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LYAPUNOV-SYLVESTERS OPERATORS FOR
(2+1)-BOUSSINESQ EQUATION

ABDELHAMID BEZIA, ANOUAR BEN MABROUK, KAMEL BETINA

Abstract. This article studies a technique for solving a two-dimensional
Boussinesq equation discretized using a finite difference method. It consists

of an order reduction method into a coupled system of second-order equa-
tions, and to formulate the fully discretized, implicit time-marched system as

a Lyapunov-Sylvester matrix equation. Convergence and stability is examined

using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester
operators. Some numerical implementations are provided at the end to vali-

date the theoretical results.

1. Introduction

In this work we use Lyapunov-Sylvester algebraic operators to approximate the
solutions of some PDEs such as Boussinesq one in higher dimensions without adapt-
ing classical developments based on separation of variables, radial solutions, etc.
The crucial idea is to prove that simple methods of discretization of PDEs such as
finite difference, finite volumes, can be transformed into well adapted algebraic sys-
tems such as Lyapunov-Sylvester ones leading to best algorithms when regarded for
convergence rates, time execution and error estimates. In this article, fortunately,
we are confronted with more complicated but fascinating forms to prove the invert-
ibility of the algebraic operator appearing in the numerical scheme. Instead of us-
ing classical methods such as tri-diagonal transformations we applied a topological
method to prove the invertibility. This is good as it did not necessitate to compute
eigenvalues and precisely bounds/estimates of eigenvalues or direct inverses which
remains a complicated problem in general linear algebra and especially for gener-
alized Lyapunov-Sylvester operators. Recall that even though, bounds/estimates
of eigenvalues can already be efficient in studying stability. Recall also that block
tri-diagonal systems for classical methods can be already used here also and can
be solved for example using iterative techniques, or highly structured bandwidth
solvers, Kronecker-product techniques, etc. These methods have been subjects of
more general discretization. See [13, 14, 15, 16, 17, 23] for a review on tri-diagonal
and block tri-diagonal systems, their advantages as well as their disadvantages.

This article has many folds. One principal aim is to apply non tri-diagonal type
algebraic methods to investigates numerical solutions for PDEs in multi-dimensional
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spaces. We aim to prove that Lyapunov-Sylvester operators can be good candidates
for such aim and that they may give best solvers compared to tri-diagonal and/or
block tri-diagonal ones. Recall that the later methods are unadvised because of
many reasons. First they are costing methods from both the machine memory and
time. In higher dimensions, they secondly need to transform the original problem
into an external space of projection and thus solve an associated problem in the
new space and next to left to the original one. These facts may induce as previously
time and accuracy losing.

This article is devoted to the development of a numerical method based on two-
dimensional finite difference scheme to approximate the solution of the nonlinear
Boussinesq equation in R2 written in the form

utt = ∆u+ quxxxx + (u2)xx, ((x, y), t) ∈ Ω× (t0,+∞) (1.1)

with initial conditions

u(x, y, t0) = u0(x, y) and
∂u

∂t
(x, y, t0) = ϕ(x, y), (x, y) ∈ Ω (1.2)

and boundary conditions
∂u

∂η
(x, y, t) = 0, ((x, y), t) ∈ ∂Ω× (t0,+∞). (1.3)

To reduce the derivation order, we set

v = quxx + u2. (1.4)

We have to solve the system
utt = ∆u+ vxx, (x, y, t) ∈ Ω× (t0,+∞)

v = quxx + u2, (x, y, t) ∈ Ω× (t0,+∞)

(u, v)(x, y, t0) = (u0, v0)(x, y), (x, y) ∈ Ω
∂u

∂t
(x, y, t0) = ϕ(x, y), (x, y) ∈ Ω

∂

∂η
(u, v)(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (t0,+∞)

(1.5)

on a rectangular domain Ω =]L0, L1[×]L0, L1[ in R2. t0 ≥ 0 is a real parameter fixed
as the initial time, utt is the second order partial derivative in time, ∆ = ∂2

∂x2 + ∂2

∂y2

is the Laplace operator in R2, q is a real constant, uxx and uxxxx are respectively
the second order and the fourth order partial derivative according to x. ∂

∂η is the
outward normal derivative operator along the boundary ∂Ω. Finally, u, u0 and ϕ
are real valued functions with u0 and ϕ are C2 on Ω. u (and consequently v) is the
unknown candidates supposed to be C4 on Ω.

Several papers have been devoted to the study of existence and uniqueness of
solutions of problem (1.1) and sometimes exact solutions are developed such as soli-
tary, stationary, time-independent, one-dimensional ones. For example, in the case
of a one-direction viscous fluid we may seek solutions of the form u(x, y, t) = αψ(x).
In this case, the problem is transformed into a one variable ordinary differential
equation

qψ′′(x) + ψ(x) + αψ2(x) = ax+ b,

for some constants a and b depending on the initial-boundary conditions. Therefore,
the existence and uniqueness problems are overcame using the well-known theory
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of ODEs. For more details on these facts, we may refer to [1, 6, 11, 12, 21, 24, 25,
27, 28, 33, 34, 35, 36, 37].

The Boussinesq equation has a wide reputation in both theoretic and applied
fields. It governs the flow of ground water, heat conduction, natural convection
in thermodynamics for both volume and fluids in porous media, traveling-waves
solutions, self-similar solutions, scattering method, mono and multi dimensional
versions, reduction of multi dimensional equations with respect to algebras, etc.
In [8], several finite difference schemes such as three fully implicit finite difference
schemes, two fully explicit ones, an alternating direction implicit procedure and
the Barakat and Clark type explicit formula are discussed and applied to solve a
two-dimensional case. In [9], the solution of a generalized Boussinesq equation has
been developed by means of the homeotypic perturbation method. It consisted in
a technique method that avoids the discretization, linearization, or small pertur-
bations of the equation and thus reduces the numerical computations. Next, [10],
a boundary-only meshfree method has been applied to approximate the numerical
solution of the classical Boussinesq equation in one dimension. In [31], a collocation
and approximation of the numerical solution of the improved Boussinesq equation
is obtained based on radial bases. A predictor-corrector scheme is provided and
the Not-a-Knot method is used to improve the accuracy in the boundary. For
this reason, many studies have been developed discussing the solvability of such
equations. In [11], a Boussinesq system of hydrodynamics equations arising in a
coupling between NavierStokes equations and thermodynamic ones in the the pres-
ence of density gradients and where thermodynamical coefficients such as viscosity,
specific heat and thermal conductivity are not assumed to be constants and thus
leading to a coupled system of quasi-parabolic equations. The authors studied the
existence and uniqueness of weak solutions. In this model there are two paradig-
matic situations as stated by the authors and related to the fast and the slow heat
diffusion. In theoretical mathematical study of such systems, this may correspond
to the singular or degenerate character of the heat equation which occur according
to the relative behavior of the specific heat of the fluid and its thermal conduc-
tivity. By assuming local Hölder approximations the behaviour of the solution is
studied near the origin. In [12], local strong solutions for a parabolic system based
on Boussinesq equation are studied for buoyancy-driven flow with viscous heating.
A modification of the classical Navier-Stokes-Boussinesq system motivated by un-
resolved issues regarding the global solvability of the classical system in situations
where viscous heating cannot be neglected is developed. The authors applied a
simple model to obtain a coupled system of two parabolic equations where a source
term involving the square of the gradient of one of the unknowns appears. Local
existence and uniqueness in time of strong solutions for the model problem are es-
tablished. See for instance [1, 4, 6, 7, 11, 12, 21, 24, 25, 26, 27, 28, 33, 34, 35, 36, 37]
and the references therein for backgrounds on theses facts.

For given matrices A ∈ Rm×m, B ∈ Rn×n, and C ∈ Rm×n, the Sylvester equation
is given by the form AX + XB = C. A brute force attack to obtain the the
solution X is to rewrite the Sylvester equation in standard mn×mn linear system
Gx̃ = c̃ using the Kronecker Product,[22]. The Sylvester equation can be solved
by Gaussian elimination with O(m3n3) flops. This approach dramatically increases
the complexity of the computation, and also cannot preserve the intrinsic properties
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of the problem in practice [32]. We denote whatever the special structure of the
large linear system Gx̃ = c̃ can be using only rational operation.

In numerical analysis, for solving the Sylvester equation one using the Bratels-
Stewart and the Golub-Nash-Van Loan algorithm use O(m3 + n3) floating point
operations, if one assume that an M ×M matrix can be reduced to Schur form
with O(M3) operations. More precise details are given in [2] and [18].

In [29] the author describe an algorithm that computes the solution X over an
arbitrary field F. The complexity of the algorithm for A ∈ Fm×m, B ∈ Fn×n
and m,n ≤ N is O(Nβ .logN) arithmetic operations in F, where β > 2 is such
that M ×M matrices can be multiplied with O(Mβ) arithmetic operations. This
algorithm is competitive in terms of arithmetic operation with and even faster than
the classical algorithms, and by useful for generalizations for other field than R or
C.

The method developed in this paper consists in replacing time and space partial
derivatives by finite-difference approximations in order to transform the continuous
problem into linear Lyapunov-Sylvester systems. An order reduction method is
adapted leading to a system of coupled PDEs which is transformed by the next
to a discrete algebraic one. The motivation behind the idea of applying Lyapunov
operators was already evoked in our work [4]. We recall in brief that such a method
leads to fast convergent and more accurate discrete algebraic systems without going
back to the use of tri-diagonal and/or fringe-tridiagonal matrices already used when
dealing with multidimensional problems especially in discrete PDEs.

To recapitulate, the method developed here is favorable for many reasons

• The first motivation is the fact that it somehow does not change the geo-
metric presentation of the problem as we propose to solve in the same
two-dimensional space. We did not project the problem on tri-diagonal
representations using the Kronecker product. Relatively to computer ar-
chitecture, the process of projecting on different spaces and next lifting
to the original one may induce degradation of error estimates and slow
algorithms.
• The method developed is not just a resolution of a PDE. But, we recall that

the resolution itself is not a negligible aim. Further, it proves the efficiency
of algebraic operators other than classical tri-diagonal ones.
• We proved here that even when the two systems are equivalent in the sense

that they present the same PDE, but with different forms and dimensions,
such forms play a major role in the resolution.
• The fact obtaining fast algorithms is very important in computer sciences

and makes itself a major aim in computer studies. Recall that the famous
method known in mathematical studies of accelerating algorithms in the
EM one (expectation-maximisation) which is based on more complicated
theories. Here, we proved that we may obtain more rapid algorithms by
using just a suitable representation and suitable discerete transformation
of the PDE. We got faster algorithms without adding more parameters.

In the organization of this article, the next section is concerned with the intro-
duction of the finite difference scheme. Section 3 is devoted to the discretization
of the continuous reduced system obtained from (1.1)-(1.3) by the order reduction
method. Section 4 deals with the solvability of the discrete Lyapunov equation ob-
tained from the discretization method. In section 5, the consistency of the method
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is shown and next, the stability and convergence of are proved based on Lyapunov
criterion. Finally, some numerical implementation is provided in section 6 leading
to the computation of the numerical solution and error estimates.

2. Discrete two-dimensional Boussinesq equation

Consider the domain Ω =]L0, L1[×]L0, L1[⊂ R2 and an integer J ∈ N∗. Denote
h = L1−L0

J for the space step, xj = L0 + jh and ym = L0 +mh for all (j,m) ∈ I2 =
{0, 1, . . . , J}2. Let l = ∆t be the time step and tn = t0 + nl, n ∈ N for the discrete
time grid. For (j,m) ∈ I and n ≥ 0, unj,m will be the net function u(xj , ym, tn) and
Unj,m the numerical solution. The following discrete approximations will be applied
for the different differential operators involved in the problem. For time derivatives,
we set as discrete initial condition

U0 = U−1 + lϕ

and for n ≥ 1,

ut  
Un+1
j,m − U

n−1
j,m

2l
and utt  

Un+1
j,m − 2Unj,m + Un−1

j,m

l2

and for space derivatives, we shall use

ux  (Ux)j,m =
Unj+1,m − Unj−1,m

2h
and uy  (Uy)j,m =

Unj,m+1 − Unj,m−1

2h

for first order derivatives, and

uxx  (Uxx)j,m =
Un,αj+1,m − 2Un,αj,m + Un,αj−1,m

h2
,

uyy  (Uyy)j,m =
Un,αj,m+1 − 2Un,αj,m + Un,αj,m−1

h2

for second order ones, where for n ∈ N∗ and α ∈ R,

un,α = αUn+1 + (1− 2α)Un + αUn−1.

Finally, we denote σ = l2

h2 and δ = q
h2 .

For (j,m) ∈ I̊2 an interior point of the grid I2, (I̊ = {1, 2, . . . , J − 1}), and
n ≥ 1, the following discrete equation is deduced from the first equation in the
system (1.5).

Un+1
j,m − 2Unj,m + Un−1

j,m

= σα(Un+1
j−1,m − 4Un+1

j,m + Un+1
j+1,m + Un+1

j,m−1 + Un+1
j,m+1)

+ σ(1− 2α)(Unj−1,m − 4Unj,m + Unj+1,m + Unj,m−1 + Unj,m+1)

+ σα(Un−1
j−1,m − 4Un−1

j,m + Un−1
j+1,m + Un−1

j,m−1 + Un−1
j,m+1)

+ σα(V n+1
j−1,m − 2V n+1

j,m + V n+1
j+1,m)

+ σ(1− 2α)(V nj−1,m − 2V nj,m + V nj+1,m)

+ σα(V n−1
j−1,m − 2V n−1

j,m + V n−1
j+1,m).

(2.1)
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Similarly, the following discrete equation is obtained from equation (1.4).

V n+1
j,m + V n−1

j,m = 2δα(Un+1
j−1,m − 2Un+1

j,m + Un+1
j+1,m)

+ 2δ(1− 2α)(Unj−1,m − 2Unj,m + Unj+1,m)

+ 2δα(Un−1
j−1,m − 2Un−1

j,m + Un−1
j+1,m) + 2 ̂F (Unj,m)

(2.2)

where

F (u) = u2, Fn = F (un) and F̂n =
Fn−1 + Fn

2
.

The discrete boundary conditions are written for n ≥ 0 as

Un1,m = Un−1,m and UnJ−1,m = UnJ+1,m, (2.3)

Unj,1 = Unj,−1 and Unj,J−1 = Unj,J+1. (2.4)

The parameter q is related to the equation and has the role of a viscosity-type
coefficient and thus it is related to the physical domain of the model. The barycenter
parameter α is used to calibrates the position of the approximated solution around
the exact one. Of course, these parameters affect surely the numerical solution
as well as the error estimates. This fact will be recalled later in the numerical
implementations part. In a future work in progress now, we are developing results
on numerical solutions of 2D Schrödinger equation on the error estimates as a
function on the barycenter calibrations by using variable coefficients αn instead
of constant α. The use of these calibrations permits the use of implicit/explicit
schemes by using suitable values. For example for α = 1

2 , the barycenter estimation

V n,α = αV n+1 + (1− 2α)V n + αV n−1 =
V n+1 + V n−1

2
which is an implicit estimation that guarantees an error of order 2 in time.

As motioned in the introduction, the main idea consists in applying Lyapunov-
Sylvester operators to approximate the solution of the continuous problem (1.1)-
(1.3) or its discrete equivalent system (2.1)-(2.4). Denote

a1 =
1
2

+ 2ασ, a2 = −ασ,

b1 = 1− 2(1− 2α)σ, b2 = (1− 2α)σ,

c1 = (1− 2α)δ and c2 = αδ.

Equation (2.1) becomes

a2U
n+1
j−1,m + a1U

n+1
j,m + a2U

n+1
j+1,m + a2U

n+1
j,m−1 + a1U

n+1
j,m + a2U

n+1
j,m+1

+ a2(V n+1
j−1,m − 2V n+1

j,m + V n+1
j+1,m)

= b2U
n
j−1,m + b1U

n
j,m + b2U

n
j+1,m + b2U

n
j,m−1 + b1U

n
j,m + b2U

n
j,m+1

− a2U
n−1
j−1,m − a1U

n−1
j,m − a2U

n−1
j+1,m − a2U

n−1
j,m−1 − a1U

n−1
j,m − a2U

n−1
j,m+1

+ b2(V nj−1,m − 2V nj,m + V nj+1,m)− a2(V n−1
j−1,m − 2V n−1

j,m + V n−1
j+1,m).

(2.5)

Equation (2.2) becomes

V n+1
j,m − 2c2(Un+1

j−1,m − 2Un+1
j,m + Un+1

j+1,m)

= 2c1(Unj−1,m − 2Unj,m + Unj+1,m)

+ 2c2(Un−1
j−1,m − 2Un−1

j,m + Un−1
j+1,m)− V n−1

j,m + 2 ̂F (Unj,m).

(2.6)
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Denote

A =



a1 2a2 0 . . . . . . 0

a2 a1 a2
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . a2 a1 a2

0 . . . . . . 0 2a2 a1


, B =



b1 2b2 0 . . . . . . 0

b2 b1 b2
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . b2 b1 b2
0 . . . . . . 0 2b2 b1


,

R =



−2 2 0 . . . . . . 0

1 −2 1
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 1 −2 1
0 . . . . . . 0 2 −2


The system (2.3)-(2.6) can be written on the matrix form

LA(Un+1) + a2RV
n+1 = LB(Un)− LA(Un−1) +R(b2V n − a2V

n−1),

V n+1 − 2c2RUn+1 = 2R(c1Un + c2U
n−1)− V n−1 + 2F̂n

(2.7)

for all n ≥ 1 where

Un = (Unj,m)0≤j,m≤J , V n = (V nj,m)0≤j,m≤J , Fn = (F (Unj,m))0≤j,m≤J

and for a matrix Q ∈M(J+1)2(R), LQ is the Lyapunov operator defined by

LQ(X) = QX +XQT , ∀X ∈M(J+1)2(R).

Remark that V is obtained from the auxiliary function v that is applied to reduce
the order of the original PDEs in u. This reduction yielded the Lyapunov-Sylvester
system (2.7) above. A natural question that can be raised here turns around the
ordering of U and V . So, we stress the fact that no essential idea is fixed at advance
but, this is strongly related to the system obtained. For example, in (2.7) above,
it is easy to substitute the second equation into the first to omit the unknown
matrix V n+1 from the first equation. But in the contrary, it is not easier to do the
same for Un+1, due to the difficulty to substitute it from LA(Un+1). It is also not
guaranteed that the part a2RV

n+1 in the first equation is invertible to substitute
V n+1. So, it is essentially the final system that shows the ordering in U and V .

3. Solvability of the discrete problem

In [4], the authors have transformed the Lyapunov operator obtained from the
discretization method into a standard linear operator acting on one column vector
by juxtaposing the columns of the matrix X horizontally which leads to an equiva-
lent linear operator characterized by a fringe-tridiagonal matrix. We used standard
computation to prove the invertibility of such an operator. Here. we do not apply
the same computations as in [4], but we develop different arguments. The first
main result is stated as follows.

Theorem 3.1. System (2.7) is uniquely solvable whenever U0 and U1 are known.
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Proof. It reposes on the inverse of Lyapunov operators. Consider the endomorphism
Φ defined onM(J+1)2(R)×M(J+1)2(R) by Φ(X,Y ) = (AX +XAT + a2RY,

1
2Y −

c2RX). To prove Theorem 3.1, it suffices to show that kerΦ is reduced to 0. Indeed,

Φ(X,Y ) = 0⇐⇒ (AX +XAT + a2RY,
1
2
Y − c2RX) = (0, 0)

or equivalently,

Y = 2c2RX and (A+ 2a2c2R
2)X +XAT = 0.

So, the problem is transformed to the resolution of a Lyapunov type equation of
the form

LW,A(X) = WX +XAT = 0 (3.1)
where W is the matrix given by W = A+ 2a2c2R

2. Denoting

ω = 2a2c2, ω1 = a1 + 6ω, ω1 = ω1 + ω, ω2 = a2 − 4ω .

The matrix W is explicitly given by

W =



ω1 2ω2 2ω 0 . . . . . . . . . 0

ω2 ω1 ω2 ω
. . . . . . . . .

...

ω ω2 ω1 ω2 ω
. . . . . .

...

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . 0
...

. . . . . . ω ω2 ω1 ω2 ω
...

. . . . . . . . . ω ω2 ω1 ω2

0 . . . . . . . . . 0 2ω 2ω2 ω1


�

Next, we use the following preliminary result of differential calculus (See [20] for
example).

Lemma 3.2. Let E be a finite dimensional (R or C) vector space and (Φn)n be a
sequence of endomorphisms converging uniformly to an invertible endomorphism Φ.
Then, there exists n0 such that, for any n ≥ n0, the endomorphism Φn is invertible.

The proof is simple and can be found in any differential calculus references such
as [20]. We recall it here for the convenience and clearness of the paper. Recall
that the set Isom(E) (the set of isomorphisms on E) is already open in L(E)
(the set of endomorphisms of E). Hence, as Φ ∈ Isom(E) there exists a ball
B(Φ, r) ⊂ Isom(E). The elements Φn are in this ball for large values of n. So these
are invertible.

Assume now that l = o(h2+s), with s > 0 which is always possible. Then, the
coefficients appearing in A and W will satisfy as h→ 0 the following.

Ai,i =
1
2

+ ε h2+2s → 1
2
.

For 1 ≤ i ≤ J − 1,

Ai,i−1 = Ai,i+1 =
A0,1

2
=
AJ,J−1

2
= −εh2+2s → 0.
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For 2 ≤ i ≤ J − 2,

Wi,i = W0,0 = WJ,J =
1
2

+ 2αεh2+2s − 12α2εh2s → 1
2
.

Similarly,

W1,1 = WJ−1,J−1 =
1
2

+ 2αεh2+2s − 14α2εh2s → 1
2

and

Wi,i−1 = Wi,i+1 =
W0,1

2
=
WJ,J−1

2
= −αεh2+2s + 8α2εh2s → 0

Finally,

Wi,i−2 = Wi,i+2 =
W0,2

2
=
WJ,J−2

2
= −2α2ε h2s → 0.

Recall that the technique assumption l = o(h2+s) is a necessary requirement for
the resolution of the present problem and may not be necessary in other PDEs. See
for example [3, 4, 5] for NLS and Heat equations. Next, observing that for all X in
the space M(J+1)2(R)×M(J+1)2(R),

‖(LW,A − I)(X)‖ = ‖(W − 1
2
I)X +X(AT − 1

2
I)‖

≤ [‖W − 1
2
I‖+ ‖AT − 1

2
I‖]‖X‖,

it results that

‖LW,A − I‖ ≤ ‖W −
1
2
I‖+ ‖AT − 1

2
I‖ ≤ C(α)h2s. (3.2)

Consequently, the Lyapunov endomorphism LW,A converges uniformly to the iden-
tity I as h goes towards 0 and l = o(h2+s) with s > 0. Using Lemma 3.2, the
operator LW,A is invertible for h small enough.

Remark 3.3. The strict hypothesis l = o(h2+s),s > 0 is theoretical and used to
prove the invertibility (solvability) of the discrete system, but from the numerical
point of view, we will see that even if this assumption is not satisfied, the algorithm
converges faster the tri-diagonal classical methods,and with good error estimates.

4. Consistency, stability and convergence of the discrete method

The consistency of the proposed method is done by evaluating the local trunca-
tion error arising from the discretization of the system

utt −∆u− vxx = 0,

v = quxx + u2.
(4.1)

The principal part of the first equation is

L1
u,v(t, x, y) =

l2

12
∂4u

∂t4
− h2

12

(∂4u

∂x4
+
∂4u

∂y4

)
− αl2 ∂

2(∆u)
∂t2

− h2

12
∂2v

∂x4
− αl2 ∂4v

∂t2∂x2
+O(l2 + h2).

(4.2)

The principal part of the local error truncation due to the second part is

L2
u,v(t, x, y) =

l2

2
∂2v

∂t2
+
l4

24
∂4v

∂t4
− h2

12
∂4u

∂x4
− αl2 ∂4u

∂t2∂x2
+O(l2 + h2). (4.3)
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It is clear that the two operators L1
u,v and L2

u,v tend toward 0 as l and h tend
to 0, which ensures the consistency of the method. Furthermore, the method is
consistent with an order 2 in time and space.

We now proceed by proving the stability of the method by applying the Lya-
punov criterion. A linear system L(xn+1, xn, xn−1, . . . ) = 0 is stable in the sense of
Lyapunov if for any bounded initial solution x0 the solution xn remains bounded
for all n ≥ 0. Here, we will precisely prove the following result.

Lemma 4.1. Pn: The solution (Un, V n) is bounded independently of n whenever
the initial solution (U0, V 0) is bounded.

We will proceed by recurrence on n. Assume firstly that ‖(U0, V 0)‖ ≤ η for
some η positive. Using the system (2.7), we obtain

LW,A(Un+1) = LZ,B(Un) + b2RV
n − LW,A(Un−1)− a2R(Fn−1 + Fn),

V n+1 = 2c2RUn+1 + 2R(c1Un + c2U
n−1)− V n−1 + 2F̂n.

(4.4)

where Z = B − 2a2c1R
2. Consequently,

‖LW,A(Un+1)‖
≤ ‖LZ,B‖ ‖Un‖+ 2|b2| ‖V n‖+ ‖LW,A‖ ‖Un−1‖+ 2|a2|(‖Fn−1‖+ ‖Fn‖)

(4.5)

and
‖V n+1‖ ≤ 4|c2| ‖Un+1‖+ 4(|c1| ‖Un‖+ |c2| ‖Un−1‖)

+ ‖V n−1‖+ ‖Fn−1‖+ ‖Fn‖.
(4.6)

Next, recall that for l = o(hs+2) small enough and s > 0, we have

a1 =
1
2

+ 2αh2s+2 → 1
2
, a2 = −αh2s+2 → 0,

b1 = 1− 2(1− 2α)h2s+2 → 1, b2 = (1− 2α)h2s+2 → 0,

c1 = (1− 2α)h−2 →∞, c2 = αh2s+2 → 0,

a2c1 = −α(1− 2α)h2s → 0.

As a consequence, for h small enough,

‖LZ,B‖ ≤ 2‖B‖+ 2|a2c1|‖R‖2 ≤ 2 max(|b1|, 2|b2|) + 4|a2c1| ≤ 2 + 4 = 6, (4.7)

and the following lemma is deduced from (3.2).

Lemma 4.2. For h small enough, it holds for all X ∈M(J+1)2(R) that

1
2
‖X‖ ≤ (1− C(α)h2s)‖X‖ ≤ ‖LW,A(X)‖ ≤ (1 + C(α)h2s)‖X‖ ≤ 3

2
‖X‖.

Indeed, recall that equation (3.2) affirms that ‖LW,A − I‖ ≤ C(α)h2s for some
constant C(α) > 0. Consequently, for any X we obtain

(1− C(α)h2s)‖X‖ ≤ ‖LW,A(X)‖ ≤ (1 + C(α)h2s)‖X‖.
For h ≤ 1

(2C(α))1/2s , we obtain

1
2
≤ (1− C(α)h2s) < (1 + C(α)h2s) ≤ 3

2
and thus Lemma 4.2. As a result, (4.5) yields

1
2
‖Un+1‖ ≤ 6‖Un‖+ 2‖V n‖+

3
2
‖Un−1‖+ 2(‖Fn−1‖+ ‖Fn‖). (4.8)
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For n = 0, this implies

‖U1‖ ≤ 12‖U0‖+ 4‖V 0‖+ 3‖U−1‖+ 4(‖F−1‖+ ‖F 0‖). (4.9)

Using the discrete initial condition

U0 = U−1 + lϕ.

We identify the function ϕ to the matrix whose coefficients are ϕj,m = ϕ(xj , ym).
We obtain

‖U−1‖ ≤ ‖U0‖+ l‖ϕ‖. (4.10)
Observing that

F−1
j,m = F (U−1

j,m) = (U0
j,m − lϕj,m)2,

it follows that
|F−1
j,m| ≤ |U

0
j,m|2 + 2l|ϕj,m|.|U0

j,m|+ l2|ϕj,m|2

and consequently,

‖F−1‖ ≤ ‖U0‖2 + 2l‖ϕ‖ ‖U0‖+ l2‖ϕ‖2. (4.11)

Hence, equation (4.9) yields

‖U1‖ ≤ (15 + 8l‖ϕ‖)‖U0‖+ 4‖V 0‖+ 8‖F 0‖+ 3l‖ϕ‖+ 4l2‖ϕ‖2. (4.12)

Now, the Lyapunov criterion for stability states exactly that for each ε > 0 thee
exists η > 0 such that

‖(U0, V 0)‖ ≤ η ⇒ ‖(Un, V n)‖ ≤ ε, ∀n ≥ 0. (4.13)

For n = 1 and ‖(U1, V 1)‖ ≤ ε, we seek an η > 0 for which ‖(U0, V 0)‖ ≤ η. Indeed,
using (4.12), this means that, it suffices to find η such that

8η2 + (19 + 8l‖ϕ‖)η + 3l‖ϕ‖+ 4l2‖ϕ‖2 − ε < 0. (4.14)

The discriminant of this second order inequality is

∆(l, h) = (19 + 8l‖ϕ‖)2 − 32(3l‖ϕ‖+ 4l2‖ϕ‖2 − ε). (4.15)

For h, l small enough, this is estimated as

∆(l, h) ∼ 361 + 32ε > 0.

Thus there are two zeros of the second order equality above

η1 =

√
∆(l, h)− (19 + 8l‖ϕ‖)

16
> 0

and a second zero η2 < 0 rejected. Consequently, choosing η ∈]0, η1[ we obtain
(4.14). Finally, (4.12) yields ‖U1‖ ≤ ε. Next, equation (4.6), for n = 0, implies
that

‖V 1‖ ≤ A(l, h, ϕ)‖U0‖2 +B(l, h, ϕ)‖U0‖+ C(l, h, ϕ) + 16|c2|‖V 0‖, (4.16)

where

A(l, h, ϕ) = 3 + 32|c2|,

B(l, h, ϕ) = 4
(
|c1|+ 8|c2|(2 + l‖ϕ‖) + l‖ϕ‖+

1
h2

)
,

C(l, h, ϕ) = 2(1 + 8|c2|)l2‖ϕ‖2 + 4l(4|c2|+
1
h2

)‖ϕ‖.

Choosing ‖(U0, V 0)‖ ≤ η, it suffices to study the inequality

A(l, h, ϕ)η2 + (B(l, h, ϕ) + 16|c2|)η + C(l, h, ϕ)− ε ≤ 0. (4.17)
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Its discriminant satisfies for h, l small enough,

∆(l, h) ∼ 16
h4

(1 + 20α+ |1− 2α|)2 +
128α|q|
h2

ε > 0. (4.18)

Here also there are two zeros, η′1 =
√

∆(l,h)−(B(l,h,ϕ)+16|c2|)
2A(l,h,ϕ) > 0 and a second one

η′ < 0 and thus rejected. As a consequence, for η ∈]0, η′1[ we obtain ‖V 1‖ ≤ ε.
Finally, for η ∈]0, η0[ with η0 = min(η1, η

′
1), we obtain ‖(U1, V 1)‖ ≤ ε whenever

‖(U0, V 0)‖ ≤ η. Assume now that the (Uk, V k) is bounded for k = 1, 2, . . . , n (by
ε1) whenever (U0, V 0) is bounded by η and let ε > 0. We shall prove that it is
possible to choose η satisfying ‖(Un+1, V n+1)‖ ≤ ε. Indeed, from ((4.8), we have

‖Un+1‖ ≤ 19ε1 + 8ε2
1. (4.19)

So, one seeks, ε1 for which 8ε2
1 +19ε1−ε ≤ 0. Its discriminant ∆ = 361+32ε, with

one positive zero ε1 =
√

361+32ε−19
16 . Then ‖Un+1‖ ≤ ε whenever ‖(Uk, V k)‖ ≤ ε1,

k = 1, 2, . . . , n. Next, using (4.6) and (4.19), we have

‖V n+1‖ ≤ (4|c1|+ 80|c2|+ 1)ε1 + (32|c2|+ 2)ε2
1. (4.20)

So, it suffices as previously to choose ε1 such that

(32|c2|+ 2)ε2
1 + (4|c1|+ 80|c2|+ 1)ε1 − ε ≤ 0.

∆ = (4|c1|+ 80|c2|+ 1)2 + 4(32|c2|+ 2)ε, with positive zero

ε′1 =
√

∆− (4|c1|+ 80|c2|+ 1)
2(32|c2|+ 2)

.

Then ‖V n+1‖ ≤ ε whenever ‖(Uk, V k)‖ ≤ ε′1, k = 1, 2, . . . , n. Next, it holds from
the recurrence hypothesis for ε0 = min(ε1, ε

′
1), that there exists η > 0 for which

‖(U0, V 0)‖ ≤ η implies that ‖(Uk, V k)‖ ≤ ε0, for k = 1, 2, . . . , n, which by the next
induces that ‖(Un+1, V n+1)‖ ≤ ε.

Lemma 4.3. As the numerical scheme is consistent and stable, it is then conver-
gent.

This lemma is a consequence of the well known Lax-Richtmyer equivalence the-
orem, which states that for consistent numerical approximations, stability and con-
vergence are equivalent. Recall here that we have already proved in (4.2) and (4.3)
that the used scheme is consistent. Next, Lemma 4.1, Lemma 4.2 and equation
(4.13) yields the stability of the scheme. Consequently, the Lax equivalence Theo-
rem guarantees the convergence. So as Lemma 4.3.

5. Numerical implementation

We propose in this section to present some numerical examples to validate the
theoretical results developed previously. The error between the exact solutions and
the numerical ones via an L2 discrete norm will be estimated. The matrix norm
used will be

‖X‖2 =
( N∑
i,j=1

|Xij |2
)1/2

for a matrix X = (Xij) ∈ MN+2C. Denote un the net function u(x, y, tn) and Un

the numerical solution. We propose to compute the discrete error

Er = max
n
‖Un − un‖2 (5.1)
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on the grid (xi, yj), 0 ≤ i, j ≤ J + 1 and the relative error between the exact
solution and the numerical one as

Relative Er = max
n

‖Un − un‖2
‖un‖2

(5.2)

on the same grid.

5.1. A polynomial-exponential example. We develop in this part a classical
example based on polynomial function with an exponential envelop. We consider
the inhomogeneous problem

utt = ∆u+ vxx + g(x, y, t), (x, y, t) ∈ Ω× (t0, T ),

v = quxx + u2, (x, y, t) ∈ Ω× (t0, T ),

(u, v)(x, y, t0) = (u0, v0)(x, y), (x, y, t) ∈ Ω× (t0, T ),
∂u

∂t
(x, y, t0) = ϕ(x, y), (x, y) ∈ Ω,

−→
∇(u, v) = 0, (x, y, t) ∈ ∂Ω× (t0, T )

(5.3)

where Ω = [−1, 1]2 and where the right hand term is

g(x, y, t) = [(x2 − 1)2(x4 − 58x2 + 9)− 48(35x4 − 30x2 + 3)] + [y4 − 14y2 + 5]e−t

− 16(x2 − 1)2
[
(x2 − 1)4(15x2 − 1) + (y2 − 1)2(7x2 − 1)

]
e−2t

The exact solution is

u(x, y, t) = [(x2 − 1)4 + (y2 − 1)2]e−t. (5.4)

In the following tables, numerical results are provided. We computed for differ-
ent space and time steps the discrete L2-error estimates defined by (5.1). The time
interval is [0, 1] for a choice t0 = 0 and T = 1. The following results are obtained
for different values of the parameters J (and thus h), l ((and thus N). The pa-
rameters q and α are fixed to q = 0.01 and α = 0.25. We just notice that some
variations done on these latter parameters have induced an important variation in
the error estimates which explains the effect of the parameter q which has the role
of a viscosity-type coefficient and the barycenter parameter α which calibrates the
position of the approximated solution around the exact one. Finally, some compar-
ison with our work in [4] has proved that Lyapunov type operators already result
in fast convergent algorithms with a maximum time of execution of 2.014 sd for the
present one. The classical tri-diagonal algorithms associated to the same problem
with the same discrete scheme and the same parameters yielded a maximum time
of 552.012 sd, so a performance of 23.10−4 faster algorithm for the present one. We
recall that the tests are done on a Pentium Dual Core CPU 2.10 GHz processor
and 250 Mo RAM.

5.2. A 2-particle interaction example. The example developed hereafter is a
model of interaction of two particles or two waves. We consider the inhomogeneous
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Table 1.

J l Er Relative Er
10 1/100 4, 0.10−3 0,1317
16 1/120 3, 3.10−3 0,1323
20 1/200 2, 0.10−3 0,1335
24 1/220 1, 8.10−3 0,1337
30 1/280 1, 4.10−3 0,1340
40 1/400 9, 8.10−4 0.1344
50 1/500 7, 8.10−4 0,1346

problem
utt = ∆u+ vxx + g(x, y, t), (x, y, t) ∈ Ω× (t0, T ),

v = quxx + u2, (x, y, t) ∈ Ω× (t0, T ),

(u, v)(x, y, t0) = (u0, v0)(x, y), (x, y, t) ∈ Ω× (t0, T ),
∂u

∂t
(x, y, t0) = ϕ(x, y), (x, y) ∈ Ω,

−→
∇(u, v) = 0, (x, y, t) ∈ ∂Ω× (t0, T )

(5.5)

where
g(x, y, t) = (4− 6ψ2(y))u2 − ψ2(x)u.

and u is the exact solution given by

u(x, y, t) = 2ψ2(x)ψ2(y)θ(t)

with

ψ(x) = cos(
x

2
), θ(t) = e−it, ϕ(x, y) = −2iψ2(x)ψ2(y)

As for the previous example, the following tables shows the numerical computations
for different space and time steps the discrete L2-error estimates defined by (5.1)
and the relative error (5.2). The time interval is [−2π,+2π] for a choice t0 = 0 and
T = 1. The following results are obtained for different values of the parameters
J (and thus h), l ((and thus N). The parameters q and α are fixed here-also the
same as previously, q = 0.01 and α = 0.25. Compared to the tri-diagonal scheme
the present one leads a faster convergent algorithms

Table 2.

J l Er Relative Er
10 1/100 4, 6.10−3 0,2311
16 1/120 4, 4.10−3 0,2372
20 1/200 2, 4.10−3 0,2506
24 1/220 2, 3.10−3 0,2671
30 1/280 2, 0.10−3 0,3074
40 1/400 1, 4.10−3 0,3592
50 1/500 7, 6.10−4 0,2355
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Remark 5.1. For the convenience of the paper, we give here some computations
of the determinants ∆(l, h) for different values of the parameters of the discrete
scheme Firstly, for both examples above, we can easily see that ‖ϕ‖ = 2 and thus,
equation (4.15) yields that

∆(l, h) = 361 + 32ε+ 416l − 256l2.

For the different values of l as in the tables 1 and 2, we obtain a positive discriminant
leading two zeros with a rejected one. For the discriminant of equation (4.18) we
obtain

∆(l, h) =
676
h4

+
8ε
h2
.

Hence, the results explained previously hold.

6. Conclusion

This paper investigated the solution of the well-known Boussinesq equation in
two-dimensional case by applying a two-dimensional finite difference discretization.
The Boussinesq equation in its original form is a 4-th order partial differential
equation. Thus, in a first step it was recasted into a system of second order partial
differential equations using a reduction order idea. Next, the system has been
transformed into an algebraic discrete system involving Lyapunov-Syslvester matrix
terms by using a full time-space discretization. Solvability, consistency, stability
and convergence are then established by applying well-known methods such as
Lax-Richtmyer equivalence theorem and Lyapunov Stability and by examining the
Lyapunov-Sylvester operators. The method was finally improved by developing
numerical examples. It was shown to be efficient by means of error estimates as
well as time execution algorithms compared to classical ones.

7. Appendix

7.1. Main steps of the algorithm applied.
• Compute the matrices of the system
• Initialization: Compute the matrices U0, U1, V 0 and V 1

• for n ≥ 2,

Un = lyap(W,A,LZ,B(Un−1) + b2RV
n−1 − LW,A(Un−2)− a2R(Fn−2 + Fn−1)),

and

V n = 2c2RUn + 2R(c1Un−1 + c2U
n−2)− V n−2 + 2F̂n−1.

7.2. The tridiagonal associated system. Consider the lexicographic mesh k =
j(J + 1) +m for 0 ≤ j,m ≤ J , and denote N = J(J + 2), and

ΛN = {nJ + n− 1 : n ∈ N}, Λ̃N = {n(J + 1) : n ∈ N}, ΘN = ΛN ∪ Λ̃N .

Using the Kroncker product we obtain a tri-diagonal block system on the form

ÃUn+1 + a2R̃V
n+1 = B̃Un − ÃUn−1 + b2R̃V

n − a2R̃V
n−1

V n+1 − 2c2R̃Un+1 = 2c1R̃Un + 2c2R̃Un−1 − V n−1 + 2F̂n.
(7.1)

The numerical solutions’ matrices Un and V n are identified here as one-column
(N + 1)-vectors and the matrices Ã, B̃ and R̃ are evaluated as follows.
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The matrix Ã

Ãj,j = 2a1 ∀j, 0 ≤ j ≤ N,

Ãj,j+1 =
1
2
Ã0,1 = a2 ∀j, 1 ≤ j ≤ N, j /∈ ΘN , and 0 on ΛN ,

Ãj−1,j =
1
2
ÃN,N−1 = a2 ∀j, 1 ≤ j ≤ N, j /∈ ΘN , and 0 on Λ̃N ,

Ãj,j+J+1 = 2a2, ∀j, 0 ≤ j ≤ J,

Ãj,j+J+1 = a2, ∀j, J + 1 ≤ j ≤ N − J − 1,

Ãj−J−1,j = a2, ∀j, J + 1 ≤ j ≤ N − J − 1,

Ãj−J−1,j = 2a2, ∀j, N − J ≤ j ≤ N.

The matrix B̃

B̃j,j = 2b1 ∀j, 0 ≤ j ≤ N,

B̃j,j+1 =
1
2
B̃0,1 = b2, ∀j, 1 ≤ j ≤ N, ; j /∈ ΘN , and 0 on ΛN ,

B̃j−1,j =
1
2
B̃N,N−1 = b2, ∀j, 1 ≤ j ≤ N, j /∈ ΘN , and 0 on Λ̃N ,

B̃j,j+J+1 = 2b2 ∀j, 0 ≤ j ≤ J,

B̃j,j+J+1 = b2 ∀j, J + 1 ≤ j ≤ N − J − 1,

B̃j−J−1,j = b2 ∀j, J + 1 ≤ j ≤ N − J − 1,

B̃j−J−1,j = 2b2 ∀j, N − J ≤ j ≤ N.

The matrix R̃

R̃j,j = −2 ∀j, 0 ≤ j ≤ N,

R̃j,j+J+1 = 2 ∀j, 0 ≤ j ≤ J,

R̃j,j−J−1 = 2 ∀j, N − J ≤ j ≤ N,

R̃j,j+J+1 = R̃j−J−1,j = 1 ∀j, J + 1 ≤ j ≤ N − J − 1.

System (7.1) can be written as a linear standard form

W̃Un+1 = Z̃Un − W̃Un−1 + b2R̃V
n − 2a2R̃F̂n

V n+1 = 2R̃(c1I + c2Z̃)Un + 2(c2 − c1)R̃Un−1 + 2b2c2R̃2V n − V n−1 + 2F̂n.
(7.2)

where W̃ and Z̃ are given by W̃ = Ã+ 2c2a2R̃
2 and Z̃ = B̃ − 2c1a2R̃

2.

7.3. Some facts on the convergence of solutions and associated spaces.
Usually the problem of convergence depends on different quantities in the model
and on the geometry of the domain. Denote

Ωh = {(xj , ym) ∈ R2 : 0 ≤ j,m ≤ J}, Ωt = {tn : n ∈ N}

and define the space of grid functions on Ωh as

Vh = {U = (Uj,m)j,m∈Z satisfying (2.3)-(2.4)}.
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On the grid functions space, we usually define some appropriate norms to compute
the error estimate between exact solutions of the continuous inhomogenous problem
associated to (1.1) and its discrete variant obtained through the discrete scheme.
For U ∈ Vh and V ∈ Vh define the inner product

(U, V )h = h2
J∑

j,m=0

Uj,m.Vj,m.

This leads to Sobolev norms (or semi-norms) such as

‖V ‖h = (V, V )1/2
h , ‖V ‖∞,h = max

0≤j,m≤J
|Vj,m|,

|V |1,h =
[
h2

J∑
j,m=0

(|(Ux)j,m|2 + |(Uy)j,m|2)
]1/2

,

‖V ‖2,h =
[
h2

J∑
j,m=0

(|∆hUj,m|2
]1/2

.

Next, as it appears in the continuous problem derivatives of order 4 of the unknown
function u, we generally restrict on suitable regularity spaces. It is not sometimes
necessary to go to higher derivatives. In the present case for example, we may
consider functions that are of class C4 with respect to x, C2 with respect to y and
class C2 with respect to t. We get using summation by parts

(∆hV,U)h = (V,∆hU)h, −(∆hV, V )h = |V |21,h, (∆2
hV, V )h = |V |22,h.

As we work on a finite grid and thus a finite space of grid functions all these norms
(semi-norms) are equivalent, and thus there is no essential difference between them.
The norms ‖.‖h and ‖·‖∞,h reflects the L2 convergence, while the semi-norms | · |1,h
and | · |1,h reflects somehow the convergence of the discrete derivatives and thus the
convergence in the discrete Sobolev space. For more details and backgrounds on
these facts we refer to [4, 3, 5, 6, 8, 9, 10, 11, 12, 19, 21, 24, 33, 35].
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