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MULTIPLE SOLUTIONS FOR SEMILINEAR SCHRÖDINGER
EQUATIONS WITH ELECTROMAGNETIC POTENTIAL

WEN ZHANG, XIANHUA TANG, JIAN ZHANG

Abstract. In this article, we consider the existence of infinitely many non-

trivial solutions for the following semilinear Schrödinger equation with elec-

tromagnetic potential`
− i∇+ A(x)

´2
u + V (x)u = f(x, |u|)u, in RN

where i is the imaginary unit, V is the scalar (or electric) potential, A is the
vector (or magnetic) potential. We establish the existence of infinitely many

solutions via variational methods.

1. Introduction

This article concerns the following semilinear stationary Schrödinger equation
with electromagnetic potential(

− i∇+A(x)
)2
u+ V (x)u = f(x, |u|)u, in RN (1.1)

where u : RN → C and N ≥ 2, V : RN → R is a scalar (or electric) potential and
A = (A1, . . . , AN ) : RN → RN is a vector (or magnetic) potential. This equation
arises in quantum mechanics and provides a description of the dynamics of the
particle in a non-relativistic setting.

There have been lots of studies on the existence and multiplicity of solutions for
nonlinear Schrödinger type equations without the presence of a magnetic potential,
see [3, 4, 5, 8, 9, 19, 25, 30]. Compared with results of this case, the appearance
of the magnetic potential brings in additional difficulties to the problems such as
the effects of the magnetic potential on the linear spectral sets and on the solution
structure. Thus, for equations with magnetic potential, it has been studied much
less than for equations with magnetic potential, see [1, 6, 12, 17, 22, 13, 23]. It
seems that the first work was studied in [12], the authors found the existence of
solutions for problem (1.1) by solving an appropriate minimization problem for the
corresponding energy functional in the case of N = 2 and 3. Later, the existence
and multiplicity of solutions of problem (1.1) were obtained in [17] under certain
assumptions that σ(−(−i∇ + A) + V ) is discrete. In [1], the authors obtained
multiplicity of solutions under the assumptions that V, f and B := curlA depend
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periodically on x ∈ RN . For singular perturbation problem and concentration
phenomenon of semi-classical states, we refer the readers to [2, 7, 10, 11, 13, 23]
and the references therein.

It is worth pointing out that the aforementioned authors always assumed the
potential V (x) is positive. However, to the best of our knowledge, for the sign-
changing potential case, there are not many results for problem (1.1). In the case
of zero magnetic field (i.e. Ai = 0, i = 1, 2, . . . , N), there have been some works
focused on the study of the sign-changing potential, we refer the readers to [8, 9,
18, 14, 15, 19, 20, 24, 26, 27, 28, 30] and the references therein.

Motivated by the above references, we consider problem (1.1) with sign-changing
potential, and establish the existence of infinitely many solutions by symmetric
Mountain Pass Theorem in [21]. More precisely, we make the following assumptions:

(A1) A ∈ C(RN ,RN ), V ∈ C(RN ,R) and infRN V (x) > −∞;
(A2) There exists a constant d0 > 0 such that

lim
|y|→∞

meas
(
{x ∈ RN : |x− y| ≤ d0, V (x) ≤M}

)
= 0, ∀M > 0,

where meas(·) denotes the Lebesgue measure in RN ;
(A3) f(x, |u|) ∈ C(RN×R,R), and there exist constants c1, c2 > 0 and p ∈ (2, 2∗)

such that

|f(x, |u|)| ≤ c1 + c2|u|p−2, for all (x, u) ∈ RN × C;

where 2∗ = +∞ if N ≤ 2 and 2∗ = 2N
N−2 if N > 2;

(A4) lim|u|→∞ F (x, |u|)/|u|2 = ∞, a. e. x ∈ RN , and there exists r0 ≥ 0 such
that

F (x, |u|) ≥ 0, for |u| ≥ r0, (1.2)

where F (x, |u|) =
∫ |u|

0
f(x, |t|)tdt;

(A5) F(x, |u|) = 1
2f(x, |u|)|u|2 − F (x, |u|) ≥ 0, and there exist c3 > 0 and κ >

max{1, N/2} such that

|F (x, |u|)|κ ≤ c3|u|2κF(x, |u|), for |u| ≥ r0;

(A6) There exist µ > 2 and % > 0 such that

µF (x, |u|) ≤ |u|2f(x, |u|) + %|u|2 for all (x, u) ∈ RN × C.
The main results of this article are the following theorems.

Theorem 1.1. Suppose that (A1)–(A5) are satisfied. Then problem (1.1) has in-
finitely many solutions.

Theorem 1.2. Suppose that (A1)–(A4), (A6) are satisfied. Then problem (1.1)
has infinitely many solutions.

2. Variational setting and proof of the main results

Before establishing the variational setting for problem (1.1), we have the follow-
ing Remark

Remark 2.1. From (A1), we know that there exists a constant V0 > 0 such that
V̄ (x) := V (x) + V0 for all x ∈ RN . Let f̄(x, |u|)u := f(x, |u|)u+ V0u and consider
the new equation(

− i∇+A(x)
)2
u+ V̄ (x)u = f̄(x, |u|)u, in RN . (2.1)
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Then problem (2.1) is equivalent to problem (1.1). It is easy to check that the
hypotheses (A1)–(A6) hold for V̄ and f̄ provided that those hold for V and f .

In view of Remark 2.1, now we will study the equivalent problem (2.1). Through-
out the following sections, we make the following assumption, instead of (A1),

(A1’) A ∈ C(RN ,RN ), V ∈ C(RN ,R) and infRN V (x) > 0.
For convenience, write ∇Au = (∇+ iA)u. Let

H1
A(RN ) = {u ∈ L2(RN ) : ∇Au ∈ L2(RN )}.

Hence, H1
A(RN ) is the Hilbert space under the scalar product

(u, v) =
∫

RN
(∇Au∇Av + uv̄)dx,

and the norm induced by the above product is

‖u‖H1
A(RN ) =

(∫
RN

(|∇Au|2 + |u|2)dx
)1/2

.

Let

E = {u ∈ H1
A(RN ) :

∫
RN

V (x)|u|2dx < +∞},

and the norm

‖u‖ =
(∫

RN

(
|∇Au|2 + V (x)|u|2

)
dx
)1/2

.

The well-known diamagnetic inequality [16, Theorem 7.21],

|∇|u|(x)| ≤ |∇u(x) + iA(x)u(x)| , for a.e. x ∈ RN

implies that for any u ∈ E, we can get that |u| belongs to H1(RN ), which embeds
continuously into Ls(RN ), s ∈ [2, 2∗]. And therefore u ∈ Ls(RN ) for any s ∈ [2, 2∗].
It is thus clear that for any s ∈ [2, 2∗], there exists γs such that

‖u‖s ≤ γs‖u‖, ∀u ∈ E. (2.2)

Combining with the assumption (A2), we have the following Lemma (see [3, 29])

Lemma 2.2. Under assumptions (A1’) and (A2), the embedding E ↪→ Ls(RN ) is
compact for any s ∈ [2, 2∗).

For each u ∈ E, we define

Φ(u) =
1
2

∫
RN

(
|∇Au|2 + V (x)|u|2

)
dx−

∫
RN

F (x, |u|)dx. (2.3)

From assumptions (A1’), (A2) and (A3), we can easily get that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 =
∫

RN

(
∇Au∇Av + V (x)uv̄

)
dx−

∫
RN

f(x, |u|)uv̄dx, (2.4)

for all u, v ∈ E.

We say that I ∈ C1(X,R) satisfies (C)c-condition if any sequence {un} such
that

I(un)→ c, ‖I ′(un)‖(1 + ‖un‖)→ 0 (2.5)

has a convergent subsequence.



4 W. ZHANG, X. TANG, J. ZHANG EJDE-2016/26

Lemma 2.3 ([21]). Let X be an infinite dimensional Banach space, X = Y ⊕ Z,
where Y is finite dimensional. If I ∈ C1(X,R) satisfies (C)c-condition for all c > 0,
and

(A7) I(0) = 0, I(−u) = I(u) for all u ∈ X;
(A8) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;
(A9) for any finite dimensional subspace X̃ ⊂ X, there exists R = R(X̃) > 0

such that I(u) ≤ 0 on X̃ \BR,

then I possesses an unbounded sequence of critical values.

Lemma 2.4. Under assumptions (A1’), (A2)–(A5), any sequence {un} ⊂ E satis-
fying

Φ(un)→ c > 0, 〈Φ′(un), un〉 → 0 (2.6)

is bounded in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, assume that
‖un‖ → ∞. Let vn = un

‖un‖ , then ‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for 2 ≤ s ≤ 2∗.
For n large enough, we have

c+ 1 ≥ Φ(un)− 1
2
〈Φ′(un), un〉 =

∫
RN
F(x, |un|)dx. (2.7)

It follows from (2.3)and(2.6) that

1
2
≤ lim sup

n→∞

∫
RN

|F (x, |un|)|
‖un‖2

dx. (2.8)

For 0 ≤ a < b, let

Ωn(a, b) = {x ∈ RN : a ≤ |un(x)| < b}. (2.9)

Passing to a subsequence, we may assume that vn ⇀ v1 in E, then by Lemma 2.2,
vn → v1 in Ls(RN ) for all s ∈ [2, 2∗), and vn(x)→ v1(x) a. e. in RN .

If v1 = 0, then vn → 0 in Ls(RN ) for all s ∈ [2, 2∗), and vn → 0 a. e. in RN .
From (A3), we know that

|F (x, |u|)| ≤ c1
2
|u|2 +

c2
p
|u|p, (2.10)

then ∫
Ωn(0,r0)

|F (x, |un|)|
|un|2

|vn|2dx ≤ (
c1
2

+
c2r

p−2
0

p
)
∫

Ωn(0,r0)

|vn|2dx

≤ (
c1
2

+
c2r

p−2
0

p
)
∫

RN
|vn|2dx→ 0.

(2.11)
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Set κ′ = κ/(κ − 1). Since κ > max{1, N/2}, we obtain 2κ′ ∈ (2, 2∗). Hence, from
(A5) and (2.7), we have∫

Ωn(r0,∞)

|F (x, |un|)|
|un|2

|vn|2dx

≤
(∫

Ωn(r0,∞)

(
|F (x, |un|)|
|un|2

)κdx
)1/κ(∫

Ωn(r0,∞)

|vn|2κ
′
dx
)1/κ′

≤ c1/κ3

(∫
Ωn(r0,∞)

F(x, |un|)dx
)1/κ(∫

Ωn(r0,∞)

|vn|2κ
′
dx
)1/κ′

≤ [c3(c+ 1)]1/κ
(∫

Ωn(r0,∞)

|vn|2κ
′
dx
)1/κ′

→ 0.

(2.12)

Combining (2.11) with (2.12), we obtain∫
RN

|F (x, |un|)|
‖un‖2

dx

=
∫

Ωn(0,r0)

|F (x, |un|)|
|un|2

|vn|2dx+
∫

Ωn(r0,∞)

|F (x, |un|)|
|un|2

|vn|2dx→ 0,

which contradicts (2.8).
Next we consider the case that v1 6= 0. Set H := {x ∈ RN : v1(x) 6= 0}, then

meas(H) > 0. For x ∈ H, we have |un(x)| → ∞ as n→∞. Hence, x ∈ Ωn(r0,∞)
for large n ∈ N, which implies that χΩn(r0,∞)(x) = 1 for large n, where χΩn

denotes the characteristic function on Ω. Since vn → v1 a.e. in RN , we have
χΩn(r0,∞)(x)vn → v1 a.e. in H. It follows from (2.3), (2.10), (A4) and Fatou’s
Lemma that

0 = lim
n→∞

c+ o(1)
‖un‖2

= lim
n→∞

Φ(un)
‖un‖2

= lim
n→∞

(1
2
−
∫

RN

F (x, |un|)
|un|2

|vn|2dx
)

= lim
n→∞

(1
2
−
∫

Ωn(0,r0)

F (x, |un|)
|un|2

|vn|2dx−
∫

Ωn(r0,∞)

F (x, |un|)
|un|2

|vn|2dx
)

≤ lim sup
n→∞

(1
2

+ (
c1
2

+
c2
p
rp−2
0 )

∫
RN
|vn|2dx

−
∫

Ωn(r0,∞)

F (x, |un|)
|un|2

|vn|2dx
)

≤ 1
2

+
(c1

2
+
c2
p
rp−2
0

)
γ2

2 − lim inf
n→∞

∫
Ωn(r0,∞)

F (x, |un|)
|un|2

|vn|2dx

=
1
2

+ (
c1
2

+
c2
p
rp−2
0 )γ2

2 − lim inf
n→∞

∫
RN

F (x, |un|)
|un|2

[χΩn(r0,∞)(x)]|vn|2dx

≤ 1
2

+ (
c1
2

+
c2
p
rp−2
0 )γ2

2 −
∫

RN
lim inf
n→∞

F (x, |un|)
|un|2

[χΩn(r0,∞)(x)]|vn|2dx

= −∞,

(2.13)

which is a contradiction. Thus {un} is bounded in E. �
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Lemma 2.5. Under assumptions (A1’), (A2)–(A5), any sequence {un} ⊂ E satis-
fying (2.6) has a convergent subsequence in E.

Proof. From Lemma 2.4, we know that {un} is bounded in E. Going if necessary
to a subsequence, we can assume that un ⇀ u in E. By Lemma 2.2, un → u in
Ls(RN ) for all 2 ≤ s < 2∗, thus∫

RN
|f(x, |un|)un − f(x, |u|)u||un − u|dx

≤
∫

RN

[
(c1|un|+ c2|un|p−1) + (c1|u|+ c2|u|p−1)

]
|un − u|dx

≤ c1
(∫

RN
(|un|+ |u|)2dx

)1/2(∫
RN
|un − u|2dx

)1/2

+ c2

(∫
RN
|un|pdx

) p−1
p
(∫

RN
|un − u|pdx

)1/p

+ c2

(∫
RN
|u|pdx

) p−1
p
(∫

RN
|un − u|pdx

)1/p

→ 0, as n→∞.

(2.14)

Observe that

‖un − u‖2 = 〈Φ′(un)− Φ′(u), un − u〉

+
∫

RN
[f(x, |un|)un − f(x, |u|)u](un − u)dx.

(2.15)

It is clear that

〈Φ′(un)− Φ′(u), un − u〉 → 0 as n→∞. (2.16)

From (2.14), (2.15) and (2.16), we obtain ‖un − u‖ → 0 as n→∞. �

Lemma 2.6. Under assumptions (A1’), (A2)–(A4), (A6), any sequence {un} ⊂ E
satisfying (2.6) has a convergent subsequence in E.

Proof. First, we prove that {un} is bounded in E. Arguing by contradiction, sup-
pose that ‖un‖ → ∞. Let vn = un

‖un‖ . Then ‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for
all 2 ≤ s < 2∗. By (2.3), (2.4), (2.6) and (A6), we have

c+ 1 ≥ Φ(un)− 1
µ
〈Φ′(un), un〉

=
µ− 2

2µ
‖un‖2 −

∫
RN

[F (x, |un|)−
1
µ
f(x, |un|)|un|2]dx

≥ µ− 2
2µ
‖un‖2 −

%

µ
‖un‖22 for large n ∈ N,

(2.17)

which implies

1 ≤ 2%
µ− 2

lim sup
n→∞

‖vn‖22. (2.18)

Passing to a subsequence, we may assume that vn ⇀ v1 in E, then by Lemma 2.2,
vn → v1 in Ls(RN ) for all 2 ≤ s < 2∗, and vn(x) → v1(x) a. e. in RN . Hence, it
follows from (2.18) that v1 6= 0. Similar to (2.13), we can conclude a contradiction.
Thus, {un} is bounded in E. The rest proof is the same as that in Lemma 2.5. �
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Lemma 2.7. Under assumptions (A1’), (A2)–(A4), for any finite dimensional
subspace Ẽ ⊂ E, there holds

Φ(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (2.19)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ →
∞, there exists M1 > 0 such that Φ(un) ≥ −M1 for all n ∈ N. Let vn = un

‖un‖ ,
then ‖vn‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v1 in E.
Since Ẽ is finite dimensional, then vn → v1 ∈ Ẽ in E, vn(x)→ v1(x) a. e. in RN ,
and so ‖v1‖ = 1. Hence, we can conclude a contradiction by a similar fashion as
(2.13). �

Corollary 2.8. Under assumptions (A1’), (A2)–(A4), for any finite dimensional
subspace Ẽ ⊂ E, there exists R = R(Ẽ) > 0, such that

Φ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R. (2.20)

Let {ej} be a total orthonormal basis of E and define

Xj = Rej , Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , quadk ∈ Z. (2.21)

Similar to [28, Lemma 3.8], we have the following lemma.

Lemma 2.9. Under assumptions (A1’) and (A2), for 2 ≤ s < 2∗,

βk(s) := sup
u∈Zk,‖u‖=1

‖u‖s → 0, k →∞. (2.22)

By this lemma, we can choose an integer m ≥ 1 such that

‖u‖22 ≤
1

2c1
‖u‖2, ‖u‖pp ≤

p

4c2
‖u‖p, ∀u ∈ Zm. (2.23)

Lemma 2.10. Under assumptions (A1’), (A2) and (A3), there exist constants
ρ, α > 0 such that Φ|∂Bρ∩Zm ≥ α.

Proof. Combining (2.3), (2.10) with (2.23), for u ∈ Zm, choosing ρ := ‖u‖ = 1
2 we

have
Φ(u) =

1
2
‖u‖2 −

∫
RN

F (x, |u|)dx

≥ 1
2
‖u‖2 − c1

2
‖u‖22 −

c2
p
‖u‖pp

≥ 1
4

(‖u‖2 − ‖u‖p)

=
2p−2 − 1

2p+2
:= α > 0.

(2.24)

Thus, the proof is complete. �

Proof of Theorem 1.1. Let X = E, Y = Ym and Z = Zm. Obviously, f̄ satisfies
(A3)–(A5), and Φ(u) is even. By Lemmas 2.4, 2.5, 2.10 and Corollary 2.8, all
conditions of Lemma 2.3 are satisfied. Thus, problem (2.1) possesses infinitely
many nontrivial solutions. By Remark 2.1, problem (1.1) also possesses infinitely
many nontrivial solutions. �

Proof of Theorem 1.2. Let X = E, Y = Ym and Z = Zm. Obviously, f̄ satisfies
(A3), (A4), (A6) and Φ(u) is even. The rest proof is the same as that of Theorem
1.1, but using Lemma 2.6 instead of Lemmas 2.4 and 2.5. �
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[25] J. Zhang, X. H. Tang, W. Zhang; Existence of infinitely many solutions for a quasilinear

elliptic equation, Appl. Math. Lett. 37 (2014), 131-135.

[26] J. Zhang, X. H. Tang, W. Zhang; Existence of multiple solutions of Kirchhoff type equation
with sign-changing potential, Appl. Math. Compu., 242 (2014) ,491-499

[27] W. Zhang, X. H. Tang, J. Zhang; Infinitely many solutions for fourth-order elliptic equations

with sign-changing potential, Taiwanese J. Math. 18 (2014) 645-659.
[28] Q. Y. Zhang, B. Xu; Multiplicity of solutions for a class of semilinear Schrödinger equations

with sign-changing potential, J. Math. Anal. Appl., 377 (2011), 834-840.

[29] W. M. Zou, M. Schechter; Critical Point Theory and its Applications, Springer, New York,
2006.

[30] F. K. Zhao, L. G. Zhao, Y. H. Ding; Existence and multiplicity of solutions for a non-periodic

Schrödinger equation, Nonlinear Anal., 69 (2008), 3671-3678.

Wen Zhang

School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China
E-mail address: zwmath2011@163.com

Xianhua Tang
School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China

E-mail address: tangxh@mail.csu.edu.cn

Jian Zhang (corresponding author)

School of Mathematics and Statistics, Hunan University of Commerce, Changsha, 410205
Hunan, China

E-mail address: zhangjian433130@163.com


	1. Introduction
	2. Variational setting and proof of the main results
	Acknowledgments

	References

