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LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR
NONLINEAR PROBLEMS INVOLVING FRACTIONAL

LAPLACIAN

ZU GAO, XIANHUA TANG, WEN ZHANG

Abstract. In this article, we study the existence of least energy sign-changing

solutions for nonlinear problems involving fractional Laplacian. By introducing
some new ideas and combining constraint variational method with the quan-

titative deformation lemma, we prove that the problem possesses one least

energy sign-changing solution.

1. Introduction

This article concerns the nonlinear problem involving fractional Laplacian
(−∆)αu = f(x, u), x ∈ Ω,

u = 0, x ∈ RN\Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, 0 < α < 1, N > 2α,
(−∆)α is the fractional Laplacian of order α, f ∈ C(Ω× R,R).

To prove our results, we use the following assumptions:
(A1) lims→0 f(x, s)/s = 0, uniformly in x ∈ Ω;
(A2) lim|s|→∞ f(x, s)/s2∗α−1 = 0, uniformly in x ∈ Ω, where 2∗α = 2N

N−2α ;
(A3) lim|s|→∞ f(x, s)/|s| = +∞ for a.e. x ∈ Ω;
(A4) f(x, s)/|s| is increasing in s on R\{0} for every x ∈ Ω.
In recent years, nonlinear problems involving fractional Laplacian have been in-

vestigated extensively. Indeed, they have impressive applications in many fields,
such as thin obstacle problem, optimization, finance, phase transitions, anomalous
diffusion and so on. For previous related results see [1, 6, 8, 9, 11, 14, 15, 16, 17, 18,
25, 27, 29, 40, 41] and the references therein. Precisely, under the assumption that
the nonlinearity satisfies the Ambrosetti-Rabinowitz condition or is indeed of per-
turbative type, the author proved some existence results of solutions for fractional
Schrödinger equations in [25]. Using mountain pass theorem, Raffaella and Servadei
studied the existence of solutions for equations driven by a non-local integrodiffer-
ential operator with homogeneous Dirichlet boundary conditions in [26]. In fact,
by the extension theorem in [7] Caffarelli and Silvestrein made greatest achieve-
ment in overcoming the difficulty, which is the nonlocality of fractional Laplacian
(−∆)α in the fractional Schrödinger equation. Moreover, a great deal of progress
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has been made to the fractional Laplacian equations after the work [7]. We refer to
[10, 12, 30, 31, 37, 43] for the existence results and multiplicity results of solutions,
and to [4, 5] for the regularity results, maximum principle, uniqueness result and
other properties.

As we know, a great attention has been devoted to the existence and multiplicity
of positive and nodal solutions of elliptic problems in recent years, see for example
[2, 3, 13, 22, 32, 33, 42] and the references therein. Actually, with the descended flow
method and harmonic extension techniques, Chang and Wang studied the existence
and multiplicity of sign-changing solutions in [12]. Via costrained minimization
method, Tang [34, 35, 36, 19, 20] obtained the existence of Nehari-type ground state
positive solutions. By combing minimax method with invariant sets of descending
flow, some results about nodal solutions have been obtained in [21].

Motivated by papers above, and we especially borrow some ideas from [19]. What
is more, we are interested in Problem (1.1) with constraint variational method and
quantitative deformation lemma, and study the existence of a least energy sign-
changing solution.

For any measurable function u : RN → R with respect to the Gagliardo norm

[u]α =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|2α+N
dxdy

)1/2

.

We introduce the fractional Sobolev space

Hα(RN ) = {u ∈ L2(RN ) : [u]α < +∞},
which is a Hilbert space. A complete introduction to fractional Sobolev spaces can
be found in [24]. We also define a closed subspace

X(Ω) = {u ∈ Hα(RN ) : u = 0 a.e. in RN\Ω}.
Then, by [25], X(Ω) is a Hilbert space with the inner product

(u, v) =
∫∫

Ω×Ω

(u(x)− u(y))(v(x)− v(y))
|x− y|2α+N

dxdy, ∀u, v ∈ X(Ω),

and the corresponding norm ‖ · ‖X = [·]α. For u ∈ X(Ω), set

Φ(u) =
1
2
‖u‖2X −

∫
Ω

F (x, u)dx, (1.2)

where F (x, u) =
∫ u

0
f(x, t)dt. Then Φ ∈ C1(X(Ω),R) and

〈Φ′(u), v〉 =
∫∫

Ω×Ω

(u(x)− u(y))(v(x)− v(y))
|x− y|2α+N

dxdy −
∫

Ω

f(x, u)vdx, (1.3)

for all u, v ∈ X(Ω). Obviously, its critical points are weak solutions of Problem
(1.1). Furthermore, if u ∈ X(Ω) is a solution of (1.1) with u± 6= 0, then u is a
sign-changing solution, where

u+(x) := max{u(x), 0} and u−(x) =: min{u(x), 0}.
We set

M := {u ∈ X(Ω) : u± 6= 0, 〈Φ′(u), u+〉 = 〈Φ′(u), u−〉 = 0},
and define

m = inf
u∈M

Φ(u).

Throughout this paper, ‖ · ‖p denotes the usual norm in Lp(Ω).
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Theorem 1.1. Assume that conditions (A1)–(A4) hold. Then (1.1) possesses one
least energy sign-changing solution u ∈M such that infu∈M Φ(u) = m > 0.

The rest of this article is organized as follows. In Section 2, we prove several
lemmas, which are crucial to investigate our main result. The proof of Theorem
1.1 is given in Section 3.

2. Preliminary results

Lemma 2.1 ([38, Lemma 2.1]). For any a, b ∈ R, we have
(i) (ka)± = ka±, for all k ≥ 0, |a± − b±| ≤ |a− b|;

(ii) (a− b)(a+ − b+) ≥ (a+ − b+)2 and (a− b)(a− − b−) ≥ (a− − b−)2;
(iii) (a+ − b+)(a− − b−) ≥ 0.

By simple computations from the above lemma, we obtain the following lemma.

Lemma 2.2. Under assumptions (A1) and (A2), for any u ∈ X(Ω), the following
facts hold:

(i) ‖u±‖X ≤ ‖u‖X ;
(ii)

(u, u±) = (u±, u±)−
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy −
∫∫

Ω×Ω

u−(x)u+(y)
|x− y|2α+N

dxdy

= (u±, u±)− 2
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy;

(iii)

〈Φ′(u), u±〉 = 〈Φ′(u±), u±〉 −
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy −
∫∫

Ω×Ω

u−(x)u+(y)
|x− y|2α+N

dxdy

= 〈Φ′(u±), u±〉 − 2
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy.

In what follows, we denote

B(u) := −
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy .

It is obvious that B(u) ≥ 0.

Lemma 2.3. Assume (A1) and (A2), and let {un} be a bounded sequence in X(Ω).
Then up to a subsequence, still denoted by {un}, there exists u ∈ X(Ω) such that

(i)

lim
n→∞

∫
Ω

|u±n |pdx =
∫

Ω

|u±|pdx, ∀p ∈ [2, 2∗α);

(ii)

lim
n→∞

∫
Ω

unf(x, un)dx =
∫

Ω

uf(x, u)dx;

(iii)

lim
n→∞

∫
Ω

F (x, un)dx =
∫

Ω

F (x, u)dx;

(iv)
lim inf
n→∞

〈Φ′(un), u±n 〉 ≥ 〈Φ′(u), u±〉.
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Proof. (i)–(iii) are easily proved; so we omit their proofs.
(iv)From (ii), Fatou’s Lemma and (iii) of Lemma 2.2, it follows that

〈Φ′(u), u±〉

= 〈Φ′(u±), u±〉 − 2
∫∫

Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy

=
∫∫

Ω×Ω

[u±(x)− u±(y)]2

|x− y|2α+N
dxdy − 2

∫∫
Ω×Ω

u+(x)u−(y)
|x− y|2α+N

dxdy −
∫

Ω

u±f(x, u±)dx

≤ lim inf
n→∞

{∫∫
Ω×Ω

[u±n (x)− u±n (y)]2

|x− y|2α+N
dxdy − 2

∫∫
Ω×Ω

u+
n (x)u−n (y)
|x− y|2α+N

dxdy
}

− lim
n→∞

∫
Ω

u±n f(x, u±n )dx

= lim inf
n→∞

〈Φ′(un), u±n 〉.

This shows that (iv) holds. �

Lemma 2.4. Under assumptions (A1) and (A2), if {un} is a bounded sequence in
M and q ∈ (2, 2∗α), we have

lim inf
n→∞

∫
Ω

|u±n |qdx > 0.

Proof. From (A1) and (A2), for any ε > 0 and fixed τ ∈ [2, 2∗α), there exists Cε > 0
such that

|sf(x, s)| ≤ ε|s|2 + Cε|s|τ + ε|s|2
∗
α , ∀x ∈ Ω, s ∈ R. (2.1)

For un ∈M, we have 〈Φ′(un), u±n 〉 = 0. From (iii) of Lemma 2.2, we have

〈Φ′(u±n ), u±n 〉 − 2
∫∫

Ω×Ω

u+
n (x)u−n (y)
|x− y|2α+N

dxdy = 0,

which, together with Sobolev embedding and (2.1), for q ∈ (2, 2∗α), yields

‖u±n ‖2X ≤
∫

Ω

u±n f(x, u±n )dx

≤ ε
∫

Ω

|u±n |2dx+ Cε

∫
Ω

|u±n |qdx+ ε

∫
Ω

|u±n |2
∗
αdx

≤ εγ−2
2 ‖u±n ‖2X + Cεγ

−2
q ‖u±n ‖2X‖u±n ‖q−2

q + εγ
−2∗α
2∗α
‖u±n ‖

2∗α
X ,

(2.2)

where γs := inf‖u‖s=1 ‖u‖X , 2 ≤ s ≤ 2∗α. From the boundedness of {un}, there is
M such that

‖u±n ‖
2∗α−2
X ≤M.

From (2.2), taking ε = min{γ2
2/4, γ

2∗α
2∗α
/4M}, C0 ≥ Cε, it follows that

1
2
≤ C0γ

−2
q ‖u±n ‖q−2

q .

Then

lim inf
n→∞

∫
Ω

|u±n |qdx ≥
( γ2

q

2C0

) 1
q−2

> 0.

�
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Lemma 2.5. Under assumptions (A1), (A2), (A4), for any u ∈ X(Ω) with u± 6= 0,
s, t ≥ 0 and (s− 1)2 + (t− 1)2 6= 0, we have

Φ(u) > Φ(su+ + tu−) +
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉+B(u)(s− t)2.

Proof. For τ 6= 0, (A4) yields

f(x, s) <
f(x, τ)
|τ |

|s|, |s| < |τ |;

f(x, s) >
f(x, τ)
|τ |

|s|, |s| > |τ |.

It follows that
1− θ2

2
τf(x, τ) >

∫ τ

θτ

f(x, s)ds, ∀x ∈ Ω, τ 6= 0, θ ≥ 0 and θ 6= 1.

Thus, we deduce that

Φ(u)− Φ(su+ + tu−)

=
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉

+
∫

Ω

[1− s2

2
f(x, u+)u+ −

(
F (x, u+)− F (x, su+)

) ]
dx

+
∫

Ω

[1− t2
2

f(x, u−)u− −
(
F (x, u−)− F (x, tu−)

) ]
dx+B(u)(s− t)2

=
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉+

∫
Ω

[1− s2

2
f(x, u+)u+

−
∫ u+

su+
f(x, ξ)dξ

]
dx+

∫
Ω

[1− t2

2
f(x, u−)u− −

∫ u−

tu−
f(x, ξ)dξ

]
dx

+B(u)(s− t)2

>
1− s2

2
〈Φ′(u), u+〉+

1− t2

2
〈Φ′(u), u−〉+B(u)(s− t)2,

for all s, t ≥ 0, (s− 1)2 + (t− 1)2 6= 0. �

From Lemma 2.5, we have the following two corollaries.

Corollary 2.6. Under assumptions (A1), (A2), (A4), we have

Φ(u) ≥ Φ(tu) +
1− t2

2
〈Φ′(u), u〉, ∀u ∈ X(Ω), t ≥ 0. (2.3)

Corollary 2.7. Under assumptions (A1),(A2), (A4), we have

Φ(u) ≥ Φ(su+ + tu−), ∀u ∈M, s, t ≥ 0. (2.4)

Lemma 2.8. Assume (A1)–(A4) hold; if u ∈ X(Ω) with u± 6= 0, then there exists
a unique pair (su, tu) of positive numbers such that suu+ + tuu

− ∈M.

Proof. Let

g1(s, t) = 〈Φ′(su+ + tu−), su+〉

= s2‖u+‖2 −
∫

Ω

f(x, su+)su+dx+ 2B(u)st,
(2.5)
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g2(s, t) = 〈Φ′(su+ + tu−), tu−〉

= t2‖u−‖2 −
∫

Ω

f(x, tu−)tu−dx+ 2B(u)st.
(2.6)

From (A1), (A2) and (A3), a straightforward computation yields that there are
r > 0 small enough and R > 0 large enough such that

g1(r, r) > 0, g2(r, r) > 0,

g1(R,R) < 0, g2(R,R) < 0.

Notice that for any fixed s > 0, g1(s, t) is increasing in t on [0,+∞), then

g1(r, t) ≥ g1(r, r) > 0, ∀t ∈ [r,R],

g1(R, t) ≤ g1(R,R) < 0, ∀t ∈ [r,R].

Analogously, for g2(s, t), one has

g2(s, r) ≥ g2(r, r) > 0, ∀s ∈ [r,R],

g2(s,R) ≤ g2(R,R) < 0, ∀s ∈ [r,R].

The above inequalities and the Miranda theorem [23] imply that there is a pair
(su, tu) ∈ (r,R) × (r,R) such that g1(su, tu) = g2(su, tu) = 0, and then, suu+ +
tuu
− ∈M.
Next, we prove the uniqueness. Let (ŝ1, t̂1) and (ŝ2, t̂2) such that ŝiu+ + t̂iu

− ∈
M, i = 1, 2. We assume that ( ŝ2ŝ1 − 1)2 + ( t̂2

t̂1
− 1)2 6= 0, then Lemma 2.5 implies

Φ(ŝ1u
+ + t̂1u

−) > Φ(ŝ2u
+ + t̂2u

−),

Φ(ŝ2u
+ + t̂2u

−) > Φ(ŝ1u
+ + t̂1u

−).

This contradiction shows (ŝ1, t̂1) = (ŝ2, t̂2), this completes the proof. �

Corollary 2.9. Under assumptions (A1)–(A4),

m := inf
u∈M

Φ(u) = inf
u∈X(Ω),u± 6=0

max
s,t≥0

Φ(su+ + tu−).

Lemma 2.10. Assume that (A1)–(A4) hold. If u0 ∈ M, and Φ(u0) = m, then u0

is a critical point of Φ.

Proof. Arguing by contradiction, Φ(u0) = m and Φ′(u0) 6= 0. Therefore, there exist
δ > 0 and ρ > 0 such that

v ∈ X(Ω), ‖v − u0‖ ≤ 3δ ⇒ ‖Φ′(v)‖ ≥ ρ.

Let D = ( 1
2 ,

3
2 )× ( 1

2 ,
3
2 ). It follows from Lemma 2.5 that

m̄ := max
(s,t)∈∂D

Φ(su+
0 + tu−0 ) < m.

For ε := min{(m − m̄)/3, 1, ρδ/8}, S := B(u0, δ), [39, Lemma 2.3] yields a
deformation η ∈ C([0, 1]×X(Ω), X(Ω)) such that

(i) η(1, u) = u if Φ(u) < m− 2ε or Φ(u) > m+ 2ε;
(ii) η(1,Φm+ε ∩B(u0, δ)) ⊂ Φm−ε;

(iii) Φ(η(1, u)) ≤ Φ(u), for all u ∈ X(Ω).
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By Corollary 2.7, Φ(su+
0 + tu−0 ) ≤ Φ(u0) = m, for s, t ≥ 0, then from (ii) it follows

that

Φ(η(1, su+
0 + tu−0 )) ≤ m− ε, ∀s, t ≥ 0, |s− 1|2 + |t− 1|2 < δ2

2‖u0‖2X
. (2.7)

On the other hand, by (iii) and Lemma 2.5, one has

Φ(η(1, su+
0 + tu−0 )) ≤ Φ(su+

0 + tu−0 ) < Φ(u0) = m, (2.8)

for all s, t ≥ 0, |s− 1|2 + |t− 1|2 ≥ δ2

2‖u0‖2X
. Combining (2.7) and (2.8), we have

max
(s,t)∈D̄

Φ(η(1, su+
0 + tu−0 )) < m.

By the similar method in [28], we can prove that η(1, su+
0 + tu−0 )∩M 6= ∅ for some

(s, t) ∈ D̄, which contradicts the definition of m . �

3. Proof of main result

Proof of Theorem 1.1. We shall show that m > 0 can be achieved to get a critical
point of Φ. Let un be a sequence in M such that

lim
n→∞

Φ(un) = m.

First of all, we claim that {un} is bounded in X(Ω). To this end, suppose by
contradiction that ‖un‖X →∞, and set vn = un

‖un‖ . Since ‖vn‖X = 1, passing to a
subsequence, there exists v ∈ X(Ω) such that vn ⇀ v in X(Ω), vn → v in Lp(Ω),
for 2 ≤ p < 2∗α, and vn(x) → v(x) a.e. on Ω. If v = 0, then we have vn → 0 in
Lp(Ω), for 2 ≤ p < 2∗α. Fix τ ∈ [2, 2∗α) and R =

√
2(m+ 1). By (A1) and (A2),

given ε > 0, there exists Cε > 0, such that

|F (x, s)| ≤ ε|s|2 + Cε|s|τ + ε|s|2
∗
α , ∀x ∈ Ω, s ∈ R. (3.1)

By (3.1), Corollary 2.6 and Lebesgue’s dominated convergence theorem, it follows
that

m = Φ(un) + o(1)

≥ Φ(Rvn) +
(1

2
− R2

2‖un‖2
)
〈Φ′〈un), un〉+ o(1)

=
R2

2
−
∫

Ω

F (x,Rvn)dx+ o(1)

≥ R2

2
−
∫

Ω

|F (x,Rvn)|dx+ o(1)

≥ R2

2
−
∫

Ω

[
ε|Rvn|2 + Cε|Rvn|τ + ε|Rvn|2

∗
α
]
dx+ o(1)

= m+ 1−
{
ε
[
R2‖vn‖22 +R2∗α‖vn‖

2∗α
2∗α

]
+ CεR

τ‖vn‖ττ
}

+ o(1)

≥ m+ 1− C1ε+ o(1),

the contradiction is obvious due to the arbitrariness of ε. Thus, v 6= 0. Denote
A = {x ∈ Ω : v(x) 6= 0}. Then for x ∈ A, we have limn→∞ |un(x)| =∞. By (A3),
(A4) and Fatou’s Lemma

0 = lim
n→∞

Φ(un)
‖un‖2
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= lim
n→∞

[1
2
−
∫
A

F (x, un)
u2
n

v2
ndx

]
≤ 1

2
− lim inf

n→∞

∫
A

F (x, un)
u2
n

v2
ndx

≤ 1
2
−
∫
A

lim inf
n→∞

F (x, un)
u2
n

v2
ndx = −∞.

The contradiction shows that {un} is bounded in X(Ω). Passing to a subsequence,
there exists u ∈ X(Ω) such that un ⇀ u in X(Ω), un → u in Lp(Ω), for 2 ≤ p < 2∗α,
and un(x)→ u(x) a.e. on Ω.

Next, we show that m > 0 is attained. From Lemma 2.4, it follows that u± 6= 0.
Then by Lemma 2.8, there are s, t > 0 such that su+ + tu− ∈M. By Lemmas 2.3
and 2.5, we have

m ≤ Φ(su+ + tu−)

≤ Φ(u)− 1− s2

2
〈Φ′(u), u+〉 − 1− t2

2
〈Φ′(u), u−〉

= Φ(u)− 1
2
〈Φ′(u), u〉+

s2

2
〈Φ′(u), u+〉+

t2

2
〈Φ′(u), u−〉

≤ lim
n→∞

∫
Ω

[1
2
f(x, un)− F (x, un)

]
dx

+ lim inf
n→∞

{s2

2
〈Φ′(un), u+

n 〉+
t2

2
〈Φ′(un), u−n 〉

}
= lim
n→∞

[
Φ(un)− 1

2
〈Φ′(un), un〉

]
= m,

which implies Φ(su+ + tu−) = m. From Lemma 2.10, Φ′(su+ + tu−) = 0, and then
su+ + tu− is a sign-changing solution of (1.1). �
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10 Z. GAO, X. TANG, W. ZHANG EJDE-2016/??

[40] R. Yang; Optimal regularity and nondegeneracy of a free boundary problem related to the

fractioal Laplacian, Arch. Ration. Mech. Anal. 208 (2013,) 693-723.

[41] W. Zhang, X. H. Tang, J. Zhang; Infinitely many radial and non-radial solutions for a
fractional Schrödinger equation, Comput. Math. Appl. 71 (2016), 737-747.

[42] J. Zhang, X. H. Tang, W. Zhang; Infinitely many solutions of quasilinear Schrödinger equa-

tion with sign-changing potential, J. Math. Anal. Appl. 420 (2014), 1762-1775.
[43] H. Zhang, J. X. Xu, F. B. Zhang; Existence and multiplicity of solutions for superlinear

fractional Schrödinger equations in RN , J. Math. Phys. 56 (2015), 091502.

Zu Gao
School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China

E-mail address: gaozu7@163.com

Xianhua Tang

School of Mathematics and Statistics, Central South University, Changsha, 410083

Hunan, China
E-mail address: tangxh@mail.csu.edu.cn

Wen Zhang
School of Mathematics and Statistics, Hunan University of Commerce, Changsha, 410205

Hunan, China

E-mail address: zwmath2011@163.com


	1. Introduction
	2. Preliminary results
	3. Proof of main result
	Acknowledgments

	References

