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ALMOST PERIODIC SOLUTIONS OF DIFFERENTIAL
INCLUSIONS GOVERNED BY SUBDIFFERENTIALS

KARIM EL MUFTI

Abstract. Sufficient conditions are given to ensure the existence and even-

tually the uniqueness of bounded and almost periodic solutions of evolution

equations governed by subdifferential operators.

1. Introduction

Let V and H be real Hilbert spaces, with V densely and compactly embedded in
H which will be referred as the compactness condition. We consider an evolution
equation of the form

u′(t) + ∂ϕt(u(t)) +B(t, u(t)) 3 f(t) in H t ≥ s, s ∈ R (1.1)

where f ∈ L2
loc([s,∞];H), ∂ϕt is the subdifferential of a time dependent proper

lower semicontinuous (lsc) convex function ϕt onH, B(t, ·) is a multivalued operator
from a subset D(B(t, ·)) ⊂ H into H for each t ∈ R. The Cauchy problem for (1.1)
with the initial value u0 ∈ H is

u′(t) + ∂ϕt(u(t)) +B(t, u(t)) 3 f(t) in H t ≥ s
u(s) = u0.

(1.2)

We use some classical results on subdifferentials of time dependent convex functions
in a Hilbert space ; we refer to [4], [5] or [8] for the definitions and known results.

Denote by A the totality of operator functions A(t)(·) = ∂ϕt(·) + B(t, ·), t ∈ R
satisfying

(v∗1 − v∗2 , v1 − v2) ≥ γ(t)|v1 − v2|2H, v∗i ∈ A(t)vi. (1.3)

We shall prove an existence theorem for bounded solutions under a compactness
condition, and an existence-uniqueness theorem for bounded solutions assuming
(1.3), f and γ being in the Stepanov space. After we discuss whether the bound-
edness of a solution to (1.1) on the whole line, implies its almost periodicity or the
existence of an almost periodic solution, via compactness arguments combined with
monotonicity methods.

Let Cb(W ) be the space of continuous and bounded functions on the real line
with values in Banach space W and denote by | · |W the norm for W .
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Definition 1.1. A function x belonging to Cb(W ) is called Bochner almost periodic
if the family of its shifts xτ (·) = x(.+ τ)(τ ∈ R) is precompact in Cb(W ). The set
of almost periodic functions is denoted by Ċb(W ).

The Stepanov space of index r ≥ 1, Sr(J ;W ) will play an important role in the
sequel.

Sr(J ;W ) = {f ∈ Lr(J ;W ), sup
t∈J

∫ 1

0

|f(t+ τ)|rW dτ <∞}.

If W = R, we denote this space bySr(J).

Definition 1.2. A function f is said to be almost periodic in the sense of Stepanov
(Sr)− a.p., if for every ε > 0 there corresponds a relatively dense set {τ}ε such
that for all τ ∈ {τ}ε, we have

sup
t∈R

∫ 1

0

|f(t+ τ + η)− f(t+ η)|rW dη ≤ ε.

Before stating our main results, we give a metric topology on Φ the set of all
proper lsc convex functions on H, and precise some preliminary results. For ϕ,ψ ∈
Φ, we define for each r ≥ 0,

ρr(ϕ,ψ) :=

{
0 if Lϕ(r) = ∅
supz∈Lϕ(r) infy∈D(ψ){max{|y − z|, |ψ(y)− ϕ(z)|} if Lϕ(r) 6= ∅,

(1.4)
where D(f) stands for the domain of f and put

Lϕ(r) = {z ∈ D(ϕ); |z| ≤ r, ϕ(z) ≤ r}.

We define the functional ζr(·, ·) on Φ× Φ as follows

ζr(ϕ,ψ) = ρr(ϕ,ψ) + ρr(ψ,ϕ);ϕ,ψ ∈ Φ.

We say that {ϕn} is a Cauchy sequence for the metric topology of Φ if

ζr(ϕn, ϕm)→ 0 as n,m→∞.

Note that Φ is not complete. However, Φr = {ϕ ∈ Φ;Lϕ(r) 6= ∅} is a complete
subset of Φ for this topology. Following [4], the function t → ϕt is Φ-almost
periodic if from any sequence {tn}, one can select a subsequence {tn′} of {tn} such
that ϕt+tn′ converges in Φ uniformly in t ∈ R.

We use the notion of weak solution to (1.1) introduced in [8].

Definition 1.3. (i) A function u : [t0, t1]→ H is called a solution of (1.1) on [t0, t1]
if: u ∈ Lp([t0, t1];H) ∩ C([t0, t1];H), u′ ∈ L2([t0, t1];H), ϕ(·)u ∈ L1(t0, t1), p ≥ 1
and (1.1) is satisfied.

(ii) A function u : R→ H is called a weak solution of (1.1) on R, if the restriction
of u to every compact K of R is a solution of (1.1) on K in the above sense.

To prove the existence of solutions to (1.1), we use the following conditions:
(A1) ϕt(z) ≥ c0|z|pV − γ1(t) for all z ∈ V and t ∈ R.
(A2) (Smoothness of ϕt in t) There are functions α ∈W 1,2

loc (R) and β ∈W 1,1
loc (R)

satisfying

S(α, β) = sup
t∈R
|α′|L2(t,t+1) + sup

t∈R
|β′|L1(t,t+1) <∞ ;



EJDE-2016/28 ALMOST PERIODIC SOLUTIONS 3

for each s, t ∈ R and z ∈ D(ϕs), there exists an element z̃ ∈ D(ϕt) such
that

|z̃ − z|H ≤ |α(t)− α(s)|(1 + ϕs(z))
1
p ,

ϕt(z̃)− ϕs(z) ≤ |β(t)− β(s)|(1 + ϕs(z)).

(A3) B is an operator from D(B(t, ·)) ⊂ H into H such that D(ϕt) ⊂ D(B(t, ·))
and

(−∂ϕt(u(t))−B(t, u(t)), u)H + c1ϕ
t(u) + c(t)|u(t)|2H ≤ γ2(t), t ∈ R.

We assume that

mtc = lim inf
t1−t0→∞

1
t1 − t0

∫ t1

t0

c(s)ds > 0.

(A4) |||B(t, u)|||2H ≤ c2ϕ
t(u) + γ3(t) for all u ∈ D(ϕt), where |||B(t, u)|||H =

sup{|b|H; b ∈ B(t, u)} are valid, in these inequalities 2 ≤ p < ∞ c0, c1 and
c2 are positive constants; γ1, γ2, γ3 ∈ S1([t0,+∞[).

(A5) B(t, ·) is measurable in the sense: For each function u ∈ C([0, T ];H) such
that du(t)

dt ∈ L2([0, T ];H) and there exists a function g(t) ∈ L2([0, T ];H)
with g(t) ∈ ∂ϕt(u(t)) for a.e. t ∈ [0, T ], there exists anH-valued measurable
function b(t) ∈ B(t, u(t)) for a.e t ∈ [0, T ].

(A6) B(t, ·) is demiclosed in the following sense: If un → u in C([0, T ];H),
gn → g weakly in L2([0, T ];H) with gn(t) ∈ ∂ϕt(u(t)), g(t) ∈ ∂ϕt(u(t)) for
a.e. t ∈ [0, T ], and if bn → b weakly in L2([0, T ];H) with bn(t) ∈ B(t, un(t))
for a.e. t ∈ [0, T ], then b(t) ∈ B(t, u(t)) holds a.e.

A slight modification of the results in [8] ensure the existence of a weak solution
given by Definition 1.3. In all the cases in which this construction is possible, u is
given by the formula u(t + s) = Ef (t, s)u(s), (Ef (t, s))t∈R,s∈R+ is called a process
evolved in [3], see also the references therein.

This article is organized as follows: in section 2, we present the main results. In
section 3, we introduce some preliminaries. The proof of the main results are given
in section 4. In the last section, we show the applicability of our abstract theorems
to the heat equation and its variants in domains with moving boundaries.

2. Main results

Conditions for the existence and uniqueness of bounded and almost periodic
solutions to (1.1) are obtained. Our main results extend previous works [4, 6, 7]
and are stated as follows:

Theorem 2.1. Let f ∈ S2(J ;H). Under the compactness condition, (1.1) has at
least one solution H-bounded on the whole line.

Theorem 2.2. Let f ∈ Sp′(J ;H), A(t) ∈ A and the function γ appearing in (1.3)
satisfy the inequality mtγ > 0. Then the inclusion (1.1) has a unique bounded
solution.

The following result is an easy consequence of Theorem 2.2.

Corollary 2.3. Suppose moreover that f(t), ϕt and B(t, ·) are periodic with the
same period, the existence and uniqueness of a periodic solution to (1.1) is straight-
forward.
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Remark 2.4. It is important to note that if in inequality (1.3) γ(t) ≥ 0 a.e and
mtγ > 0, the existence and uniqueness of a bounded solution do not require any
compactness condition.

Theorem 2.5. For a positive fixed number A, we denote by ΨA the set of all
families {ϕt} of almost periodic functions satisfying the properties (A1) and (A2)
with β′S1-almost periodic such that S(α, β) ≤ A. Let {ϕt} ∈ ΨA∩ΦR and ∂ϕt(·)+
B(t, ·), t ∈ R be monotone. Suppose that f(t) is Stepanov-almost periodic and
B(t, ·) ∈ B, the set of multivalued almost periodic operators B. There is at least
one solution u∗ of (1.1) which belongs to Ċ(H).

A new element beyond many previous works is a substitution of the requirement
of monotonicity of the global operator ∂ϕt(·) + B(t, ·) by a weaker assumption of
the type of semi-boundedness from below, ensuring the existence of almost periodic
solutions to (1.1). The proof is similar enough to that given in [6], so it will be
omitted.

Theorem 2.6. Let f(t) be Stepanov almost periodic and the map t → ∂ϕt(·) +
B(t, ·) from R into H be almost periodic. Assume also that the function γ appearing
in (1.3) satisfies the inequality mtγ > 0. Then the inclusion (1.1) has a unique H-
almost periodic solution.

Another method used for studying almost periodicity, is based on the process
(Ef (t, s))t∈R,s∈R+ . In this way the methods apply to a much larger class of equations
than merely the equation (1.1) itself.

Theorem 2.7. Let (Ef (t, s))t∈R,s∈R+ be the process generated by (1.1) on a closed
convex subset of H. We assume that (Ef (t, s)) is T -periodic (T > 0) that is,

∀t ∈ R,∀s ∈ R+, Ef (t+ T, s) = Ef (t, s),

and that for some M ≥ 1 we have

|Ef (s, t)x− Ef (s, t)y| ≤M |x− y|.
Let u be any solution of (1.1). Under the compactness condition, there exists an
almost periodic solution v(t) such that |u(t)− v(t)|H → 0 as t→∞.

Remark 2.8. Theorem 2.7 is used to treat (1.1) when f(t), ϕt and B(t, ·) are
periodic with the same period.

In the time-independent case of ϕt, one has the following result.

Theorem 2.9. Assume that ϕt = ϕ and f = 0. Assume also that ∂ϕ and B satisfy
monotonicity types conditions of the form

(∂ϕ(x)− ∂ϕ(y), x− y) ≥ φ(|x− y|H), ∀x, y ∈ D(A)

where φ : R+ → R+ is a continuous function such that, φ(r) > 0 for r > 0.

(B(t, x)−B(t, y), x− y) ≥ −ψ(|x− y|H), t ∈ R, x, y ∈ H
the function ψ : R+ → R+ is continuous satisfying ψ(0) = 0.

We suppose that the map t→ B(t, ·) from R into H is almost periodic for every
fixed x ∈ H, uniformly on every bounded set of H. We assume finally that

lim sup
r→∞

ψ(r)− φ(r)
r

< 0
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while the largest root r(ε) of the equation ψ(r)−φ(r)+εr = 0 verifies the condition
r(ε)→ 0 as ε→ 0. There exists an almost periodic solution u : R→ H of (1.1).

3. Preliminaries

We start with a closedness result stated in [10] which describes the conver-
gence of the solutions of the variational inequality related to (ϕtn, Bn, fn) to that
of (ϕt, B, f).

Lemma 3.1. Let J be a compact interval in R and {ϕt}t∈J be a family of con-
tinuous mappings from J into Φ. Assume that ϕ(·)

n is continuous from J into Φ,
and for all t ∈ J ϕ

(t)
n converges to ϕ(t) in Φ (when n → ∞), where ϕ(t) is a fam-

ily in Φ and suppose that Bn(tn, zn) → B(t, z) weakly in H (when n → ∞). Let
f, fn ∈ L2

loc(R;H), un be the solution of u′n(t) + ∂ϕt(un(t)) + B(t, un(t)) 3 fn(t)
on a fixed interval J = [t0, t1]. Suppose that fn → f in L2(J ;H), and (un) is a
Cauchy sequence in C(J ;H), then the limit function is a solution of (1.1) on J .

The following lemma will be useful [6].

Lemma 3.2. Let an absolutely continuous and bounded function ψ(t) satisfy a.e.
the differential inequality

ψ′(t) + b(t)ψ(t) ≤ φ(t),
where φ ∈ S1(R), b ∈ S1((R), and

mtb = lim inf
t1−t0→∞

1
t1 − t0

∫ t1

t0

b(s)ds > 0.

Then
ψ(t) ≤ c(|b|S1(R) +

1
mtb

)|φ|S1(R).

where c(·) is an increasing function on (0,∞).

The next proposition establishes the boundedness on the half line of any solution
in the H-norm.

Proposition 3.3. Let {ϕt}0≤t<∞ satisfy (A1) and (A2), B satisfy (A3). Assume
that f ∈ Sp

′
([t0,∞);H), p′ ≥ 2 and ϕt(0) = 0. For each solution of (1.1) on

[t0,∞), we have

sup
t≥t0
|u(t)|H, supt≥t0

∫ t+1

t

ϕτ (u(τ))dτ ≤M0,

where M0 depends on |f |Sp′ ([t0,∞);H).

Proof. Multiply both sides of: u′(τ) + ∂ϕτ (u(τ)) + B(τ, u(τ)) 3 f(τ) by u(τ) and
make use of Hölder and Young inequalities, we obtain:

d|u(τ)|2H
dτ

+ θ|u(τ)|pV + 2c(τ)|u(τ)|2H ≤ δ|f(τ)|p
′

H + γ(τ), (3.1)

where θ, δ depend on c0, c1 and γ ∈ S1([t0,∞)) depend on γ1, γ2.
The first inequality is a consequence of Lemma 3.2. The second assertion holds

since,

|u(t+ 1)|2H + θ

∫ t+1

t

ϕτ (u(τ))dτ ≤ |u(t)|2H + δ

∫ t+1

t

|f(τ)|p
′

Hdτ +
∫ t+1

t

|γ(τ)|dτ.

�
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The following lemma is due to Yamada [9].

Lemma 3.4. Let {ϕt}0≤t<∞ satisfy (A1) and (A2) and u(t) be a strongly absolutely
continuous function from [0, T ] to H, where T is an arbitrarily fixed positive number.
Then the mapping t→ ϕt(u(t)) is absolutely continuous on [0, T ] and we have

dϕt(u(t))
dt

− (
d(u(t))
dt

, ∂ϕt(u(t)))H

≤ |β′(t)|{1 + ϕt(u(t))}+ |α′(t)|||∂ϕt(u(t))||{1 + (ϕt(u(t)))}
1
p .

The next proposition establishes the boundedness on the half line of any solution
in the V-norm.

Proposition 3.5. Let {ϕt}0≤t<∞ satisfy (A1) and (A2), B satisfy (A3) and (A4).
Suppose moreover that f ∈ S2([t0,∞);H). Then any solution u(t)(t ≥ t0) of (1.1)
satisfies the estimate

sup
t≥t0
|u(t)|V ≤ max{|u(t0)|V , l}, sup

t≥t0

∫ t+1

t

|u′(τ)|2Hdτ ≤M1,

where the constant l does not depend on the solution, and M1 depends on |u(t0)|V .

Proof. Multiply both sides of (1.1) by u′(t). From Lemma 3.4, we obtain

d

dτ
ϕτ (u(τ)) + a1|u′(τ)|2H

≤ a2|f(τ)|2H + |β′(τ)|{1 + ϕτ (u(τ))}

+ |α′(τ)|||∂ϕτ (u(τ))||{1 + (ϕτ (u(τ)))
1
p }+ a3ϕ

τ (u(τ)) + a4|γ3(τ)|

(3.2)

a.e. τ ≥ t0. Using Young inequality we obtain

d

dτ
ϕτ (u(τ)) + ν|u′(τ)|2H

≤ µ|f(τ)|2H + θ|β′(τ)|{1 + ϕτ (u(τ))}
+ θ|α′(τ)|2{1 + (ϕτ (u(τ)))}+ ζϕτ (u(τ)) + δ|γ3(τ)| ; a.e. τ ≥ t0,

(3.3)

Note that all the constants appearing in the previous inequality are positive. We
put A(τ) =

∫ τ
t0

(|α′(σ)|2 + |β′(σ)|)dσ and multiply both sides of this inequality by
e−A(τ),

d

dτ
[e−A(τ)ϕτ (u(τ))] + νe−A(τ)|u′(τ)|2V∗

≤ µe−A(τ)|f(τ)|2H + θ{|α′(τ)|2 + |β′(τ)|}e−A(τ) + {ζϕτ (u(τ)) + δ|γ3(τ)|}e−A(τ)

(3.4)
a.e. τ ≥ t0. Integrating (3.4) over [s, t], t > s ≥ t0 yields

e−A(t)ϕt(u(t))− e−A(s)ϕs(u(s)) + ν

∫ t

s

e−A(τ)|u′(τ)|2Hdτ

≤
∫ t

s

e−A(τ){µ|f(τ)|2H + θ[|α′(τ)|2 + |β′(τ)|]}dτ

+
∫ t

s

{ζϕτ (u(τ)) + δ|γ3(τ)|}e−A(τ)dτ,

(3.5)



EJDE-2016/28 ALMOST PERIODIC SOLUTIONS 7

where ζ and δ depend on c2. Assume that the half-line contains an interval ∆ =
[t1 − 1, t1] such that

Γ = |u(t1)|V = max
t∈∆
|u(t)|V .

From Lemma 3.3 follows the boundedness of
∫

∆
ϕτ (u(τ))dτ . Then we can find a t2

in ∆ such that ϕt2(u(t2)) is bounded. Now if in (3.5) we take s = t2 and t = t1, we
conclude that Γ is bounded by some constant l1. Hence, we obtain the inequality

sup
t≥t0
|u(t)|V ≤ max{ max

t0≤t≤1+t0
{|u(t)|V}, l1}.

Take s = t3 ∈ [t0, 1 + t0] so that ϕt3(u(t3)) is bounded, then estimating the ex-
pression maxt0≤t≤1+t0{|u(t)|V} with the help of (3.5) again, we show that the first
estimate holds. We multiply both sides of (3.3) by e−A(τ)(τ − s + 1), τ ≥ s ≥ t0,
it follows that for a.e. τ ≥ s,

d

dτ
{e−A(τ)(τ − s+ 1)ϕτ (u(τ))}+ ν(τ − s+ 1)e−A(τ)|u′(τ)|2H

≤ e−A(τ)(τ − s+ 1)[µ|f(τ)|2H + θ[|α′(τ)|2 + |β′(τ)|] + ζϕτ (u(τ)) + δ|γ3(τ)|].
(3.6)

Integrating (3.6) over [s, s+ 1] we obtain∫ s+1

s

|u′(τ)|2Hdτ

≤ CeA(s+1)−A(s)

∫ s+1

s

{|f(τ)|2H + |α′(τ)|2 + |β′(τ)|+ ϕτ (u(τ)) + |γ3(τ)|} dτ,

for some positive constant C, which completes the proof. �

4. Proofs of main results

Proof of Theorem 2.1. Let (sn) be a decreasing sequence of real numbers, sn →
−∞, and let un be the weak solution on [sn,∞[ of

u′n(t) + ∂ϕt(un(t)) +B(t, un(t)) 3 f(t) ; un(sn) = 0.

In view of the estimates in Proposition 3.5 and according to Ascoli’s theorem, there
is a subsequence {unk} which converges uniformly on every compact interval in R
as k → ∞ (as a H-valued function). If u(t) (t ∈ R) is a limit function, thanks
to Lemma 3.1 it must be a solution of equation (1.1). In the monotone case,
let z(t)(t ≥ t0) be the solution with the initial condition z(t0) = u(t0). Since,
|z(t)− un(t)|H ≤ |z(t0)− un(t0)|H → 0, we have u(t) = z(t)(t ≥ t0). �

Proof of Theorem 2.2. The existence part is proved as in Theorem 2.1, here we
prove the uniqueness of the bounded solution under the condition mtγ > 0. Let y1

and y2 be two solutions of the inclusion (1.1), ψ0(t) = |y1(t)−y2(t)|2H. The function
ψ0 is bounded on R and ψ′0(t) ≤ −γ(t)ψ0(t). In view of Lemma 3.2, ψ0(t) ≤ 0 which
implied the desired inequality y1 = y2. �

Proof of Remark 2.4. Consider now the case when γ(t) ≥ 0 and mtγ > 0 and the
inclusion V ⊂ H may not be compact. Let yn be a sequence of solutions of (1.1)
satisfying the conditions yn(−n) = yn(n), ||yn, L∞((−n, n);H)|| ≤ r. If m > n, the
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function ψ(t) = |yn(t) − ym(t)|2H(−n ≤ t ≤ n) satisfies the relations ψ(−n) ≤ r2,
ψ′(t) ≤ −γ(t)ψ(t) from which the bound

ψ(t) ≤ −
∫ t

n

2γ(s)ds

follows in a standard manner. Since γ(t) ≥ 0 and mtγ > 0, the same bound implies
that the sequence yn is a Cauchy sequence in C(J,H). Now the existence of a
bounded solution for the inclusion (1.1) is proved in the same manner as in the
case of the compact inclusion V ⊂ H. �

To prove Theorem 2.5, we need the following lemma [5].

Lemma 4.1. Let u and v be solutions of (1.1) on [t0,∞) such that |u(t)−v(t)|H = d
for all t ≥ t0 where d is a nonnegative constant. Then for each λ ∈ (0, 1), λu+ (1−
λ)v becomes a solution of (1.1) on [t0,∞).

Proof of Theorem 2.5. An almost periodic solution to (1.1) is selected by the min-
imax principle. Denote by, K the set of all solutions v to (1.1) on R such that

sup
t∈R
|v(t)|H ≤ sup

t≥t0
|u(t)|H and v(t) ∈ F for all t ∈ R.

K is non empty. Further we put µ = infv∈KI(v), where I(v) = supt∈R|v(t)|H.
Since I is lsc with respect to the pointwise convergence, K is being closed for this
topology, the following statement is straightforward.

Proposition 4.2. There is at least one element u∗ ∈ K such that µ = I(u∗).

We use Lemma 4.1 to obtain the following result.

Proposition 4.3. There is at most one element v ∈ K such that µ = I(v).

We state that u∗ isH-almost periodic, the proof of Theorem 2.5 will be complete.
We proceed by contradiction. Suppose that u∗ is not H-almost periodic on R. Then
there exists a sequence tn such that un = u∗(t + tn) does not contain any Cauchy
subsequence in L∞(R;H). By the almost periodicity of ϕt, f and B, we may assume
that

f(t− tn)→ m(t) in S2(R;V),

ϕt−tn → ψt in Φ uniformly on R,
B(t− tn)→ C(t) in B

and ui(t − tn) → vi in H uniformly on each compact interval in R, for i = 1, 2
for some V− almost periodic function m on R, C in B and applying the Bochner
criterion to Stepanov almost periodic functions, we establish that ΨA is stable in
the sense, ψt in BA. Clearly ψt is Φ-almost periodic on R, and ψt ∈ ΦR for all
t ∈ R. Since un contains no Cauchy sequence in L∞(R;H), there are a sequence
θk ∈ R, two subsequences tnk and tmk of tn and ε0 > 0 such that:

|u∗(θk + tnk)− u∗(θk + tmk)|H ≥ ε0 for all k.

Moreover we may assume that

m(t+ θk)→ m̃(t) in S2(R;V),

C(t+ θk)→ C̃(t) in B,

ψt+θk → ψ̂t in Φ uniformly on R,
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when k →∞, for some V-almost periodic function m̃, C̃ in B and a certain element
ψ̂t of BA, such that ψ̂t is Φ-almost periodic on R. Then it is easy to see that

f(t+ θk + tnk)→ m̃(t) and f(t+ θk + tmk)→ m̃(t) in S2(R;V),

B(t+ θk + tnk)→ C̃(t) and B(t+ θk + tmk)→ C̃(t) in B,

ϕt+θk+tnk → ψ̂t and ϕt+θk+tmk → ψ̂t in Φ, uniformly on R
when k →∞. Taking Proposition 3.5 into account, we may assume that

u∗(t+ θk + tnk)→ w1(t) and u∗(t+ θk + tmk)→ w2(t)

in H uniformly on each compact interval in R when k → ∞, w1 and w2 are in
C(R;H); we observe that: |w1(0) − w2(0)|H ≥ ε0, where w1 and w2 are solutions
of (1.1) on R satisfying

w1(t), w2(t) ∈ F for all t ∈ R,
µ = I(w1) = I(w2).

Finally we choose a sequence τk →∞ so that

m̃(t− τk)→ f(t) in S2(R;V),

C̃(t− τk)→ B(t) in B,

ψ̂t−τk → ϕt in Φ, uniformly on R,

and wi(t − τk) → w∗i (t) in H uniformly on each compact interval in R, for some
w∗i ∈ K (i = 1, 2). Since I(w∗1) = I(w∗2) it follows that w∗1 = w∗2 . On the other
hand,

0 = |w1(t)− w2(t)|H = limk→∞|w1(t− τk)− w2(t− τk)|H
≥ |w1(0)− w2(0)|H ≥ ε0,

which is a contradiction. �

Proof of Theorem 2.7. By Proposition 3.5, any solution u of (1.1) has a precompact
trajectory, then we apply the result of [3]. �

Proof of Theorem 2.9. Theorems 2.1 and 2.2 ensure the existence and eventually
the uniqueness of a bounded solution. By [2], this solution is actually almost
periodic. �

5. Further comments and applications

Let A(t) be a maximal monotone operator, we recall that Jλ(t) = (I +λA(t))−1

for λ > 0 is the resolvent of A(t) and the Yosida approximation Aλ(t) = I−Jλ(t)
λ is

Lipschitz continuous with Lipschitz constant 1
λ ; in the special case A(t) = ∂ϕt, the

function defined by ϕtλ(x) = ϕt(Jλ(t)x) + 1
2λ |x − Jλ(t)x|2 is Fréchet differentiable

and Aλ(t) = ∂ϕtλ.
In [1], the authors consider the inclusion du

dt + A(t)u + B(t)u 3 0 in a Banach
space W (more general setting) where D(A(t)) = D(B(t)) = W , B(t) is assumed
to be Lipschitzian and almost periodic, A(t) is in a class A(ω(t)) defined by

|(x+ λA(x))− (y + λA(y))|W ≥ (1− λω(t))|x− y|W .
They assume that lim sup|t|→∞ ω(t) < 0 and supt∈R ω(t) <∞, the almost periodic
dependence of the operator A(t) is traduced in terms of its Yosida approximant.
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By a fixed point method, they show that the perturbed equation has exactly one
almost periodic solution u(t).

We shall exemplify the applicability of our abstract theorems to heat equations.

Example 5.1. Let Ω be a bounded domain in RN , N ≥ 1, with smooth boundary
Γ = ∂Ω. If b(t) is an almost periodic function and mtb > 0, one could establish the
existence and uniqueness of bounded and almost periodic solutions of the problem

ut −
n∑
i=1

∂

∂xi

(
| 5 u|p−2 ∂u

∂xi

)
+ b(t)u = f(x, t), x ∈ Ω, t ∈ R,

u(x, t) = 0, x ∈ ∂Ω, t ∈ R.
(5.1)

Example 5.2. The heat equations in bounded regions with almost periodic moving
boundaries. Let Q(t) be a bounded domain in Rnx with smooth boundary Γ(t) for
each t. Put Q(r, s) =

⋃
r<t<s(Q(t)× t).

• Q(t) is almost periodic.
• For each t, the boundary Γ(t) of Q(t) is a (n − 1) dimensional sufficiently

smooth manifold (say, of class C3).
• Q is covered by m slices Q(si, ti)(i = 1, 2, . . . ,m) such that for each slice
Q(si, ti) is mapped onto the cylindrical domain Q(s) × (si, ti) by a diffeo-
morphism Yi which is of class C3 up to the boundary and preserves the
time coordinate t.

Let 2 + α > p and the following condition be satisfied,
−1 < α <∞ if n ≤ p

−1 < α <
np

2(n− p)− 1
if n > p.

(5.2)

Our abstract framework can deal with the following problem,
∂u

∂t
(x, t) = ∆pu+ |u|αu+ f(x, t)} in Q

u(x, t) = 0 on Γ,
(5.3)

where ∆p is the nonlinear Laplace operator defined by

∆p =
n∑
i=1

∂

∂xi
(| ∂u
∂xi
|p−2 ∂u

∂xi
), p ≥ 2.

Ôtani [8] also studies the Navier-Stokes equations in regions with moving bound-
aries.

Acknowledgments. The authors wishes to thank the anonymous referees for their
comments and suggestions, that improved the manuscript.
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