 ,
in which σn is counted according to its algebraic multiplicity.

(iii) If there is an C0 > 0 such that σn 6= σm for all n,m > C0, then there is an
N0 > C0 such that all σn, n > N0 are algebraically simple.

Lemma 4.3. The eigenvalues of (1.4) have the asymptotic expansion

λn = n2π2 + 2(k(0)− k(1)) +O(
1
n

).
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Proof. According to Theorems 3.6 and 3.7, we know that (1.4) has a sequence of
eigenvalues. In fact, the eigenvalues λn of (1.4) satisfy

sin
√
λn =

∫ 1

0

k(x) sin
√
λnx dx (4.1)

= − 1√
λn

(
k(1) cos

√
λn − k(0)−

∫ 1

0

k′(x) cos
√
λnxdx

)
. (4.2)

Therefore, √
λn = nπ +O(

1√
λn

). (4.3)

At the same time, we know that

sin
√
λn = O(

1√
λn

),

cos
√
λn = 1−O(

1√
λn

).

Taking them into (4.1), we have

O(
1√
λn

) =
k(0)√
λn
− k(1)√

λn
+O(

1
λn

). (4.4)

Hence, by (4.3), we have√
λn − nπ =

k(0)− k(1)√
λn

+O(
1
λn

), (4.5)

we can obtain

λn = n2π2 + 2(k(0)− k(1)) +O(
1
n

), (4.6)

which completes the proof. �

Lemma 4.4. Let {λn}∞1 be the eigenvalues of operator A0. Then the corresponding
eigenfunctions {yn}∞1 have the asymptotic expressions

yn(x) = sinnπx+O(
1
n

).

Moreover, the generalized eigenfunctions of A0 forms a Riesz basis of L2([0, 1],R).

Proof. According to (1.4) and Lemma 4.3 for λn, its corresponding eigenfunction
has the asymptotic form

yn(x) = sin
√
λnx = sinnπx+O(

1
n

). (4.7)

Next, we show that
∑∞
n=1

∫ 1

0
| sin(

√
λnx)− sin(nπx)|2dx < +∞. In fact,∫ 1

0

| sin(
√
λnx)− sin(nπx)|2dx ≤ C ·O(

1
n2

)

by the eigenvalue expansion, where C is a constant number large enough. Therefore,
+∞∑
n=1

∫ 1

0

| sin(
√
λnx)− sin(nπx)|2dx < +∞.

By Theorem 4.2, we know that the generalized eigenfunctions of A0 forms a Riesz
basis of L2([0, 1],R), which completes the proof. �
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For obtaining the asymptotic expansion for the eigenvalue of Σqk, we show the
relationship between Σqk and Σ0

k. Intuitively, for the problem (1.4) and (1.3), if q
is a constant, we know Σqk is a constant translation of Σ0

k, In fact, if q is not a
constant, we also know the asymptotic expansion for Σqk in terms of Σ0

k, which is
borrowed from the paper [7].

Definition 4.5. A linear operator A0 in a Hilbert space H is called discrete-type(or
[D]-class for short), if there are Riesz basis {φn}∞1 of H, complex series {λn}∞1 and
an integer N > 0 such that

(i) limn→+∞ |λn| =∞, λn 6= λm as n,m > N .
(ii) A0φn = λnφn, n > N .
(iii) A0[φ1, φ2, · · · , φN ] ⊂ [φ1, φ2, · · · , φN ] and A0 has spectrum {λn}N1 in

[φ1, φ2, · · · , φN ], where [φ1, φ2, · · · , φN ] is the linear subspace spanned by
{φn}N1 .

Lemma 4.4 show that A0 defined in (1.5) is a [D]-class. The following result can
be concluded from the proof of a more general result in [14] (see also [11] and [18]).

Theorem 4.6 ([14]). Suppose that A0 is of [D]-class satisfying conditions of def-
inition 4.5 in a Hilbert space H. Let dn := minn 6=m |λn − λm| and assume that∑∞
n>N d

−2
n < ∞. Then for any linear bounded perturbation operator B0 on H,

there are constants C,L > 0, an integer M > 0, and eigenpairs {µn, ψn}∞M of
A0 + B0 such that

(i) |µn − λn| ≤ C,∀n ≥M .
(ii) ‖ψn − φn‖ ≤ Ld−1

n , n > M , and hence
∑∞
M ‖ψn − φn‖2 <∞.

We use Theorem 4.6 for A0,B0, where A0 is defined by (1.5), and operator B0

is a perturbation of A0, such that A = A0 +B0, we can obtain the following result
for A.

Theorem 4.7. Suppose that k ∈ C2([0, 1],R), q ∈ L1([0, 1],R), {µn, ψn}∞1 are
eigenpairs of operator A, {λn, yn}∞1 are eigenpairs of operator A0. Then the fol-
lowing results hold.

(i) A = A0 + B0 is [D]-class.
(ii) The eigenvalue of A0 + B0 have asymptotic expansion

µn = λn +O(1), n→ +∞.
(iii) The corresponding eigenfunctions {ψn(x)} of A have the asymptotic expan-

sion
ψn(x) = yn(x) + εn(x), n→ +∞, (4.8)

where ‖εn‖L2([0,1],R) = O( 1
n ). Moreover,

∞∑
n=M

‖ψn − yn‖2L2(0,1) <∞. (4.9)

where yn(·) is the eigenfunctions of (1.4). Moreover, the generalized eigen-
functions of A forms a Riesz basis of L2([0, 1],R).

Proof. Obviously, (ii), (4.8) and (4.9) can be obtained according to Theorem 4.6.
Next, we prove that the generalized eigenfunctions of A form a Riesz basis of
L2([0, 1],R). Combined (4.9) with Theorem 4.2, we know that the generalized
eigenfunctions of A forms a Riesz basis of L2([0, 1],R). Meanwhile, in terms of
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the definition 4.5 and Theorem 3.6, we know (i) also holds, which completes the
proof. �
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