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STABILIZATION OF THE WAVE EQUATION WITH VARIABLE
COEFFICIENTS AND A DYNAMICAL BOUNDARY CONTROL

ZHIFEI ZHANG

Abstract. In this article we consider the boundary stabilization of the wave
equation with variable coefficients and a dynamical Neumann boundary con-

trol. The dynamics on the boundary comes from the acceleration terms which

can not be ignored in some physical applications. It has been known that
addition of dynamics to the boundary may change drastically the stability

properties of the underlying system. In this paper by applying a boundary
feedback control we obtain the exponential decay for the solutions. Our proof

relies on the Geometric multiplier skills and the energy perturbed approach.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary Γ. We
assume Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅. We consider the following wave equation
with dynamical Neumann boundary condition

utt − divA(x)∇u = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

m(x)utt(x, t) + ∂νA
u(x, t) = C(t), on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)

where divX denotes the divergence of the vector field X in the Euclidean metric,
A(x) = (aij(x)) are symmetric and positive definite matrices for all x ∈ RN and
aij(x) are smooth functions on RN . Let ∂νA

u =
∑n
i,j=1 aij(x)∂xj

uνi, where ν =
(ν1, ν2, · · · , νn)T denotes the outward unit normal vector of the boundary and νA =
Aν. Here C(t) is the boundary feedback control.

We say that equation (1.1) is with dynamical boundary conditions when m(x) 6=
0. In some physical applications one has to take the acceleration terms into account
on the boundary. Usually in this case to describe what really happened we need
the models with dynamical boundary conditions. They are not only important
theoretically but also have strong backgrounds for physical applications. There are
numerous of these applications in the bio-medical domain ([7, 20]) as well as in
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applications related to noise suppression and control of elastic structures ([1, 3, 18,
21]). Moreover, in this article we assume that

m(x) ∈ L∞(Γ1); m(x) ≥ m0 > 0, x ∈ Γ1.

Our motivating example is the hybrid wave equation

utt −∆u = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

mutt(x, t) + ∂νu(x, t) = −∂νut, on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.

(1.2)

It is shown that the above system with m > 0 is not uniformly stable, while the
case when m = 0 the system is exponentially stable under suitable geometrical
conditions on Ω. That is to say, the dynamical terms on the boundary may change
the stability property of the system. For details, see [10, 12, 17]. The purpose of
this paper is to study how the dynamic boundary conditions on Γ1 affect the decay
of the system. In this article, we shall design a collocated boundary feedback to
obtain the exponential stabilization of the system (1.1). We set

C(t) = −βut(x, t)− γ∂νA
ut , (1.3)

where the constants β and γ are positive numbers such that βγ < m.
Before we state and prove our results, let us first recall some works related to

the problem we address. Wave equations with acceleration terms in the dynamical
boundary conditions have been studied within the framework of the model

utt −∆u+ g(ut) = f, in Ω× (0,∞),

K(u)utt(x, t) + ∂νu(x, t) = C(t), on Γ× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.
(1.4)

In the one dimensional case, problem (1.4) with C(t) = h(ut) has been studied
in [5, 8], and with C(t) = −αu + f(uxt − αut) has been considered in [6]. For
N-dimensional case with N ≥ 2 [4, 9] discussed the asymptotic stabilization and
the existence of the solutions, respectively. In [25], the case when C(t) involves
an unknown disturbance was considered, again in the one dimensional case. For
equations with other type of dynamical boundary conditions, see [2, 11, 16] for
wave equations with acoustic boundary conditions and [10] for wave equations with
viscoelastic damping and dynamic boundary conditions acting on a surface of local
reaction, and the references therein.

In equation (1.1) we adopt the feedback law given in (1.3) to obtain the expo-
nential stabilization of the following closed loop system:

utt − divA(x)∇u = 0, in Ω× (0,∞),

u(x, t) = 0, on Γ0 × (0,∞),

m(x)utt(x, t) + ∂νA
u(x, t) = −βut(x, t)− γ∂νA

ut, on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω.

(1.5)

We define
g = A−1(x), x ∈ Ω

as a Riemannian metric on Ω and consider the couple (Ω, g) as a Riemannian
manifold. Let D denote the Levi-Civita connection of the metric g. For each
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x ∈ Ω, the metric g induces an inner product on Rnx by

〈X,Y 〉g = 〈A−1(x)X,Y 〉, |X|2g = 〈X,X〉g , X, Y ∈ Rnx ,

where 〈·, ·〉 denotes the standard metric of the Euclidean space Rn.
To obtain the stabilization of the problem (1.5), the following geometrical hy-

potheses are assumed.

Geometrical assumptions. There exists a vector field H on Riemannian mani-
fold (Ω, g) such that the following properties hold:

(A1) DH(·, ·) is strictly positive definite on Ω: there exists a constant ρ > 0 such
that for all x ∈ Ω, for all X ∈Mx(the tangent space at x):

DH(X,X) ≡ 〈DXH,X〉g ≥ ρ|X|2. (1.6)

(A2)
H · ν ≤ 0 on Γ0 . (1.7)

Remark 1.1. For any Riemannian manifold M , the existence of such a vector
field H in (A1) has been proved in [22], where some examples are given. See also
[24]. For the Euclidean metric, taking the vector field H = x − x0 and we have
DH(X,X) = |X|2, which means assumption (A1) always holds true with ρ = 1 for
the Euclidean case.

Energy of the system (1.1). Before we go to the stabilization of the system,
we should first define an energy connected with the natural energy of the hybrid
system. We set

η(x, t) = mut(x, t) + γ∂νA
u, x ∈ Γ1 .

Let u be a regular solution of system (1.5). Then we associate to system (1.5) the
energy functional E(t) as

E(t) =
∫

Ω

(
u2
t + |∇gu|2g

)
dx+

∫
Γ1

1
m− βγ

η2dΓ .

The main result of this paper reads as follows.

Theorem 1.2. Let the geometrical assumptions (A1) and (A2) hold. Then there
exist constants C > 0 and ω > 0 such that

E(t) ≤ Ce−ωtE(0) , t ≥ 0 . (1.8)

This article is organized as follows. In the next section, we discuss the well-
posedness of the nonlinear close-loop system by semigroup theory. Section 3 devotes
to the proof of the exponential stability. We construct two auxiliary functions to
estimate the energy, thus to obtain the main result finally.

2. Well-posedness of the closed loop system

In this section, we study well-posedness results for system (1.5) using semigroup
theory. Denote H1

Γ0
= {u ∈ H1(Ω)

∣∣u|Γ0 = 0}. We consider the unknown

U =
(
u, v = ut|Ω, η

)T
,

in the state space, denoted by

Υ := H1
Γ0

(Ω)× L2(Ω)× L2(Γ1) , (2.1)
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with the norm defined by

‖U‖2 = ‖(u, v, η)T ‖2 =
∫

Ω

(
|∇gu|2g + v2

)
dx+

∫
Γ1

1
m− βγ

η2dΓ . (2.2)

The closed-loop system (1.5) can be rewritten in the abstract form

U ′ = AU,

U0 =
(
u0, u1, η0

)T
,

(2.3)

where the operator A is defined by

A

uv
η

 =

 v
div∇gu

− 1
γ η + (mγ − β)v(x, t)


with domain

D(A) :=
{

(u, v, η)T ∈ H1(Ω)× L2(Ω)× L2(Γ1) :

div∇gu ∈ L2(Ω), η = mv|Γ1 + γ∂νA
u
}
.

(2.4)
We will show that A generates a C0 semigroup on Υ. Now we state the well-

posedness result.

Theorem 2.1. For any initial datum U0 ∈ Υ, there exists a unique solution U ∈
C([0,∞),Υ) of system (2.3). Moreover, if U0 ∈ D(A), then U ∈ C([0,∞), D(A))∩
C1([0,∞), D(A)).

Proof. Step 1. We prove that A is dissipative. We know Υ is a Hilbert space
equipped with the adequate scalar product 〈·, ·〉Υ and norm ‖U‖ defined by (2.2).
For U ∈ D(A), a simple computation leads to

〈AU,U〉Υ =
1
2
d

dt
‖U‖2

=
∫

Γ

ut∂νA
udΓ +

1
m− βγ

∫
Γ1

ηηtdΓ

=
∫

Γ1

ut∂νA
udΓ− 1

(m− βγ)γ

∫
Γ1

η2dΓ +
∫

Γ1

1
γ
ηut(x, t)dΓ

=
∫

Γ1

ut∂νA
udΓ− 1

2mγ

∫
Γ1

η2dΓ

−
( 1

(m− βγ)γ
− 1

2mγ

)∫
Γ1

η2dΓ +
∫

Γ1

1
γ
ηut(x, t)dΓ

= −
∫

Γ1

(m
2γ
u2
t +

γ

2m
∂2
νA
u
)
dΓ

−
( 1

(m− βγ)γ
− 1

2mγ

)∫
Γ1

η2dΓ +
∫

Γ1

1
γ
ηut(x, t)dΓ.

(2.5)

Now we handle the items in (2.5) by applying Hölder inequality∫
Γ1

1
γ
ηut(x, t)dΓ ≤ 1

k1mγ

∫
Γ1

η2dΓ +
k1m

4γ

∫
Γ1

u2
tdΓ , (2.6)
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where k1 > 0 is to be chosen later. Substituting the inequality (2.6) to (2.5) yields

〈AU,U〉Υ ≤ −
∫

Γ1

γ

2m
∂2
νA
udΓ−

∫
Γ1

(m
2γ
− k1m

4γ
)
u2
tdΓ

−
( 1

(m− βγ)γ
− 1

2mγ
− 1
k1mγ

) ∫
Γ1

η2dΓ

≤ −
∫

Γ1

γ

2m
∂2
νA
udΓ− 2βγ

m+ βγ

∫
Γ1

u2
tdΓ− β(m+ βγ)

2m2(m− βγ)

∫
Γ1

η2dΓ ,

(2.7)
by choosing k1 = 2m

m+βγ , which is negative noticing that βγ < m.

Step 2. We will show that λI−A is surjective for a fixed λ > 0. Given (ā, b̄, c̄)T ∈
Υ, we seek a solution U = (u, v, η)T ∈ D(A) of

(λI −A)

uv
η

 =

āb̄
c̄

 ;

that is, satisfying

λu− v = ā, quadin Ω,

λv − divA(x)∇u = b̄, in Ω,

λη +
1
γ
η + (β − m

γ
)v(x, t) = c̄, on Γ1,

η = mv|Γ1 + γ∂νA
u, on Γ1 ,

(2.8)

where we take t as a parameter for granted. Suppose that we have found u with
the appropriate regularity, then from the equation (2.8)-1, (2.8)-3 and (2.8)-4 we
have

v := λu− ā , η = (λ+
1
γ

)−1
(
c̄− (β − m

γ
)(λu− ā)

)
.

Now we state the process on how to get u. Eliminating v and noticing η = mv|Γ1 +
γ∂νA

u(x, t), we find that the function u satisfies

λ2u− divA(x)∇u = λā+ b̄, in Ω,
u = 0, on Γ0,

∂νA
u =

1
γ
η − m

γ
(λu− ā), on Γ1.

(2.9)

We obtain a weak formulation of system (2.9) by multiplying the equation by ψ
and using Green’s formula∫

Ω

(λ2uψ + 〈A(x)∇u,∇ψ〉)dx+
∫

Γ1

λ(mλ+ β)
λγ + 1

uψ

=
∫

Ω

(b̄+ λā)ψdx+
∫

Γ1

(
1

λγ + 1
c̄+

mλ+ β

λγ + 1
ā)ψ ,

(2.10)

for any ψ ∈ H1
Γ0

(Ω) = {ψ ∈ H1(Ω)|ψ|Γ0 = 0}. As the left hand side of (2.10) is
coercive on H1(Ω), Lax-Milgram Theorem guarantees the existence and uniqueness
of a solution u ∈ H1(Ω) of (2.9).
Step 3. Finally, the well-posedness result follows from Lummer-Phillips Theorem.

�
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3. Exponential Stability

In this section, we show the exponential stability of the system by energy per-
turbed approach. Here we define two auxiliary functions

V1(t) =
∫

Ω

H(u)utdx ,

V2(t) =
1
2

∫
Ω

(div0H − ρ)uut.

To estimate the functions, we need some lemmas from [24] and [13].

Lemma 3.1 ([24, Theorem 2.1]). Suppose that u(x, t) is a solution of the equation
utt + divA∇u = 0. Then

V̇1(t) = B1 + I1 ,

where we denote the boundary term

B1(Γ) =
∫

Γ

∂νA
uH(u)dΓ +

1
2

∫
Γ

(u2
t − |∇gu|2g)H · νdΓ, (3.1)

and the internal term

I1 = −
∫

Ω

DgH(∇gu,∇gu)dx− 1
2

∫
Ω

(u2
t − |∇gu|2g) div0H dx,

here div0H is the divergence of H in the Euclidean metric of Rn.

Lemma 3.2 ([24, Theorem 2.2]). Suppose that u(x, t) is a solution of the equation
utt + divA∇u = 0. Then

V̇2(t) = B2 + I2 ,

where we denote the boundary term by

B2(Γ) = −1
4

∫
Γ

u2∂νA
(div0H)dΓ +

1
2

∫
Γ

(div0H − ρ)u∂νA
udΓ,

and the internal term

I2 =
1
2

∫
Ω

(div0H − ρ)(u2
t − |∇gu|2g)dx+

1
4

∫
Ω

u2 div(∂νA
div0H)dx .

Lemma 3.3 ([13, Lemma 7.2]). Let ε > 0 be given small. Let u solves the problem
(1.1). Then∫ T−ε

ε

∫
Γ1

|∇gu|2gdΓdt ≤ CT,ε
{∫ T

0

∫
Γ1

(
(∂νA

u)2 + u2
t

)
dΓdt+ ‖u‖

H
1
2 +ε(Ω×(0,T ))

}
.

(3.2)

According to Lemmas 3.1, 3.2 and 3.3 we obtain:

Lemma 3.4. Suppose that the geometrical assumptions (A1) and (A2) hold. Let
u solve (1.1). Then there exist constants c1, c2, c3 > 0 such that

ρ

2
E(t) + V̇1(t) + V̇2(t) ≤ ρ

2

∫
Γ1

1
m− βγ

η2dΓ + c1

∫
Γ1

(u2
t + |∇gu|2g)dΓ + c1

∫
Ω

u2dx ,

(3.3)

|V1(t)| ≤ c2E(t), |V2(t)| ≤ c3E(t) . (3.4)
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Proof. Obviously the estimate (3.4) is true. Now we prove the inequality (3.3).
First we estimate the boundary terms B1, B2 given in Lemma 3.1 and Lemma 3.2.
Since u|Γ0 = 0, we have

∇gu = ∂νA
u
νA
|νA|2g

, (3.5)

which induces
|∇gu|2g = |∂νA

u|2g
1
|νA|2g

. (3.6)

Similarly we have

H(u) = 〈H,∇gu〉g = ∂νA
u

1
|νA|2g

H · ν. (3.7)

Substituting the equalities (3.6) and (3.7) to (3.1) yields

B1(Γ0) =
1
2

∫
Γ

(u2
t − |∇gu|2g)H · νdΓ ≤ 0 ,

where we notice the geometrical assumption (A2) is true. It is obvious that

B1(Γ) = B1(Γ0) +B1(Γ1) ≤ c1
∫

Γ1

(u2
t + |∇gu|2g)dΓ . (3.8)

Since u|Γ0 = 0, we have B2(Γ0) = 0. And we have

B2(Γ) = B2(Γ0) +B2(Γ1) ≤ c1
∫

Γ1

|∇gu|2gdΓ. (3.9)

Next, we estimate the internal terms I1 and I2. By the geometrical assumption
(A1), we have

I1 ≤ −ρ
∫

Ω

|∇gu|2gdx−
1
2

∫
Ω

(u2
t − |∇gu|2g)operatornamediv0H dx. (3.10)

It is obvious that

I2 ≤
1
2

∫
Ω

(div0H − ρ)(u2
t − |∇gu|2g)dx+ c1

∫
Ω

u2dx. (3.11)

Combining the above inequalities (3.8), (3.9), (3.10) and (3.11) we complete the
proof. �

The following is the observability inequality for the system (1.1).

Lemma 3.5. Suppose that the geometrical assumptions (A1) and (A2) hold. Let
u solve problem (1.1). Then for any given ε > 0, there exists a time T0 > 0 and a
positive constant CT,ε,ρ such that

E(0) ≤ CT,ε,ρ
{∫ T

0

∫
Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt+ ‖u‖H1/2+ε(Ω×(0,T ))

}
, (3.12)

for all T > T0.

Proof. For any ε small enough, integrating the inequality (3.3) on the interval
(ε, T − ε) yields

ρ

2

∫ T−ε

ε

E(t)dt+ V1(T − ε)− V1(ε) + V2(T − ε)− V2(ε)

≤ ρ

2

∫ T−ε

ε

∫
Γ1

1
m− βγ

η2dΓ + c1

∫ T−ε

ε

∫
Γ1

(u2
t + |∇gu|2g)dΓ + c1

∫ T−ε

ε

∫
Ω

u2dx .



8 Z. ZHANG EJDE-2016/27

Then we use inequality (3.2) in Lemma 3.3 and inequality (3.4) in Lemma 3.4 to
obtain∫ T−ε

ε

E(t)dt ≤ CT,ε,ρ
{∫ T

0

∫
Γ1

(η2 + u2
t + |∂νA

u|2g)dΓ

+ ‖u‖H1/2+ε(Ω×(0,T ))

}
dx+ c0

(
E(T − ε) + E(ε)

)
,

(3.13)

where the constant CT,ε,ρ depends on c1, ρ, 1
m−βγ , meas(Ω) and the constant

c0 = 4
ρ max{c2, c3}. Here c2, c3 are the constants given in inequality (3.4).

We notice that
E(0) + c0

(
E(T − ε) + E(ε)

)
=
∫ 2c0+ε+1

ε

E(t)dt+
∫ 2c0+ε+1

ε

(
E(0)− E(t)

)
dt

+ c0
(
E(ε)− E(0)

)
+ c0

(
E(T − ε)− E(0)

)
=
∫ 2c0+ε+1

ε

E(t)dt−
∫ 2c0+ε+1

ε

( ∫ t

0

Ė(τ)dτ
)
dt+ c0

∫ ε

0

Ė(τ)dτ

+ c0

∫ T−ε

0

Ė(τ)dτ

≤
∫ 2c0+ε+1

ε

E(t)dt+ 3c4
∫ max{T−ε,2c0+ε+1}

0

∫
Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt ,

(3.14)
where we used the following inequality known from (2.7),

Ė(t) = 〈AU,U〉Υ ≤ c4
∫

Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt .

Now we shall take T0 = 2c0 + 2ε+ 1 to guarantee that T − ε > 2c0 + ε+ 1, for
all T > T0. Substituting (3.14) in (3.13) completes the proof. �

In what follows we use the compactness-uniqueness argument to absorb the lower
order term in (3.12). We list the lemma and omit the proof, which could be found
in [14, 15, 19, 23, 26] and many others.

Lemma 3.6. Suppose that the geometrical assumptions (A1) and (A2) hold. Let
u solve problem (1.1). Then for any T > T0, there exists a positive constant C
depending on T , ε, ρ, meas(Ω) such that

E(0) ≤ C
∫ T

0

∫
Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt .

Proof of Theorem 1.2. From (2.7) we know that

−Ė(t) = −〈AU,U〉Υ

≥
∫

Γ1

γ

2m
∂2
νA
udΓ +

2βγ
m+ βγ

∫
Γ1

u2
tdΓ +

β(m+ βγ)
2m2(m− βγ)

∫
Γ1

η2dΓ

≥ c5
∫

Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt ,

(3.15)

where

c5 = min{ γ
2m

,
2βγ

m+ βγ
,
β(m+ βγ)

2m2(m− βγ)
}.
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By Lemma 3.6 and the above inequality (3.15), we have, that for all T > T0,

E(0) ≤ C
∫ T

0

∫
Γ1

(
u2
t + (∂νA

u)2 + η2
)
dΓdt ≤ −C

c5

∫ T

0

Ė(t) = −C
c5

(E(T )− E(0)) ,

which yields

E(T ) ≤ C − c5
C

E(0) .

The exponential decay result (1.8) follows from the above inequality. �
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