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ANALYSIS AND SIMULATION OF RADIALLY SYMMETRIC
SOLUTIONS FOR FREE BOUNDARY PROBLEMS WITH

SUPERLINEAR REACTION TERM

QUNYING ZHANG, JING GE, ZHIGUI LIN

Abstract. This article concerns with the solution to a heat equation with a

free boundary in n-dimensional space. By applying the energy inequality to the
solutions that depend not only on the initial value but also on the dimension

of space, we derive the sufficient conditions under which solutions blow up at

finite time. We then explore the long-time behavior of global solutions. Results
show that the solution is global and fast when initial value is small, and the

solution is global but slow for suitable initial value. Numerical simulations are

also given to illustrate the effect of the initial value on the free boundary.

1. Introduction

Free boundary problems have been attracting great attention [2, 3, 4, 5, 7, 11,
10, 15, 17, 18, 22, 25, 24, 26]. Recently, some works [6, 9] considered a heat-diffusive
and chemically reactive substance in its liquid phase, and studied the free boundary
problem

ut − uxx = up, t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0.

(1.1)

If the left fixed boundary x = 0 in (1.1) is replaced by a free boundary x = g(t)
governed by g′(t) = −µux(t, g(t)), then (1.1) becomes a double-front free bound-
ary problem [25]. Many previous investigations of the corresponding free boundary
problem are restricted to one-dimensional space, and it remains unclear but re-
ally interesting what happens when spatial dimension increases, a question that
is attempted to be addressed in the present paper. However, increasing of spatial
dimension makes models more complicated and accordingly more difficulties are
caused. As a starting point, we assume that both space and solution are radially
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symmetric. Under this assumption, model (1.1) can be rewritten as

ut − d∆u = up, t > 0, 0 < r < h(t),

ur(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(1.2)

where r = |x|, x ∈ Rn(n ≥ 2), u ≡ u(t, r), ∆u = urr + n−1
r ur, and r = h(t) is the

moving boundary to be determined later together with the solution u(t, r); h0, d
and µ are positive constants. We assume throughout this paper that p > 1 and the
initial function u0 satisfies

u0 ∈ C2([0, h0]),

u′0(0) = u0(h0) = 0, u0 > 0 in [0, h0).
(1.3)

In the absence of free boundary, model (1.2) reduces to the Cauchy problem in
Rn; that is,

ut − uxx = up, t > 0, x ∈ Rn,
u(0, x) = u0(x), x ∈ Rn.

(1.4)

Such problem has been well studied [8, 12, 23], and some results are available: If
1 < p ≤ 1+ 2

n , then no non-negative global solution exists for any non-trivial initial
value; If p > 1 + 2

n , then the global solution does exist for any non-negative initial
value dominated by a sufficiently small Gaussian. For the Cauchy problem with
fixed domain, one can refer to [1, 13, 14, 19].

The rest of this article is organized as follows. Some basic results are presented
in section 2. In section 3, we obtain some sufficient conditions, which depend on
the initial value u0 and the spatial dimension n, for the solution blows up. Section
4 deals with the existence of global fast and slow solutions. Though some of results
and methods here are motivated from [6, 9], corresponding changes in the proofs are
needed, due to the more general domain. Moreover, we try to illustrate the effect
of the initial date on the free boundary by numerical tests, and a brief discussion
is also presented in the last section.

2. Some basic results

In this section, we first prove the existence and uniqueness of local solution to
(1.2) using the contraction mapping principle.

Theorem 2.1. Under assumption (1.3), for any α ∈ (0, 1), there exists a T > 0
such that (1.2) admits a unique classic solution

(u, h) ∈ C(1+α)/2,1+α(DT )× C1+α/2([0, T ]).

Furthermore,
‖u‖C(1+α)/2,1+α(DT ) + ‖h‖C1+α/2([0,T ]) ≤ C, (2.1)

where DT = {(t, r) ∈ R2 : t ∈ [0, T ], r ∈ [0, h(t)]}, C and T depend only on h0, α
and ‖u0‖C2([0,h0]).

Proof. As in [2], we straighten the free boundary. Let

x = y + ξ(|y|)(h(t)− h0)y/|y|, y ∈ Rn,
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and ξ(s) ∈ C3([0,+∞)) satisfy

ξ(s) =

{
1 if |s− h0| < h0

8 ,

0 if |s− h0| > h0
2 ,

|ξ′(s)| < 6
h0

for all s.

Obviously the transformation (t, y)→ (t, x) induces the following transformation

(t, s)→ (t, r) with r = s+ ξ(s)(h(t)− h0), 0 ≤ s < +∞.
For any fixed t ≥ 0, as long as

|h(t)− h0| ≤
h0

8
,

the above transformation y → x is a diffeomorphism from Rn onto Rn, and the
induced transformation s → r is a diffeomorphism from [0,+∞) onto [0,+∞). If
we define

u(t, r) = u(t, s+ ξ(s)(h(t)− h0)) = v(t, s),
then we obtain an equivalent system

vt −Advss − (Bd+ h′C +Dd)vs = vp, t > 0, 0 < s < h0,

v = 0, h′(t) = −µvs, t > 0, s = h0,

vs(t, 0) = 0, t > 0,

h(0) = h0, v(0, s) = u0(s), 0 ≤ s ≤ h0,

(2.2)

where

A ≡ A(h(t), s) =
1

[1 + ξ′(s)(h(t)− h0)]2
,

B ≡ B(h(t), s) = − ξ′′(s)(h(t)− h0)
[1 + ξ′(s)(h(t)− h0)]3

,

C ≡ C(h(t), s) =
ξ(s)

1 + ξ′(s)(h(t)− h0)
,

D ≡ D(h(t), s) =
(n− 1)

√
A

s+ ξ(s)(h(t)− h0)
.

Denote h1 = −µu′0(h0), and for 0 < T ≤ h0
8(1+h1) , take ∆T = [0, T ]× [0, h0],

UT = {v ∈ C(∆T ) : v(0, s) = u0(s), ‖v − u0‖C(∆T ) ≤ 1},
HT = {h ∈ C1([0, T ]) : h(0) = h0, h

′(0) = h1, |h′ − h1‖C([0,T ]) ≤ 1}.
It is easy to see that ΣT := UT ×HT is a complete metric space with the metric

d((v1, h1), (v2, h2)) = ‖v1 − v2‖C(∆T ) + ‖h′1 − h′2‖C([0,T ]).

The rest of the proof is similar as that of [4, Theorem 2.1], it follows from standard
Lp theory and the Sobolev imbedding theorem [16] that there exists a T > 0 such
that F is a contraction. Hence we can apply the contraction mapping theorem to
conclude that there is a unique fixed point (v, h) in ΣT such that F(v, h) = (v, h).
That is, (v, h) is the solution of (2.2), which implies that (u, h) is the solution of
(1.2). Moreover, (u(t, r), h(t)) is the unique local classical solution of (1.2). This
result together with the Schauder estimates proves additional regularity properties
of the solution, h(t) ∈ C1+α/2((0, T ]) and u ∈ C1+α/2,2+α((0, T ]× [0, h0]). �

The next lemma states the property of the free boundary.
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Lemma 2.2. If u is a solution of (1.2) defined for 0 < t < T0 for some T0 ∈
(0,+∞), and there exists a positive number M1 such that u(t, r) ≤ M1 for (t, r) ∈
[0, T0) × (0, h(t)), then there exists constant M2(M1) independent of T0, such that
0 < h′(t) ≤M2.

Proof. First, applying the Hopf lemma to the second equation of problem (1.2), we
immediately obtain

ur(t, h(t)) < 0 for 0 < t 6 T0,

then we have h′(t) > 0 by using the free boundary condition h′(t) = −µur(t, h(t)).
The proof that h′(t) ≤ M2 is almost identical to the argument of [4, Lemma 2.2].
So we omit the details. �

We now have the following comparison principle which can be used to estimate
both u(t, r) and the free boundary r = h(t). Since the proof is similar to the one
phase case [4, Lemma 3.5], we omit it here.

Lemma 2.3 (Comparison Principle). Suppose that T ∈ (0,+∞), h ∈ C1([0, T ]),
u ∈ C(D

∗
T ) ∩ C1,2(D∗T ) with D∗T = {(t, r) ∈ R2 : 0 < t ≤ T, 0 ≤ r ≤ h(t)}, and

ut − d∆u ≥ up, t > 0, 0 < r < h(t),

u = 0, h
′
(t) ≥ −µur, t > 0, r = h(t),

ur(t, 0) ≤ 0, t > 0.

If h0 ≤ h(0) and u0(r) ≤ u(0, r) in [0, h0], then the solution (u, h) of the free
boundary problem (1.2) satisfies

h(t) ≤ h(t) in (0, T ],

u(t, r) ≤ u(t, r) for (t, r) ∈ (0, T ]× (0, h(t)).

3. Blow-up solutions

By Theorem 2.1, the solution of (1.2) exists, is unique, and it can be extended to
[0, T ∗), where T ∗ = T ∗(u0) ∈ (0,+∞] is its maximum existence time. To state our
blow-up result, we need the following lemmas. We begin with a lemma modified
from [25, Lemma 4.5].

Lemma 3.1. If T ∗ <∞, we have

lim sup
t→T∗

‖u(t, r)‖L∞([0,t]×[0,h(t)]) =∞, (3.1)

and we say that u blows up in finite time.

Next introducing the definition of “energy” of solution u at time t by

E(t) =
∫ h(t)

0

rn−1
(d

2
(ur)2 − up+1

p+ 1

)
(t, r)dr

and its L1-norm by |u(t)|1 =
∫ h(t)

0
rn−1u(t, r)dr, we have the following “energy

identities”.

Lemma 3.2. If u is the solution of problem (1.2), then we have

dE(t)
dt

= −
∫ h(t)

0

rn−1u2
t (t, r)dr −

d

2µ2
hn−1(t)h′3(t). (3.2)
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Moreover,

|u(t)|1 − |u0|1 =
d

nµ
(hn0 − hn(t)) +

∫ t

0

∫ h(τ)

0

rn−1up(τ, r)drdτ. (3.3)

Proof. Direct differentiation yields

dE(t)
dt

=
∫ h(t)

0

rn−1 (dururt − uput) (t, r)dr

+ h′(t)hn−1(t)
[d
2

(ur)2(t, h(t))− up+1

p+ 1
(t, h(t))

]
.

(3.4)

To calculate
∫ h(t)

0
rn−1ururtdr, differentiate the relation u(t, h(t)) = 0 in t and use

the Stefan condition, we obtain

(urut)(t, h(t)) = −h′(t)u2
r(t, h(t)) = −h

′3(t)
µ2

.

Integrating by parts yields∫ h(t)

0

rn−1ururtdr = −
∫ h(t)

0

(
rn−1ur

)
r
utdr + hn−1(t)(urut)(t, h(t)).

By substituting the above identity in (3.4) and using also u(t, h(t)) = 0, we see that

dE(t)
dt

= −
∫ h(t)

0

[d(rn−1ur)rut + rn−1uput](t, r)dr −
d

2µ2
hn−1(t)h′3(t)

= −
∫ h(t)

0

rn−1u2
t (t, r)dr −

d

2µ2
hn−1(t)h′3(t).

This implies (3.2).
It remains to prove (3.3). We compute

d
dt

∫ h(t)

0

rn−1u(t, r)dr =
∫ h(t)

0

rn−1ut(t, r)dr + h′(t)hn−1(t)u(t, h(t))

= d

∫ h(t)

0

rn−1∆udr +
∫ h(t)

0

rn−1up(t, r)dr

=
∫ h(t)

0

d
(
rn−1ur

)
r

dr +
∫ h(t)

0

rn−1up(t, r)dr

= − d
µ
hn−1(t)h′(t) +

∫ h(t)

0

rn−1up(t, r)dr.

Integrating the above equation between 0 and t, we know that

|u(t)|1 − |u0|1 =
d

nµ
(hn0 − hn(t)) +

∫ t

0

∫ h(τ)

0

rn−1up(τ, r)drdτ.

This completes the proof of Lemma 3.2. �

Lemma 3.3. Assume T ∗ =∞ and let A =
∫∞

0
hn−1(t)h′3(t)dt, then we have

A > N(u0, n) := (
3

n+ 2
)3 24− 4

n d2π2

( 1
nh

n
0 + µ

d |u0|1)
4
n

[(nµ|u0|1
2d

+ hn0

)n+2
3n − h

n+2
3

0

]3
.
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Proof. By the same argument as in Theorem 2.1, the solution v of the auxiliary
free boundary problem

vt − d∆v = 0, 0 < t <∞, 0 < r < σ(t),

vr(t, 0) = v(t, σ(t)) = 0, 0 < t <∞,
σ′(t) = −µvr(t, σ(t)), 0 < t <∞,

σ(0) = h0, v(0, r) = u0(r), 0 6 r 6 h0

exists for all t > 0 because of the boundedness of the solution. Moreover, by
Lemma 2.3, we easily have u > v > 0 and h(t) > σ(t) > h0 on (0, T ∗). Denoting
|v(t)|1 =

∫ σ(t)

0
rn−1v(t, r)dr, we obtain from the same discussion in Lemma 3.2 that

σn(t)− hn0 =
nµ

d
(|u0|1 − |v(t)|1). (3.5)

On the other hand, assume that v̄ is the solution of the Cauchy problem

v̄t − d∆v̄ = 0, t > 0, 0 ≤ r <∞,

v̄(0, r) = ū0(r) =

{
u0(r), 0 6 r 6 h0,

0, r ∈ [0,+∞)/[0, h0].

Then we have v 6 v̄. Using L1 − L∞ estimate for above equation, we find that

‖v(t)‖∞ 6 ‖v̄(t)‖∞ 6 (4dπt)−n/2|v̄(0)|1 = (4dπt)−n/2|u0|1.
Hence, by (3.5),

|v(t)|1 6
1
n
σn(t)‖v(t)‖∞ 6

1
n
σn(t)(4dπt)−n/2|u0|1

=
( 1
n
hn0 +

µ

d
|u0|1 −

µ

d
|v(t)|1

)
(4dπt)−n/2|u0|1

6
( 1
n
hn0 +

µ

d
|u0|1

)
(4dπt)−n/2|u0|1.

Clearly,

|v(t0)|1 6 |u0|1/2, for t0 =
n
√

4
4dπ

(
1
n
hn0 +

µ

d
|u0|1)2/n. (3.6)

Now by Hölder’s inequality and h(t) being nondecreasing, we find that, for any
t > 0, ∫ t

0

h
n−1

3 (τ)h′(τ)dτ 6
(∫ t

0

hn−1(τ)h′3(τ)dτ
)1/3(∫ t

0

dτ
)2/3

.

Thus

A >
∫ t

0

hn−1(τ)h′3(τ)dτ

> t−2
(∫ t

0

h
n−1

3 (τ)h′(τ)dτ
)3

=
( 3
n+ 2

)3
t−2
(
h
n+2

3 (t)− h
n+2

3
0

)3

.

Recall that h(t) > σ(t) > h0, therefore, by (3.5),

A >
( 3
n+ 2

)3

t−2
[(nµ

d
(|u0|1 − |v(t)|1) + hn0

)n+2
3n − h

n+2
3

0

]3
. (3.7)

Taking t = t0 in (3.7), together with (3.6), we immediately complete the proof. �
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Theorem 3.4. Let u be the solution of (1.2). Then u blows up in finite time if

E(0) <
d

2µ2
N(u0, n), (3.8)

where N(u0, n) is defined in Lemma 3.3.

Proof. Suppose that (1.2) has no blow-up solution, by Lemma 3.1, we have T ∗ =∞.
By Lemma 3.3, condition (3.8) implies that

E(0) <
d

2µ2

∫ t

0

hn−1(τ)h′3(τ)dτ (3.9)

for sufficiently large t > t0.
As in [9], we define auxiliary function

W (t) = F−
p−1
4 (t), F (t) =

∫ t

0

∫ h(τ)

0

rn−1u2(τ, r)drdτ.

Then

W ′(t) = −p− 1
4

F ′(t)F−
p+3
4 (t),

W ′′(t) = −p− 1
4

F−
p+7
4

(
FF ′′ − p+ 3

4
F ′2
)

(t),

where

F ′(t) =
∫ h(t)

0

rn−1u2(t, r)dr,

F ′′(t) =
∫ h(t)

0

2rn−1uut(t, r)dr + h′(t)hn−1(t)u2(t, h(t))

= 2
∫ h(t)

0

rn−1uut(t, r)dr

= 2
∫ h(t)

0

rn−1u (d∆u+ up) (t, r)dr

= 2
∫ h(t)

0

[
d
(
rn−1ur

)
r
u+ rn−1up+1

]
(t, r)dr

= 2
∫ h(t)

0

rn−1
(
up+1 − du2

r

)
(t, r)dr + 2drn−1uur(t, r)|h(t)

0

= −2(p+ 1)E(t) + d(p− 1)
∫ h(t)

0

rn−1u2
r(t, r)dr.

(3.10)

Combining (3.2) with (3.9) gives

F ′′(t) = 2(p+ 1)
∫ t

0

∫ h(τ)

0

rn−1u2
t (τ, r)drdτ +

d

µ2
(p+ 1)

∫ t

0

hn−1(τ)h′3(τ)dτ

− 2(p+ 1)E(0) + d(p− 1)
∫ h(t)

0

rn−1u2
r(t, r)dr

> 2(p+ 1)
∫ t

0

∫ h(τ)

0

rn−1u2
t (τ, r)drdτ

(3.11)
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for any t > t0. In view of the Cauchy-Schwarz inequality and (3.10), it follows that

F (t)F ′′(t) > 2(p+ 1)
∫ t

0

∫ h(τ)

0

rn−1u2drdτ
∫ t

0

∫ h(τ)

0

rn−1u2
tdrdτ

> 2(p+ 1)
(∫ t

0

∫ h(τ)

0

rn−1uutdrdτ
)2

=
p+ 1

2
(F ′(t)− F ′(0))2.

On the other hand, from (3.11), we obtain

F ′(t) > F ′(t0 + 1) =
∫ h(t0+1)

0

rn−1u2(t0 + 1, r)dr > 0, t > t0 + 1.

Hence, F (t)→∞ as t→∞. We then deduce

F (t)F ′′(t) >
p+ 3

4
F ′2(t), t > t1

for some large t1 > t0 + 1 (since p > 1).
We obtain from above discussion that W ′(t) < 0, W ′′(t) ≤ 0 for any t > t1.

It follows that W is concave, decreasing and positive for any t > t1, which is
impossible. Thus we immediately have the blowup result. �

Remark 3.5. Theorem 3.4 shows that conditions for blow-up not only depend on
the initial value u0, but also on the spatial dimension n. Along with the increasing
of spatial dimension n, blow-up conditions become stronger. When we fix n, the
solution of free boundary problem (1.2) blows up if the initial value u0 is sufficiently
large. If the initial value is of the form u0 = λφ(r), where φ ∈ C1([0, h0]) satisfies
φ ≥ 0 and φ 6= 0 with φr(0) = φ(h0) = 0, then Theorem 3.4 also implies that the
solution of problem (1.2) blows up when λ is large enough.

4. Global fast and slow solution

This section is devoted to the existence of global fast and slow solutions. We
start with the classification of global solutions.

Definition 4.1 (Fast solution). Suppose u is the solution of (1.2). If T ∗ =∞, and
the free boundary grows up to a finite limit, that is, h∞ := limt→∞ h(t) <∞, then
u is called global fast solution of (1.2).

Definition 4.2 (Slow solution). Suppose u is the solution of (1.2). If T ∗ =∞ and
the free boundary converges to infinity, that is, h∞ := limt→∞ h(t) =∞, then u is
called global slow solution of (1.2).

The existence of global solutions of (1.2) is a consequence of the following two
properties.

Proposition 4.3. Let pS = +∞ for n = 1, 2 and pS = (n+2)/(n−2) for n ≥ 3. If
u is a global solution of problem (1.2) with 1 < p < pS, then there exists a constant
C > 0 such that

sup
t>0
‖u(t, r)‖L∞(0,h(t)) 6 C,

where C = C(‖u0‖C1+α , h0, 1/h0) is bounded for ‖u0‖C1+α , h0 and 1/h0 is bounded.
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Proof. By the local theory for (1.2), for each M > 1, we can find a σ > 0 such that,
‖u(t, r)‖L∞ < 2M on [0, σ] if ‖u0‖C1+α < M and 1/M < h0 < M .

Suppose that the above conclusion is not true, then it is easy to see that there
exists some M > 0 and a sequence of global solutions (um, hm) of (1.1) satisfying

1/M < hm(0) < M, ‖um(0, r)‖C1+α([0,h0]) < M,

sup
t>0
‖um(t, r)‖L∞(0,hm(t)) →∞ as m→∞.

Thus for any large m, there exist tm > σ and rm ∈ (0, hm(t
m

)) satisfying

sup
t>0
‖um(t, r)‖L∞(0,hm(t)) = um(tm, rm) =: %m.

Define λm = %
−(p−1)/2
m , then we easily conclude that λm → 0 as m → ∞. By

extending um(t, ·) by 0 on (hm(t),∞), then we define a rescaled function

vm(τ, s) = λ
2
p−1
m um(tm + λ2

mτ, rm + λms) (4.1)

for (τ, s) ∈ D̃m = {(τ, s) : −λ−2
m tm 6 τ 6 0 and − λ−1

m rm 6 s <∞}.
Let us also define

Dm = {(τ, s) : −λ−2
m tm 6 τ 6 0 and s1(τ) 6 s < s2(τ)},

where s1(τ) = −λ−1
m rm, s2(τ) = λ−1

m (h(tm + λ2
mτ)− rm). Clearly, the function vm

satisfies vm(0, 0) = 1, 0 6 vm 6 1 in D̃m, and

(vm)τ − d∆vm = vpm, (τ, s) ∈ Dm. (4.2)

Similarly to [6, Lemmas 2.1-2.3], we can derive a function w(s) > 0, which is
bounded, continuous on [0,∞), and satisfies that −∆w = wp; hence w is concave.
Since 1 < p < pS , it follows from [20, Theorem 8.1] that w ≡ 0, contradicting the
fact w(0) = 1. This completes the proof. �

Proposition 4.4. If u is a global solution of (1.2) with 1 < p < pS, then

lim
t→+∞

‖u(t, r)‖L∞(0,h(t)) = 0.

Proof. We shall prove the property by a different approach from the one in [6, The-
orem A]. Suppose that k := lim supt→+∞ ‖u(t, r)‖L∞(0,h(t)) > 0 by contradiction,
then we can find a sequence (tk, rk) ∈ (0,∞) × (0, h(t)) such that u(tk, rk) ≥ k/2
for all k ∈ N , and tk → ∞ as k → ∞, and can also find a subsequence of {rk}
converges to r0 ∈ (0, h∞), since −∞ < 0 ≤ rk < h∞ < +∞. Without loss of
generality, we suppose rk → r0 as k →∞. Let

uk(t, r) = u(t+ tk, r) for (t, r) ∈ (−tk,+∞)× (0, h(t+ tk)).

Then we can apply Proposition 4.3 and the parabolic regularity to conclude that
there is a subsequence uki of {uk} such that uki → u as i→∞ and u satisfies

ut − d∆u = up(t, r) for (t, r) ∈ (−∞,+∞)× (0, h∞).

Since u(0, r0) ≥ k/2, by the strong maximum principle, we obtain u > 0 in
(−∞,+∞) × (0, h∞). Using Hopf lemma to the above equation u satisfying at
the point (0, h∞), we deduce that ur(0, h∞) ≤ −σ0 < 0.

On the other hand, we introduce a transform to straighten the free boundary.
Let

s =
h0r

h(t)
, v(t, s) = u(t, r),
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where v(t, s) satisfies

vt −
dh2

0

h2(t)
∆sv −

h′(t)
h(t)

svs = vp, t > 0, 0 < s < h0,

vs(t, 0) = v(t, h0) = 0, t > 0,

v(0, s) = v0(s) := u0(s) ≥ 0, 0 ≤ s ≤ h0.

(4.3)

By the same argument as in Lemma 2.2, we can infer that h′(t) is uniformly bounded
for any t > 0. Moreover, there exist constants M3 and M4, such that

‖v‖L∞ ≤M3, ‖h
′(t)
h(t)

s‖L∞ ≤M4.

Then by standard LP theory and the Sobolev imbedding theorem, we conclude that

‖v‖C(1+α)/2,1+α([0,∞)×(0,h0)) ≤M5,

where M5 depends on α, h0, C, M3, M4, ‖u0‖C1+α([0,h0]) and h∞. Hence for any
α ∈ (0, 1), there exists a constant M∗ depending on α, h0, ‖u0‖C1+α([0,h0]) and h∞
such that

‖u‖C(1+α)/2,1+α([0,∞)×(0,h(t))) + ‖h‖C1+α/2([0,∞)) ≤M∗. (4.4)
Therefore ‖h‖C1+α/2([0,∞)) ≤ M∗. Recalling that h(t) is monotonically bounded,
we then have h′(t) → 0, which implies ur(tk, h(tk)) → 0 by the Stefan condition.
Furthermore, in view of the fact ‖u‖C(1+α)/2,1+α([0,∞)×(0,h(t))) ≤M∗, we have ur(tk+
0, h(tk)) = (uk)r(0, h(tk)) → ur(0, h∞) as k → ∞ and therefore ūr(0, h∞) = 0,
contradicting the result ur(0, h∞) ≤ −σ0 < 0. This completes the proof. �

The following existence results of global fast and slow solutions can be proved
by the same argument as [9, Theorem 3.2] and [6, Theorem 1] respectively, so we
only state these results.

Theorem 4.5. If u is a solution of (1.2), and u0 satisfies

‖u0‖∞ 6
1
2

min
{( d

16h2
0

) 1
p−1

,
d

8µ

}
,

then (1.2) has a global fast solution and there exist some real numbers K, β > 0
depending on u0(r) such that

‖u(t)‖∞ 6 Ke−βt, t > 0.

Theorem 4.6. If φ(r) satisfies the condition in Remark 3.5, then there exists λ > 0
such that the solution of (1.2) with 1 < p < pS and initial value u0(r) = λφ(r) is
a global slow solution.

5. Numerical illustration and discussion

In this section, we first perform numerical simulations to illustrate the theoretical
results given above. Because of the moving boundary, it is a little difficult to present
the numerical solution compared to the problem in fixed boundary. For simplicity,
we only consider the one-dimensional case, that is,

ut − uxx = up, t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0.

(5.1)
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We use an implicit scheme as in [21] and then obtain a nonlinear system of alge-
braic equations, which was solved with Newton-Raphson method. The numerical
solution was performed by using Matlab software. Let us fix some coefficients.
Assume that p = 2, µ = 10 and h0 = 1.5, then the asymptotic behaviors of the
solution to (5.1) are shown by choosing different initial functions.

Example 5.1. Let u0(x) = 0.2 cos(πx/3), it is easy to see from Figure 1 that the
free boundary x = h(t) increases fast.

Figure 1. When u0(x) = 0.2 cos(πx/3), the free boundary in-
creases fast.

Example 5.2. Let u0(x) = 0.1 cos(πx/3), compared the free boundary in Figure 2
with that in Figure 1, the free boundary x = h(t) in Figure 2 increases slower than
that in Figure 1.

Example 5.3. Let u0(x) = 0.05 cos(πx/3). Clearly, Figure 3 shows that u(t, x)
goes to 0 and the free boundary x = h(t) increases slowly. Then the solution
(u(t, x), h(t)) is called the global slow solution.

In this article, we considered the free boundary problem (1.2) in a higher di-
mensional space. The long time behaviors of the solution has been discussed. It
is shown in Theorem 3.4 that the solution will blow up if the initial value is big
enough. For the global solution, Theorem 4.5 shows that the solution is global and
fast for small initial value, and Theorem 4.6 shows that there exists a λ0 > 0 such
that the solution of (1.2) with initial data u0 = λ0φ is a global slow solution. We
remark here that the uniqueness of λ0 is still not clear.

Compared with existing works, which considered usually the corresponding prob-
lem in the fixed bounded domain or the cauchy problem in the whole space, the
free boundary problem (1.2) can be though of as a sort of intermediate between the
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Figure 2. When u0(x) = 0.1 cos(πx/3), the free boundary in-
creases slowly.

Figure 3. When u0(x) = 0.05 cos(πx/3), the free boundary in-
creases slowly.

cases of bounded and unbounded intervals [9]. Besides the long time behavior of the
solution u(t, r), our results also present the expanding process of the domain. All
theoretical results shows that the initial value determines the long time behaviors
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of the solution. Moreover, numerical simulations illustrate the effect of the initial
value on the moving trend of the free boundary x = h(t).
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