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STABILITY FOR NONCOERCIVE ELLIPTIC EQUATIONS

SHUIBO HUANG, QIAOYU TIAN, JIE WANG, JIA MU

Abstract. In this article, we consider the stability for elliptic problems that

have degenerate coercivity in their principal part,

− div
“ |∇u|p−2∇u

(1 + |u|)θ(p−1)

”
+ |u|q−1u = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where θ > 0, Ω ⊆ RN is a bounded domain. Let K be a compact subset in Ω

with zero r-capacity (p < r ≤ N). We prove that if fn is a sequence of functions

which converges strongly to f in L1
loc(Ω\K) and q > r(p−1)[1+θ(p−1)]/(r−p),

and un is the sequence of solutions of the corresponding problems with datum

fn. Then un converges to the solution u.

1. Introduction and statement of main results

Let Ω ⊆ RN be a bounded smooth domain. We are interested in the stability of
quasilinear elliptic problems with principal part having degenerate coercivity,

−div a(x, u,∇u) + |u|q−1u = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.1)

where θ > 0, 1 < p < N and f ∈ L1(Ω). The function a : Ω × R × RN → RN
is a Carathéodory function (that is, a(·, s, ξ) measurable on Ω for every (s, ξ) in
R×RN , and a(x, ·, ·) continuous on R×RN for almost every x in Ω) satisfying the
following assumptions:

a(x, s, ξ)ξ ≥ α1h
p−1(|s|)|ξ|p, α1 > 0, (1.2)

|a(x, s, ξ)| ≤ α2|ξ|p−1, α2 > 0, (1.3)

〈a(x, s, ξ)− a(x, s, η), ξ − η〉 > 0, ξ 6= η, (1.4)

for almost every x ∈ Ω and for every s ∈ R, ξ ∈ RN , η ∈ RN , h(t) is defined as

h(t) =
1

(1 + |t|)θ
. (1.5)

The interest in removable singularities for elliptic equations goes back to the
pioneering work of Brezis[13]. Actually, Brezis shown that if {un} are the sequence
of solutions of the nonlinear elliptic problems

−∆un + |un|q−1un = fn, x ∈ Ω,
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un(x) = 0, x ∈ ∂Ω,

where 0 ∈ Ω, q ≥ N
N−2 and {fn} be a sequence of L1(Ω) functions satisfying

lim
n→∞

∫
Ω\Bρ(0)

|fn − f | = 0.

Then un converges to the unique solution u of the equation

−∆u+ |u|q−1u = f.

In particular, surprisingly enough, let {fn} be a sequence in L1(Ω) such that fn ⊂
B(0, 1

n ) and fn → δ, then un → 0. While we would expect un converges to the
solution u of

−∆u+ |u|q−1u = δ.

but lt is well known that such a u does not exists if q ≥ N
N−2 , see [7].

The results in [13] were extended by Orsina and Prignet [21] for more general
uniformly elliptic, coercive and pseudomonotone operator and where f is a measure
which is concentrated on a set E of zero r-capacity. Continuing the studies in
[21, 13], Orsina and Prignet [22] obtained stability results of elliptic equations

−div a(x, u,∇u) + |u|q−1u = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where a is a Carathéodory function satisfying (1.3), (1.4) and

a(x, s, ξ)ξ ≥ α1|ξ|p, α1 > 0.

With motivation from the results of the above cited papers, the main purpose of
this paper is to investigate the stability results of problem (1.1). The main results
show that how the nonlinear term |u|q−1u and the singular term h(u)p−1 affect the
existence of solutions to (1.1).

The main results of this article is the following theorem.

Theorem 1.1. Let p < r ≤ N , f = f+ − f− be a function in L1(Ω), un be a
solution to problems

− div a(x, un,∇un) + |un|q−1un = fn, x ∈ Ω,

un(x) = 0, x ∈ ∂Ω,
(1.6)

where fn = f⊕n − f	n , f⊕n and f	n be two sequences of nonnegative L∞(Ω) functions
such that

lim
n→∞

∫
Ω\I(K+)

|f⊕n − f+| = 0, lim
n→∞

∫
Ω\I(K−)

|f	n − f−| = 0, (1.7)

for every neighbourhood I(K+) of K+ and I(K−) of K−, where K+ and K− be
two disjoint compact subsets of Ω of zero r-capacity. Then, up to subsequences
still denoted by un, un converges to a solution in the sense of distributions of the
problems (1.1) with datum f provided

q >
r(p− 1)[1 + θ(p− 1)]

r − p
. (1.8)

Remark 1.2. We emphasize that we do not assume that f⊕n and f	n are the positive
and negative part of fn, but only that they are nonnegative. This is the reason
why we use the unconventional notation f⊕n and f	n .
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Remark 1.3. The preceding theorem can be seen as a non-existence result for
problem (1.1): A particular case of Theorem 1.1 is when the sequence f⊕n is con-
vergent to f in the tight topology of measures f , where f is a bounded Radon
measure concentrated on a set K of zero harmonic capacity and f	n = 0, In this
case, Theorem 1.1 states that the sequence un tends to zero almost everywhere in
Ω. This is exactly the result [11, Theorem 4.1].

Remark 1.4. The result of preceding theorem can also be seen as a result of
removable singularities for problem (1.1). Indeed it states that sets of zero r-
capacity are not seen by the equation if q satisfies (1.8). Some other results about
removable singularities of elliptic equations, see [1, 2, 9, 14, 20, 17, 24, 25].

Remark 1.5. With minor technical modifications in the proof of [15, Theorem 1.6],
we can obtain the existences of distributional solutions un ∈ W 1,p

0 (Ω) ∩ L∞(Ω) to
problem (1.6). Indeed, lower order term |u|q−1u has a regularizing effect. Roughly
speaking, large values of q can compensate the “bad coercivity” of the principal
part and the poor summability of the right hand side.

Remark 1.6. The principal part left-hand of (1.1) is defined on W 1,p
0 (Ω), but it

may not be coercive on the same space as u becomes large, due to this lack of
coercivity, standard existence theorems for solutions of nonlinear elliptic equations
cannot be applied. Furthermore, ∇u

(1+|u|)θ(p−1) tends to zero as u tends to infinity,
which produces a saturation effect. Some other results of elliptic equations with
principal part having degenerate coerciveness, see [5, 6, 10, 12, 19].

Remark 1.7. In this article, we only consider θ > 0. The case θ ≡ 0 has been
considered by Orsina and Prignet [22],

The plan of this article is as follows. In Section 2, we briefly recall some notations
and known results about measures. Section 3 contains the proof of Theorem 1.1.

2. Preliminaries

In this section, we first recall some notation and definitions. In the following,
C will be a constant that may change from an inequality to another, to indicate a
dependence of C on the real parameters δ, we shall write C = C(δ).

For each real number s, we define s+ = max(s, 0) and s− = −max(−s, 0).
Obviously, s = s+ − s− and |s| = s+ + s−.

For k > 0, denote by Tk : R→ R the usual truncation at level k; that is,

Tk(s) = max{−k,min{k, s}}.

The “remainder” of the truncation Tk(s) is defined as Gk(s) = s− Tk(s).
Note that we will deal with functions u that may not belong to Sobolev spaces,

we need to give a suitable definition of gradient. Consider a measurable function
u : Ω→ R which is finite almost everywhere and satisfies Tk(u) ∈W 1,p

0 (Ω) for every
k > 0. According to [8, Lemma 2.1], there exists an unique measurable function
v : Ω→ RN such that, for each k > 0,

∇Tk(u) = vχ|u|≤k almost everywhere in Ω,

where χ|u|≤k is the characteristic function of {|u| ≤ k}. We define the gradient ∇u
of u as this function v, and denote ∇u = v.
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Remark 2.1. It is worth pointing out that the gradient defined in this way is not,
in general, the gradient used in the definition of Sobolev spaces, However, v is the
distributional gradient of u provided v belongs to (L1

loc(Ω))N , which also implies
that u belongs to W 1,1

loc (Ω).

Remark 2.2. As point out in [8], the set of functions u such that Tk(u) belongs
to W 1,p

0 (Ω) for every k > 0 is not a linear space. That is, if u and v are such that
both Tk(u) and Tk(v) belong to W 1,p

0 (Ω) for every k > 0, while ∇(u+ v) may not
be defined.

Denote by |Ω| the N -dimensional Lebesgue measure of a measurable set Ω. Let
f(x), g(x) are functions defined in RN and a, b are constants, we set

{f(x) > a} := {x ∈ RN : f(x) > a}, {g(x) ≤ b} := {x ∈ RN : g(x) ≤ b}.

The r-capacity cap1,p(K,Ω) of a compact set K ⊂ Ω with respect to Ω is defined
by

cap1,p(K,Ω) = inf
{∫

Ω

|∇φ|pdx : φ ∈ C∞0 (Ω), φ ≥ χE
}
.

The following technical propositions will be be useful throughout the paper[18].

Proposition 2.3. Let K+ and K− be two disjoint compact subsets of Ω of zero
r-capacity and p < r ≤ N . Then, for every δ > 0 there exist A+

δ and A−δ , two
disjoint open subsets of Ω, and ψ+

δ and ψ−δ in C∞c (Ω) such that

0 ≤ ψ+
δ (x) ≤ 1, 0 ≤ ψ−δ (x) ≤ 1, x ∈ Ω, (2.1)

ψ+
δ (x) ≡ 1, x ∈ K+, ψ−δ (x) ≡ 1, x ∈ K−, (2.2)

supp(ψ+
δ (x)) = A+

δ , supp(ψ−δ (x)) = A−δ , (2.3)∫
Ω

|∇ψ+
δ (x)|rdx ≤ δ,

∫
Ω

|∇ψ−δ (x)|rdx ≤ δ, (2.4)

meas(A+
δ ) ≤ δ, meas(A−δ ) ≤ δ. (2.5)

3. Proof of Theorem 1.1

The following arguments are similar to these in [22], and the proof will be done
with the aid of the following two lemmas.

Lemma 3.1. There exists 0 < C <∞ such that for any k > 0,∫
Ω

|∇Tk(un)|pdx < Ckq+1+θ(p−1). (3.1)

Proof. Choose Tk(un)(1 − ψδ)s as a test function in (1.6), here and elsewhere in
the paper

ψδ = ψ+
δ + ψ−δ , s =

β

β − p+ 1
.
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where β appears in (3.8). Thus∫
Ω

a(x, un∇un) · ∇Tk(un)(1− ψδ)sdx+
∫

Ω

|un|q−1unTk(un)(1− ψδ)sdx

= s

∫
Ω

a(x, un∇un)∇ψδTk(un)(1− ψδ)s−1dx

+
∫

Ω

f⊕n Tk(un)(1− ψδ)sdx−
∫

Ω

f	n H(Tk(un)(1− ψδ)sdx.

(3.2)

By (1.2), we have∫
Ω

a(x, un,∇un) · ∇Tk(un)dµδ ≥ α1

∫
Ω

|∇Tk(un)|p

(1 + |Tk(un)|)θ(p−1)
dµδ, (3.3)

here and the rest of this paper we use the note dµδ = (1− ψδ)sdx.
Recall that unTk(un) ≥ 0, which leads to∫

Ω

|un|q−1unTk(un)(1− ψδ)sdx ≥
∫
{|un|≥k}

|un|q−1unTk(un)dµδ

≥ kq+1µδ({|un| ≥ k}).
(3.4)

Using (1.3) and Young’s inequality, we find∫
Ω

|a(x, un,∇un)∇ψδTk(un)(1− ψδ)s−1|dx

≤ α2k

∫
Ω

|∇un|p−1(|∇ψ+
δ |+ |∇ψ

−
δ |)(1− ψδ)

s−1dx

≤ Ck
∫

Ω

|∇un|(p−1)r′(1− ψδ)(s−1)r′dx+ Ck

∫
Ω

(|∇ψ+
δ |
r + |∇ψ−δ |

r)dx.

(3.5)

Combining (2.4) and (3.2)-(3.5), we obtain∫
Ω

|∇Tk(un)|p

(1 + |Tk(un)|)θ(p−1)
dµδ + kq+1µδ({|un| ≥ k})

≤ Ck(δ + I1(n, δ) + I2(n, δ)),
(3.6)

where

I1(n, δ) =
∫

Ω

(f⊕n + f	n )dµδ, I2(n, δ) =
∫

Ω

|∇un|(p−1)r′(1− ψδ)(s−1)r′dx.

For a fixed ρ ≥ 0, thanks to (3.6), we have

µδ({|∇un| ≥ ρ})
= µδ

(
{|∇un| ≥ ρ} ∪ {|un| < k}

)
+ µδ

(
{|∇un| ≥ ρ} ∪ {|un| ≥ k}

)
≤ 1
ρp

∫
Ω

|∇Tk(un)|pdµδ + µδ({|un| ≥ k})

≤ (1 + k)θ(p−1)

ρp

∫
Ω

|∇Tk(un)|p

(1 + |Tk(un)|)θ(p−1)
dµδ + µδ({|un| ≥ k})

≤ C(δ + I1(n, δ) + I2(n, δ))
(k1+θ(p−1)

ρp
+

1
kq

)
,

which implies

µδ({|∇un| ≥ ρ}) ≤ Cρ−
pq

q+1+θ(p−1) (δ + I1(n, δ) + I2(n, δ)). (3.7)
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Let β be such that

(p− 1)r′ < β <
pq

q + 1 + θ(p− 1)
. (3.8)

It can be easily seen that such a β exists by (1.8). In view of (3.7), we have∫
Ω

|∇un|βdµδ ≤ C(δ + I1(n, δ) + I2(n, δ)). (3.9)

This fact and Hölder’s inequality imply

I2(n, δ) ≤ C
(∫

Ω

|∇un|βdµδ
) (p−1)r′

β ≤ C(δ + I1(n, δ) + I2(n, δ))
(p−1)r′

β ,

which, combined with the fact that Xγ ≤ C+X imply that X is bounded provided
γ > 1; this yields

I2(n, δ) ≤ C(δ + I1(n, δ)) ≤ C(δ), (3.10)

since 1−ψδ is zero both on a neighbourhood of K+ and of K−, this fact and (1.7)
show that I1(n, δ) is bounded with respect to δ.

Using estimates (3.5), (3.6) and (3.10), we conclude that∫
Ω

|∇Tk(un)|pdµδ ≤ C(δ)k1+θ(p−1), (3.11)∫
Ω

|un|q−1unTk(un)dµδ ≤ C(δ)k, (3.12)∫
Ω

|∇un|p−1(|∇ψ+
δ |+ |∇ψ

−
δ |)(1− ψδ)

s−1dx ≤ C(δ). (3.13)

Choose Tk(u+
n )(1 − ψ+

δ )s and −Tk(u−n )(1 − ψ−δ )s as a test function in (1.6) re-
spectively. Similar arguments show that∫

Ω

|∇Tk(u+
n )|pdµ+

δ ≤ C(δ)k1+θ(p−1),∫
Ω

|∇Tk(u−n )|pdµ−δ ≤ C(δ)k1+θ(p−1),

(3.14)

and ∫
Ω

|u+
n |q−1u+

nTk(u+
n )dµ+

δ ≤ C(δ)k,∫
Ω

|u−n |q−1u−n Tk(u−n )dµ−δ ≤ C(δ)k,
(3.15)

where dµ+
δ = (1− ψ+

δ )sdx and dµ−δ = (1− ψ−δ )sdx.
Now we choose (k−Tk(u+

n ))(1− (1−ψ+
δ )s) as a test function in (1.6). We must

emphasize that

(k − Tk(u+
n ))(1− (1− ψ+

δ )s) = k − Tk(u+
n ), x ∈ K+,

(k − Tk(u+
n ))(1− (1− ψ+

δ )s) = 0.
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Apart from the support of ψ+
δ , a simple calculation yields

−
∫

Ω

a(x, un,∇un) · ∇Tk(u+
n )(1− (1− ψ+

δ )s)dx

+ s

∫
Ω

a(x, un,∇un)∇ψ+
δ (k − Tk(u+

n ))(1− ψ+
δ )s−1dx

+
∫

Ω

|un|q−1un(k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx

=
∫

Ω

f⊕n (k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx

−
∫

Ω

f	n (k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx.

(3.16)

Obviously ∫
Ω

a(x, un,∇un) · ∇Tk(u+
n )(1− (1− ψ+

δ )s)dx

≥ α1

(1 + k)θ(p−1)

∫
Ω

|∇Tk(u+
n )|p(1− (1− ψ+

δ )s)dx,
(3.17)

and ∫
Ω

a(x, un,∇un)∇ψ+
δ (k − Tk(u+

n ))(1− ψ+
δ )s−1dx

≤ k
∫

Ω

|Tk(u+
n )|p−1|∇ψ+

δ |(1− ψ
+
δ )s−1dx ≤ C(δ)k,

(3.18)

here we have used (3.13) and the fact that k − Tk(u+
n ) ≤ k.

It can be easily seen that∫
Ω

|un|q−1un(k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx

≤
∫
{0≤un≤k}

|un|q−1un(k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx

≤ C(δ)kq+1,

(3.19)

0 ≤
∫

Ω

f⊕n (k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx ≤ C(δ)k, (3.20)

0 ≤
∫

Ω

f	n (k − Tk(u+
n ))(1− (1− ψ+

δ )s)dx ≤ C(δ)k. (3.21)

From (3.16)-(3.21), we obtain∫
Ω

|∇Tk(u+
n )|p(1− (1− ψ+

δ )s)dx ≤ C(δ)kq+1+θ(p−1). (3.22)

Similarly, choosing (k + Tk(u−n ))(1− (1− ψ−δ )s) as a test function in (1.6), we find∫
Ω

|∇Tk(u−n )|p(1− (1− ψ−δ )s)dx ≤ C(δ)kq+1+θ(p−1). (3.23)

Combining (3.14) with (3.22) and (3.23), and then choosing δ = 1 (for example),
we have ∫

Ω

|∇Tk(un)|pdx ≤ Ckq+1+θ(p−1), (3.24)
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which shows that (3.1) holds. Consequently, Tk(un) is bounded in W 1,p
0 (Ω) inde-

pendently of n. This implies that there exists a subsequence of un (still denoted by
un) which is almost everywhere convergent in Ω to a measurable function u such
that Tk(u) belongs to W 1,p

0 (Ω) for every k > 0 [8]. �

The next step of the proof is to state some propositions of limit function u.

Lemma 3.2. There exists a constant C such that∫
Ω

|∇u|(p−1)r′dx ≤ C, (3.25)∫
Ω

|u|qdx ≤ C. (3.26)

Proof. Firstly, we show that un is a Cauchy sequence in measure. To do this, we
define

Φ(t) =
∫ t

0

1
(1 + |s|)γ

ds,

where γ = 1 + (p− 1)(1− θ). It can be easily seen that

|Φ(t)| ≤ 1
(p− 1)|1− θ|

.

Choose Φ(un)(1− ψδ)s as a test function in (1.6), we obtain∫
Ω

a(x, un,∇un)
(1 + |un|)γ

· ∇undµδ +
∫

Ω

|un|q−1unΦ(un)dµδ

= s

∫
Ω

a(x, un,∇un)∇ψδΦ(un)(1− ψδ)s−1dx+
∫

Ω

f⊕n Φ(un)dµδ

−
∫

Ω

f	n Φ(un)dµδ.

(3.27)

Obviously, by (1.2),∫
Ω

a(x, un,∇un)
(1 + |un|)γ

· ∇undµδ ≥ α1

∫
Ω

|∇un|p

(1 + |un|)p
dµδ, (3.28)∫

Ω

|un|q−1unΦ(un)dµδ ≥ 0, (3.29)

Consider the first terms of the right-hand side of (3.27), using (1.3), we have∫
Ω

a(x, un,∇un)∇ψδΦ(un)(1− ψδ)s−1dx

≤ C
∫

Ω

|∇un|p−1(|∇ψ+
δ |+ |∇ψ

−
δ |)(1− ψδ)

s−1dx

≤ C(δ + I2(n, δ)).

(3.30)

Therefore, using (3.27)–(3.30) and (3.10), we have∫
Ω

|∇un|p

(1 + |un|)p
dµδ ≤ C(δ). (3.31)

Similar arguments as the proof of Lemma 3.1, choose Φ(k−Tk(u+
n ))(1− (1−ψδ)s)

as a test function, show that∫
Ω

|∇un|p

(1 + |un|)p
(1− (1− ψδ)s)dx ≤ C(δ). (3.32)
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Inequalities (3.31) and (3.32) yield∫
Ω

|∇un|p

(1 + |un|)p
dx ≤ C(δ). (3.33)

Split {|un| ≥ k} as {|un| ≥ k} ∩ Aδ and {|un| ≥ k} ∩ Acδ, where Aδ = A+
δ + A−δ

and A+
δ , A−δ appear in Proposition 2.3. In view of (2.5), we have

meas({|un| ≥ k} ∩Aδ) ≤ meas(Aδ) ≤ 2δ. (3.34)

As for {|un| ≥ k} ∩Acδ, using (3.11), (3.33) and Poincaré inequality, we have

meas({|un| ≥ k} ∩Acδ)

≤ 1
(ln(1 + k))p

∫
{|un|≥k}∩Acδ

(
ln(1 + |Tk(un)|)

)p
dx

=
1

(ln(1 + k))p

∫
{|un|≥k}∩Acδ

(
ln(1 + |Tk(un)|)

)p(1− ψδ)sdx
=

C

(ln(1 + k))p

∫
{|un|≥k}∩Acδ

(
ln(1 + |Tk(un)|)(1− ψδ)

s
p
)p
dx

≤ C

(ln(1 + k))p

∫
Ω

∇Tk(un)|p

(1 + |Tk(un)|)p
dµδ

+
C

(ln(1 + k))p

∫
{|un|≥k}

|∇ψδ|p(1− ψδ)s−p(ln(1 + |Tk(un)|))pdx

≤ C

(ln(1 + k))p

∫
Ω

∇Tk(un)|p

(1 + |Tk(un)|)p
dµδ + C

∫
Ω

|∇ψδ|p(1− ψδ)s−pdx

≤ C(δ)
(ln(1 + k))p

+ C
(∫

Ω

|∇ψδ|rdx
)p/r

≤ C

(ln(1 + k))p
+ Cδp/r,

(3.35)

here we have used that 1− ψδ ≡ 1 on Acδ by Proposition 2.3.
Combining (3.34) and (3.35), we arrive at

meas({|un| ≥ k}) = meas({|un| ≥ k} ∩Aδ) + meas({|un| ≥ k} ∩Acδ)

≤ 2δ +
C

(ln(1 + k))p
+ Cδp/r,

which implies that un is a Cauchy sequence in measure.
We thus have that (up to subsequences, still denoted by un ) un converges almost

everywhere in Ω to some function u and

α1

∫
Ω

|∇Tk(u)|p

(1 + |Tk(u)|)θ(p−1)
dµδ + kq+1µδ({|u| ≥ k}) ≤ C(δ)k.

Furthermore, ∫
Ω

|∇u|(p−1)r′(1− ψδ)(s−1)r′dx ≤ C(δ).

Letting δ tend to zero, we find∫
Ω

|∇u|(p−1)r′dx ≤ C,
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which shows that (3.25) holds. In a similar way we can prove that∫
Ω

|u|qdx ≤ C,

which is (3.26). �

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2, with similar arguments as the proof
of [22], we choose Tk(un−Th(u))(1−ψδ)s as a test function in (1.6), and show that

∇un(1− ψδ)s → ∇u(1− ψδ)s, almost everywhere in Ω.

We choose
1
ε
Tk(Gk−ε(un))(1− ψδ)s

as a test function in (1.6), and arrive at

lim
k→∞

sup
n∈N

∫
Ω

|∇|un|p(1− ψδ)sdx = 0.

Then choosing v(1 − ψδ)s as a test function in (1.6), where v ∈ C∞0 (Ω), we can
pass to the limit. More details can be found in [22, steps 4, 5, 6], so we omit them
here. �
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