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EXISTENCE AND REGULARITY OF SOLUTIONS TO THE
LERAY-α MODEL WITH NAVIER SLIP BOUNDARY

CONDITIONS

HANI ALI, PETR KAPLICKÝ

Abstract. We establish the existence and regularity of a unique weak solution

to turbulent flows in a bounded domain Ω ⊂ R3 governed by the Leray-α model
with Navier slip boundary condition for the velocity. Furthermore, we show

that when the filter coefficient α tends to zero, these weak solutions converge to

a suitable weak solution to the incompressible Navier Stokes equations subject
to the Navier boundary conditions. Finally, we discuss the relation between the

Leray-α model and the Navier-Stokes equations with homogeneous Dirichlet

boundary condition.

1. Introduction

Let Ω ⊂ R3 be a bounded domain with C∞ boundary, T ∈ (0,∞), and α > 0.
Our goal is to study properties of the Leray-α model (L(α))

div v = 0, (1.1)

vt + div(v ⊗ v)− 2ν div D(v) = −∇p+ f , (1.2)

−α2 div D(v) + v +∇π = v, div v = 0 (1.3)

in (0, T ) × Ω. The unknown functions are the fluid velocity field v, the smoothed
velocity v and the pressure p. The external body force f and the viscosity ν > 0 are
given. In the above system, D denotes the symmetric part of the velocity gradient,
that is 2D(v) = ∇v + (∇v)T .

We complement the system (1.1)-(1.3) to the initial condition

v(0, x) = v0(x) in Ω, (1.4)

and the boundary condition

v · n = 0, λvτ + (1− λ)(D(v)n)τ = 0 on (0, T )× ∂Ω, (1.5)

v · n = 0, λvτ + (1− λ)(D(v)n)τ = 0 on (0, T )× ∂Ω. (1.6)

Here, n = n(x) is the outer normal located at x ∈ ∂Ω to the boundary, wτ :=
w − (w · n)n is the projection of a vector w = w(x) onto the tangent plane of the
boundary at x, and the parameter λ ∈ [0, 1] homotopically connects perfect slip
boundary condition when λ = 0 with no-slip boundary conditions when λ = 1. If
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0 < λ < 1, then (1.5) is called the Navier slip boundary conditions. In this paper
we assume that λ is any number from [0, 1).

We start our investigation by showing that the problem (1.1)-(1.6) has a unique
weak solution. Since existence and regularity theory of the problem (1.3) with
boundary condition (1.6) is well known (see Lemma 2.1 and Corollary 2.2) v can
always be uniquely reconstructed from v. In this sense we understand v in the
whole article and we concentrate only on the properties of (v, p).

We use standard notation for Lebesgue, Sobolev and Besov spaces on a domain
O and their norms, e.g. L2(O), W 1,2(O), B1

2,2(O) (= W 1,2(O) if O is smooth). If
O = Ω we drop (Ω), e.g. L5/2. We denote the inner product in L2(O) by (·, ·)O,
while 〈·, ·〉 stands for a duality pairing. We do not distinguish between scalar and
vector spaces; the correct meaning is always clear from the context. Next we define
the relevant function spaces for the velocity field. Let k ∈ N, p, q ≥ 1, then

W k,p
n := {v ∈W k,p : v · n = 0 on ∂Ω},

W k,p
n,div := {v ∈W k,p

n : div v = 0 in Ω},

W−k,p
′

n := (W k,p
n )∗, W−k,p

′

n,div := (W k,p
n,div)∗,

Lqn,div := W 1,q
n,div

‖ ‖q
.

Our first result is the following theorem.

Theorem 1.1. Let f ∈ L2(0, T ;W−1,2
n ), v0 ∈ L2

n,div. Then there exists a unique
solution (v, p) to the system (1.1)–(1.3) such that

v ∈ C(0, T ;L2
n,div) ∩ L2(0, T ;W 1,2

n,div), (1.7)

v,t ∈ L2(0, T ;W−1,2
n ), (1.8)

p ∈ L2(0, T ;L2) (1.9)∫
Ω

p dx = 0 for a.e. t ∈ (0, T ) (1.10)

and ∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) +
2νλ

1− λ
(v,w)∂Ω + 2ν(D(v),D(w)) dt

=
∫ T

0

(p,div w) + 〈f ,w〉 dt for all w ∈ L2(0, T ;W 1,2
n ),

(1.11)

where the unique strong solution (v, π) to (1.3) with (1.6) satisfies

v ∈ C(0, T ;W 2,2
n,div) ∩ L2(0, T ;W 3,2

n,div),

π ∈ C(0, T ;W 1,2) ∩ L2(0, T ;W 2,2).

The initial conditions are attained in the following sense

lim
t→0+

‖v(t)− v0‖22 = 0. (1.12)
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Moreover, the solution (v, p) satisfies the local energy equality

1
2

∫
Ω

(|v|2φ)(t,x) dx + ν

∫ t

0

∫
Ω

|∇v|2φdx dt

=
1
2

∫
Ω

|v0|2φ(0,x) dx +
∫ t

0

∫
Ω

|v|2

2
(φt + ν∆φ) dx dt

+
∫ t

0

∫
Ω

(
|v|2

2
v + pv) · ∇φdxdt+

∫ t

0

〈f ,vφ〉 dt,

(1.13)

for all t ∈ (0, T ) and for all non-negative functions φ ∈ C∞(Ω× R) and sptφ ⊂⊂
R× Ω.

In the next theorem we focus our attention on the regularity of the unique weak
solution of (1.1)-(1.6). First, we define the spaces of initial conditions. We follow
[29]. For q ≥ 2 we set

Dq := {ϕ ∈ B2(1− 1
q )

q,q ∩ Lqn,div : (1.5) holds if q > 3}.

Here the spaces Bαp,p are the standard Besov spaces, see [29, Section 2.2]. Note that
D2 = W 1,2

n,div.
Now we can formulate the maximal regularity result.

Theorem 1.2. Assume q ≥ 2, q 6= 3, f ∈ Lq(0, T ;Lqn,div) and v0 ∈ Dq. Then
the unique weak solution to the problem L(α) with initial boundary condition (1.4)
and boundary condition (1.5), (1.6) is regular, i.e. v ∈ Lq(0, T ;W 2,q

n,div), v,t ∈
Lq(0, T ;Lqn,div) and p ∈ Lq(0, T ;W 1,q).

Further we are interested in the behavior of the unique weak solution to (1.1)-
(1.6) as α → 0+, see Theorem 4.2; as λ → 1−, see Theorem 5.1; and as λ → 1−
and α→ 0+ simultaneously in Theorem 6.1.

Leray [22] was the first who regularized the Navier Stokes equations by smoothing
the convective velocity with regularization made by convolution. The α models are
based on a smoothing obtained by applying with the application of the inverse of
the Helmholtz operator I − α2∆. There exists a large family of α models, see for
example [2, 4, 14, 10, 12, 15, 16, 20, 21].

One of the first α models is the Lagrangian averaged Navier Stokes equations
(LANS-α) [11] that was introduced as a sub-grid scale turbulence model. In [15]
the authors suggest the LANS-α as a closure model for the Reynolds averaged
equations. The Leray-α model [12], as the other family of α models, enjoys the
same results of existence and uniqueness of solutions and was also used as a closure
model for the Reynolds averaged equations. The Leray-α was tested numerically
in [12, 18]. In this numerical simulation the authors showed that large scales of
motion bigger than α in flow are captured. It was shown also that for scales of
motion smaller than α, the energy spectra decays faster in comparison to that
of the Navier Stokes equations. In [12], the convergence of a weak solution of the
Leray-α to a weak solution of the Navier-Stokes equations as α→ 0 was established.
It is shown in [2] that the Leray-α equations give rise to a suitable weak solution to
the Navier-Stokes equations. All previously mentioned results were derived under
periodic boundary conditions.

The existence and uniqueness of global weak solutions to the LANS-α on bounded
domain with no-slip boundary condition is given in [13]. The fact that we are able
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to establish such results of existence, uniqueness and convergence with Navier slip
boundary conditions to the L(α) model is a novel feature of the present study.

Finally, one may ask questions about other closure models of turbulence on
bounded domains with usual boundary conditions, such as the Navier slip condi-
tions. This is a crucial problem, because the filter in this case does not commute
with the differential operators [3, 6, 14, 17, 21].

This article is organized as follows. In Sect. 2 we recall some preliminary results
concerning solutions of elliptic equations with Navier boundary conditions. Then,
in Sect. 3, inspired by the result in [7], we give the proofs of Theorems 1.1 and 1.2.
In Sect. 4 we concentrate on an analysis of the behavior of the solutions (vα, pα) as
α→ 0+, where we show that α regularization gives rise to a suitable weak solution
to the Navier-Stokes equations. In Sect. 5 we take care of the dependence of the
solution of the parameter λ in order to pass to the limit as λ→ 1− and in the last
section we pass to the limit as α→ 0+ and λ→ 1− simultaneously.

2. Auxiliary results

2.1. Stokes problem. In this subsection we collect some known results concerning
properties of solutions to the Stokes problem with Navier boundary condition (1.5).

Let us first consider the stationary Stokes problem for some fixed function v.

−α2 div D(v) + v +∇π = v, div v = 0 on Ω, (2.1)

v · n = 0, λvτ + (1− λ)(D(v)n)τ = 0 on ∂Ω, (2.2)∫
Ω

πdx = 0. (2.3)

We have the following lemma about existence and regularity of solutions.

Lemma 2.1. Assume that α0 > 0, α ∈ (0, α0), q > 1, v ∈ Lq. Then the unique
solution (v, π) of system (2.1)-(2.3) is in W 2,q

n,div ×W 1,q and satisfies the estimates

‖v‖2,q + ‖π‖1,q ≤ C(α)‖v‖q, ‖v‖q ≤ C(α0)‖v‖q.

The constant C(α) > 0 depends on α, while C(α0) > 0 may depend on α only
through α0.

If moreover k ∈ N, k > 1 and v ∈W k,q, then (v, π) ∈W k+2,q
n,div ×W k+1,q and the

following estimate holds

‖v‖k+2,q + ‖π‖k+1,q ≤ C(α)(‖v‖k,q + ‖v‖q + ‖π‖q).

Proof. The first part of the lemma is proved in [24, Theorem 1.3, (1)]. The second
part follows from the result [1, Theorem 10.5], since the Stokes operator satisfies
the ellipticity condition [1, Section I.1] and the Navier boundary condition is a
complementary one, see [1, Section I.2]. �

Corollary 2.2. Let k ∈ N ∪ {0}, r ∈ [1,+∞), q > 1. Assume v ∈ Lr(0, T ;W k,q).
Then the unique solution (v, π) to problem (1.3) with boundary conditions (1.6)
and (2.3) satisfies v ∈ Lr(0, T ;W k+2,q

n,div ), π ∈ Lr(0, T ;W k+1,q).

Now we turn our attention to the evolutionary variant of the problem (2.1).

div v = 0, v,t − 2ν div D(v) = −∇p+ f . (2.4)
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Lemma 2.3. Let 2 ≤ q < +∞, q 6= 3. If v0 ∈ Dq and f ∈ Lq(0, T ;Lq) then problem
(2.4) with (1.10), boundary condition (1.5) and initial condition (1.4) admits a
unique solution (v, p) such that

v ∈ Lq(0, T ;W 2,q
n,div) ∩W 1,q(0, T ;Lq), p ∈ Lq(0, T ;W 1,q).

The above theorem is proved in [25, Theorem 1.2]. We finish this section with
the following interpolation lemma.

Lemma 2.4. Let Ω ⊂ Rn be a bounded Lipschitz domain, r > 1 and f belong to
L∞(0, T ;Lr) ∩ Lr(0, T ;W 2,r). Then ∇f ∈ Ls(Q) for s = r + r2/(n+ r).

Proof. First we realize that the inequality

‖∇f‖s ≤ C‖f‖1−θr ‖f‖θ2,r ,

with θ = (n+ r)/(n+ 2r) holds as a consequence of [30, 4.2.1/3], [30, 2.4.2/11 and
4.3.2/Theorem 2], [30, Theorem 4.6.2a]. Taking the s power of this inequality the
statement of the lemma then follows since θs = r. �

3. Proof of main theorems

Proof of Theorem 1.1. We prove the theorem using the Schauder fixed point theo-
rem. To this end we fix r > 1, q > 1 (the exact values of r and q will be determined
later) and study properties of the mapping

M2 : L2(0, T ;W 1,2
n,div) ∩ Lr(0, T ;Lq)→ L2(0, T ;W 1,2

n,div) ∩ L∞(0, T ;L2),

M2(v) = u,

where u ∈ L2(0, T ;W 1,2
n,div) ∩ L∞(0, T ;L2) is the unique solution to the problem

div u = 0, u,t + div(u⊗ v)− 2ν div D(u) = −∇p+ f ,

with the initial condition
u(0, x) = v0(x) in Ω,

and boundary condition

u · n = 0, λuτ + (1− λ)(D(u)n)τ = 0 on (0, T )× ∂Ω.

Our first goal is to determine the constants r, q such that the mapping M2 is well
defined and continuous. Since for any γ ≥ 2,

L∞(0, T ;L2) ∩ L2(0, T ;W 1,2) ↪→ Lγ(0, T ;L
6γ

3γ−4 ) (3.1)

it is enough to assume for some γ > 2 that

r ≥ 2γ
γ − 2

, q ≥ 3γ
2
. (3.2)

Under these assumptions, |u||u| ∈ L2(0, T ;L2). The correctness of the definition of
M2 and its continuity follow by standard technique. Moreover, it is also seen that
there exists C > 0 independent of v such that

‖u‖
Lγ(0,T ;L

6γ
3γ−4 )

+ ‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;W 1,2) ≤ C. (3.3)

Condition (3.2) also assures that

ut ∈ L2(0, T ;
(
W 1,2
n,div

)∗)
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and the Aubin-Lions compactness lemma provides that

M2 : L2(0, T ;W 1,2
n,div) ∩ Lr(0, T ;Lq) ↪→ Lγ(0, T ;Ls) (3.4)

is compact for any γ > 2 and s ∈ (1, 6γ/(3γ − 4)). Compare (3.1).
For s ∈ (1, 3/2) we introduce a mapping

M1 : Lγ(0, T ;Ls) ↪→ Lγ(0, T ;W 2,s), M1(v) = v,

where v is the unique solution to the problem (2.1)-(2.3). Its existence and regu-
larity is assured by Corollary 2.2. Here γ, s, r and q are sought such that

Lγ(0, T ;W 2,s) ↪→ Lr(0, T ;Lq) ∩ L2(0, T ;W 1,2). (3.5)

We need γ ≥ r, γ ≥ 2 and 3s/(3− 2s) ≥ q, 3s/(3− s) ≥ 2.
Finally we want to apply the Schauder fixed point theorem to M = M2 ◦M1.

To this end we set γ = r = q = 5. In order to have M well defined we need (3.5)
which is verified if s > 6/5. The compactness of M follows from (3.4) provided
s < 30/11. It is seen that we can fix s ∈ (6/5, 3/2). Altogether we obtain that

M : L5(0, T ;Ls) ↪→ L5(0, T ;Ls)

is a continuous, compact mapping that maps a certain ball into itself, see (3.3). The
Schauder fixed point theorem gives a fixed point of M which solves (1.1)-(1.6) in the
weak sense and satisfies (1.7), (1.8) and (1.12). It remains to reconstruct pressure.
This can be done as in [8, Section 3.2] since in W 1,2

n the Helmholtz decomposition
holds, compare [8, Section 2.3]. The procedure gives (1.9)-(1.11). Properties of v
and π follow from Lemma 2.1 and Corollary 2.2.

Up to now we have proved the existence of the solution. Now we concentrate on
its uniqueness. Let (v1, p1) and (v2, p2) be any two solutions to L(α) on the interval
[0, T ], with initial values v1(0) and v2(0). Let w = v1 − v2 and w = v1 − v2. We
subtract the equation for v2 from the equation for v1 and test it with w. Using
Korn’s inequality, the embedding theorem and Lemma 2.1 successively we obtain

d

dt
‖w‖22 + 4ν‖D(w)‖22 ≤

C

ν
‖v1w‖22 + ν(‖w‖22 + ‖D(w)‖22)

≤ C

ν
‖w‖22,2‖v1‖21,2 + ν(‖w‖22 + ‖D(w)‖22)

≤ ‖w‖22(
C

ν
‖v1‖21,2 + ν) + ν‖D(w)‖22.

(3.6)

Using Gronwall’s inequality we prove the continuous dependence of the solutions
on the initial data in the L∞(0, T, L2

n,div) norm. In particular, if w0 = 0 then
w = 0 and the solution v is unique. Since the pressure part of the solution is
uniquely determined by the velocity part and the condition (1.10), the proof of the
uniqueness is complete.

It remains to prove that the unique solution (v, p) satisfies the local energy
equality (1.13). To this end let us take φv as the test function in (1.11). We note
that the regularity of v ensure that all the terms are well defined. In particular the
integral ∫ T

0

∫
Ω

v ⊗ v · ∇(vφ) dxdt
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is finite by using the fact that v ⊗ v ∈ L2(0, T ;L2) and φv ∈ L2(0, T ;W 1,2).
Integration by parts combined with the identity∫

Ω

v ⊗ v · ∇(vφ) dx =
1
2

∫
Ω

v|v|2 · ∇φdx (3.7)

yields that for all t ∈ (0, T ) and for all non-negative functions φ ∈ C∞ and sptφ ⊂⊂
Ω× (0, T ), (v, p) satisfies

1
2

∫
Ω

|v(t)|2φ(t,x) dx + ν

∫ t

0

∫
Ω

|∇v|2φdxdt

=
1
2

∫
Ω

|v0|2φ(0,x) dx +
∫ t

0

∫
Ω

|v|2

2
φt dxdt

+
∫ t

0

∫
Ω

(
|v|2

2
v + pv − ν[∇v]v) · ∇φdxdt+

∫ t

0

〈f ,vφ〉 dt.

(3.8)

Integrating by parts once more in the above equality, we obtain (1.13) and the proof
of Theorem 1.1 is complete. �

Remark 3.1. Since T > 0 was arbitrary the solution constructed in Theorem 1.1
may be uniquely extended for all time.

Proof of Theorem 1.2. First we realize that by Theorem 1.1 we know the existence
of a solution v to the problem L(α) such that v ∈ C(0, T ;L2

n,div)∩L2(0, T ;W 1,2
n,div).

By Corollary 2.2 we obtain that v ∈ L∞(0, T ;W 2,2
n,div) ∩ L2(0, T ;W 3,2

n,div). The
embedding theorem gives v ∈ L∞(Q). We know that ∇v ∈ L2(Q). From the
regularity of v it follows that div(v⊗v) = [∇v]v ∈ L2(Q). Applying Lemma 2.3 we
obtain v ∈ W 1,2(0, T ;L2

n,div) ∩ L2(0, T ;W 2,2
n,div) and by Lemma 2.4 ∇v ∈ Ls(2)(Q)

with function s(r) := r + r2/(3 + r).
Let us assume ∇v ∈ Lr(Q) with r ∈ [2, q]. Then div(v ⊗ v) ∈ Lr(Q) and

by Lemma 2.3 v ∈ W 1,r(0, T ;Lrn,div) ∩ Lr(0, T ;W 2,r
n,div). Lemma 2.4 gives ∇v ∈

Ls(r)(Q). Since for all r ≥ 2 it holds that s(r) > r. The statement of the theorem
follows by iterating this procedure. �

4. Passage to the limit as α→ 0+

If we set α = 0 and π constant in L(α) we obtain the Navier Stokes system NS

div v = 0, (4.1)

v,t + div(v ⊗ v)− 2ν div D(v) = −∇p+ f , (4.2)

v(0, x) = v0(x). (4.3)

Our aim here is to show that the solutions of L(α) from Theorem 1.1 with α > 0
converge to a suitable weak solution to NS. The notion of a suitable weak solution
of NS was introduced by Scheffer [23]. It is related to the notion of the weak
solution. However, in addition, a local energy inequality is required (see (4.10)
below). First we examine the connection between v and v.
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Lemma 4.1. Assume that v ∈ W 1,2
n,div and v is a solution to (1.3) with boundary

conditions (1.6). Then

α2‖D(v − v)‖22 +
α2λ

1− λ
‖v − v‖22,∂Ω + 2‖v − v‖22

≤ α2(‖D(v)‖22 +
λ

1− λ
(v,v)∂Ω).

(4.4)

Proof. Testing the weak formulation of (1.3) with v − v yields

α2‖D(v)−D(v)‖22 + α2 λ

1− λ
(v − v,v − v)∂Ω + ‖v − v‖22

= α2(D(v),D(v − v))Ω + α2 λ

1− λ
(v, (v − v))∂Ω

≤ 1
2

(
α2‖D(v)‖22 + α2‖D(v)−D(v)‖22

+ α2 λ

1− λ
(v,v)∂Ω + α2 λ

1− λ
(v − v,v − v)∂Ω

)
and the result follows. �

Theorem 4.2. Let αj → 0+ as j → +∞, v0 ∈ L2
n,div, f ∈ L2(0, T ;W−1,2

n ). Let
vαj be the unique solution to L(α) with (1.4)-(1.6) and α = αj. Then there is
a subsequence of {αj}, which we denote again by {αj}, v ∈ Cweak(0, T ;L2

n,div) ∩
L2(0, T ;W 1,2

n,div), p ∈ L5/3(Ω×(0, T )) with vt ∈ (L5/2(0, T ;W 1,5/2
n ))∗ and v(0) = v0

such that as j → +∞,

vαj ⇀ v weakly in L2(0, T ;W 1,2), (4.5)

vαj,t ⇀ v,t weakly in (L5/2(0, T ;W 1,5/2
n ))∗, (4.6)

vαj → v strongly in Lq(0, T ;Lq), for all 1 ≤ q < 10/3 (4.7)

pαj ⇀ p weakly in L5/3(0, T ;L5/3). (4.8)

Consequently, (v, p) is a weak dissipative solution of NS with Navier boundary
condition (1.5) and the initial condition (1.4), i.e.∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) +
2νλ

1− λ
(v,w)∂Ω + 2ν(D(v),D(w)) dt

=
∫ T

0

(p,div w) + 〈f ,w〉 dt for all w ∈ L 5
2 (0, T ;W 1, 52

n ).

(4.9)

Moreover, the solution (v, p) satisfies the following local energy inequality

1
2

∫
Ω

(|v|2φ)(t,x) dx + ν

∫ t

0

∫
Ω

|∇v|2φdxdt

≤ 1
2

∫
Ω

|v0|2φ(0,x) dx +
∫ t

0

∫
Ω

|v|2

2
(φt + ν∆φ)

+
∫ t

0

∫
Ω

( |v|2
2

v + pv
)
· ∇φdxdt+

∫ t

0

〈f ,vφ〉 dt

(4.10)

for a.e. t ∈ (0, T ) and for all non-negative functions φ ∈ C∞ and supp φ ⊂⊂
Ω× (0, T ).
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Proof. We need to find estimates that are independent of α. In this proof, the
constant C > 0 is independent of α.

First we obtain, testing (1.11) by vα, the existence of C > 0 such that for all α
we have

2νλ
1− λ

‖vα‖L2(0,T ;L2(∂Ω)) + ‖vα‖L∞(0,T,L2) + ‖vα‖L2(0,T,W 1,2) ≤ C. (4.11)

By standard interpolation we obtain

‖vα‖L10/3(0,T ;L10/3) ≤ C. (4.12)

Lemma 2.1 gives
‖vα‖L10/3(0,T ;L10/3) ≤ C. (4.13)

Since we are considering Navier boundary conditions and in W
1,5/2
n there holds

Helmholtz decomposition (compare [8, Section 2.3]) we can conclude from (4.11),
(4.12) and (4.13) a uniform bound

‖vα,t‖(L5/2(0,T ;W
1,5/2
n ))∗

≤ C. (4.14)

From [7, Remark 3.1] we know that for all h ∈ L∞ and a.e. t ∈ (0, T )

(pα(t), h) = −(vα(t)⊗ vα(t),∇2H) +
2νλ

1− λ
(vα(t),∇H)∂Ω

+ 2ν(D(vα(t)),∇2H)− 〈f(t),∇H〉,

holds, where H is a solution of −∆H = h in Ω, ∂H/∂n = 0 on ∂Ω,
∫

Ω
H = 0. It is

seen that integrability of the pressure follows from the integrability of v⊗v, D(v),
f and v. It is standard to show from (4.11), (4.12) and (4.13) that

‖pα‖L5/3(0,T ;L5/3) ≤ C. (4.15)

It follows from (4.11), (4.14) and (4.15) that we can find a subsequence of {αj}
and (v, p) such that (4.5), (4.6), (4.8) hold and v ∈ L∞(0, T ;L2). Another sub-
sequence can be extracted such that (4.7) holds due to (4.11) and (4.14) by the
Aubin-Lions lemma.

To show that (v, p) solves (4.9) and (4.10) it is necessary to pass to the limit
αj → 0 as j → +∞ in (1.11) and (1.13). This is standard if we realize that by
Lemma 4.1 and (4.11) we know that there exists C > 0 such that

‖vα − vα‖2L2(0,T ;L2) ≤ Cα
2, (4.16)

and that this fact implies (together with (4.7) and (4.13)) that, up to a subsequence,
vαj → v in Lq(0, T ;Lq) for all q ∈ [2, 10

3 ) as j → +∞.
It remains to show weak continuity of v, which however follows from the fact

that v ∈ C(0, T ; (W 1,5/2
n )∗) by (5.2) and v ∈ L∞(0, T ;L2). �

5. Passage to the limit as λ→ 1−

Now we want to take care of dependence of the solution on the parameter λ from
(1.5) and (1.6). We will denote this dependence by superscript λ.

When λ→ 1− in (1.5) we obtain the homogeneous Dirichlet boundary condition
(i.e. the condition v = 0 on (0, T ) × ∂Ω). In this case the problem L(α) with
homogeneous Dirichlet boundary condition can be obtained as a limit from L(α)
with Navier slip boundary conditions for any α > 0 by letting λ in (1.5) and (1.6)
tend to 1−.
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Theorem 5.1. Let λj → 1− as j → +∞, v0 ∈ L2
n,div, f ∈ L2(0, T ;W−1,2

n ). Let
vλj be the unique solution to L(α) with (1.4)-(1.6) and λ = λj.

Then there is a subsequence of {λj}, which we denote again by {λj}, v ∈
C(0, T ;L2

n,div) ∩ L2(0, T ;W 1,2
0,div) with vt ∈ (L2(0, T ;W 1,2

0,div)∗ and v(0) = v0 such
that as j → +∞,

vλj ⇀ v weakly in L2(0, T ;W 1,2), (5.1)

vλj,t ⇀ v,t weakly in (L2(0, T ;W 1,2
0,div))∗, (5.2)

vλj → v strongly in Lq(0, T ;Lq), for all 1 ≤ q < 10/3, (5.3)

v is the unique weak solution to L(α) with homogeneous Dirichlet boundary condi-
tion and initial condition (1.4), i.e.∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) + 2ν(D(v),D(w)) dt =
∫ T

0

〈f ,w〉 dt (5.4)

for all w ∈ L2(0, T ;W 1,2
0,div).

Moreover let f ∈ Lq(0, T ;Lqn,div) for some q ≥ 2, v0 ∈ W 2−2/q,q with v0 = 0 on
∂Ω and div v0 = 0 is Ω. Then

v ∈ Lq(0, T ;W 2,q
0,div) ∩W 1,q(0, T ;Lqn,div) (5.5)

and the pressure can be reconstructed in such a way that p ∈ Lq(0, T ;W 1,q) and
(1.10) holds.

Proof. Testing (1.11) with vλ we know that

sup
t∈(0,T )

‖vλ(t)‖22 + ν

∫ T

0

‖vλ(t)‖21,2dt+ ν
λ

1− λ

∫ T

0

(vλ,vλ)∂Ω ≤ C(v0, f) <∞.

(5.6)

Testing (1.3) by vλ we obtain using (5.6) the estimate

‖vλ‖L∞(0,T ;W 1,2) + ‖vλ‖L∞(0,T ;L6) ≤ C(v0, f). (5.7)

From (5.6) and (5.7) we obtain that

‖vλvλ‖L5/2(Q) ≤ C(v0, f),

and consequently
‖vλ,t‖(L2(0,T ;W 1,2

0,div))∗ ≤ C(v0, f). (5.8)

Using (5.6) and (5.8) it is standard to find a subsequence {λj} and v such that
(5.1)-(5.3) and (5.4) hold. The equation (5.4) is obtained letting λj → 1− in (1.11).
The boundary terms disappear since the test functions vanish on the boundary and
the term with pressure is not present because the test functions are divergence free.

Now we show that the trace of v is zero. It follows from (5.6) since∫ T

0

‖vλ‖22,∂Ω ≤ C
1− λ
λ
→ 0 as λ→ 0 + .

Last, we need that v(0) = v0. This follows from the initial condition for vλj (0) =
v(0) since v,vλj ∈ Cweak(0, T ;L2

n,div). (The last statement follows from the fact

that v,vλj ∈ C(0, T ; (W 1,5/2
n,div )∗) ∩ L∞(0, T ;L2) ↪→ Cweak(0, T ;L2

n,div)).
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In the situation where f ∈ (L2(0, T ;W 1,2
0,div))∗ only it is not known how to con-

struct pressure as a function p ∈ L2((0, T ) × Ω), compare [28, Section IV.2.6]. A
different situation occurs if f ∈ Lq(Q), q ≥ 2. Then the regularity (5.5) of the
solution v can be shown as in Theorem 1.2 since Lemmas 2.1 and 2.3 hold also
under homogeneous Dirichlet boundary conditions, compare [5], [19]. Having (5.5)
the pressure can be reconstructed on a.e. time level by de Rham’s theorem and its
regularity can be read from the equation. �

6. Passage to the limit as λ→ 1− and α→ 0+

When λ→ 1− and α→ 0+ a theorem similar to Theorem 5.1 can be proved.

Theorem 6.1. Let λj → 1−, αj → 0+, v0 ∈ L2
n,div, f ∈ L2(0, T ;W−1,2

n ).
Let vλj ,αj be the unique solution to L(α) with (1.4)-(1.6), λj = λ and α = αj.
Then there is a subsequence of {λj , αj}, which we denote again by {λj , αj}, v ∈
Cweak(0, T ;L2

n,div) ∩ L2(0, T ;W 1,2
0,div), with vt ∈ (L2(0, T ;W 1,3

0,div))∗ and v(0) = v0

such that as j → +∞

vλj ,αj ⇀ v weakly in L2(0, T ;W 1,2), (6.1)

vλj ,αj,t ⇀ v,t weakly in (L2(0, T ;W 1,3
0,div))∗, (6.2)

vλj ,αj → v strongly in Lq(0, T ;Lq), for all 1 ≤ q < 10/3 (6.3)

Consequently, the velocity part v is a weak dissipative solution to the Navier Stokes
equations with homogeneous Dirichlet boundary condition and the initial condition
v0, i.e. ∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) + 2ν(D(v),D(w)) dt =
∫ T

0

〈f ,w〉 dt (6.4)

for all w ∈ L2(0, T ;W 1,3
0,div).

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.2 and
Theorem 5.1. First we obtain uniform estimates (4.11) and (4.12). Now we need to
reconstruct a uniform estimate for vλj ,αj . Since in Lemma 2.1 the dependence of
constants on λ is not addressed we cannot use it. Instead we test (1.3) with vλj ,αj

and get a uniform estimate

‖vλj ,αj‖L∞(0,T ;L2) < C. (6.5)

It follows that∣∣|vλj ,αj ||vλj ,αj |∣∣
L2(0,T ;L

3
2 )
< C and ‖vλj ,αj,t ‖(L2(0,T ;W 1,3

0,div))∗ < C.

Consequently we can extract a subsequence (λj , αj) such that (6.1), (6.2) and by
the Aubin-Lions lemma also (6.3) hold. Combining Lemma 4.1 with the estimate
(4.11) we obtain that vλj ,αj → v in L2(Q) and by (6.5) also in Ls(0, T ;L2) for all
s > 2 as j → +∞. The limit function v must be traceless due to (4.11). With this
information it is standard to pass to the limit as j → +∞ in (1.11) to get (6.4). �

Remark 6.2. Generally, with homogeneous Dirichlet boundary condition, the ex-
istence and regularity of the pressure term p of the Navier-Stokes equations is not
obvious, compare [9, 26, 27].
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