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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SEMILINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Abstract. In this article we study radial solutions of ∆u + K(r)f(u) = 0

on the exterior of the ball of radius R > 0 centered at the origin in RN
where f is odd with f < 0 on (0, β), f > 0 on (β, δ), f ≡ 0 for u > δ, and

where the function K(r) is assumed to be positive and K(r) → 0 as r → ∞.

The primitive F (u) =
R u
0 f(t) dt has a “hilltop” at u = δ. We prove that if

K(r) ∼ r−α with α > 2(N − 1) and if R > 0 is sufficiently small then there

are a finite number of solutions of ∆u + K(r)f(u) = 0 on the exterior of the
ball of radius R such that u → 0 as r → ∞. We also prove the nonexistence

of solutions if R is sufficiently large.

1. Introduction

In this article we study radial solutions of

∆u+K(r)f(u) = 0 in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

u→ 0 as |x| → ∞ (1.3)

where x ∈ Ω = RN\BR(0) is the complement of the ball of radius R > 0 centered
at the origin.

We assume there exist β, δ with 0 < β < δ such that f(0) = f(β) = f(δ) = 0
and F (u) =

∫ u
0
f(s) ds where:

(H1) f is odd and locally Lipschitz, f < 0 on (0, β), f > 0 on (β, δ), f ≡ 0 on
(δ,∞), and F (δ) > 0.

We note it follows that F (u) =
∫ u
0
f(s) ds is even and has a unique positive zero,

γ, with β < γ < δ such that
(H2) F < 0 on (0, γ), F > 0 on (γ,∞), and F is strictly monotone on (0, β) and

on (β, δ).
In earlier papers [5]–[6] we studied (1.1), (1.3) when Ω = RN and K(r) ≡ 1. In

[7] we studied (1.1)-(1.3) with K(r) ≡ 1 and Ω = RN\BR(0). In that paper we
proved existence of an infinite number of solutions - one with exactly n zeros for
each nonnegative integer n such that u → 0 as |x| → ∞. Interest in the topic
for this paper comes from recent papers [4, 11, 13] about solutions of differential
equations on exterior domains.
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When f grows superlinearly at infinity - i.e. limu→∞
f(u)
u = ∞, and Ω = RN

then problem (1.1)–(1.3) has been extensively studied [1]-[2], [10, 12, 14]. The type
of nonlinearity addressed here has not been studied as extensively [5]-[7].

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) =
u(|x|) = u(r) where x ∈ RN and r = |x|=

√
x2

1 + · · ·+ x2
N so that u solves

u′′(r) +
N − 1
r

u′(r) +K(r)f(u(r)) = 0 on (R,∞) where R > 0, (1.4)

u(R) = 0, u′(R) = b > 0. (1.5)

We assume that there exist constants c1 > 0, c2 > 0, and α > 0 such that

(H3) c1r
−α ≤ K(r) ≤ c2r−α for α > 2(N − 1) on [R,∞).

In addition, we assume that

(H4) K,K ′ are continuous on [R,∞), limr→∞
rK′

K = −α, and rK′

K +2(N−1) < 0
on [R,∞).

Note that (H4)implies r2(N−1)K(r) is nonincreasing. In papers [8]-[9] we have
discussed the case when 0 < α < 2(N − 1).

Theorem 1.1. Let N ≥ 2 and α > 2(N − 1). Assuming (H1)–(H4) then if R is
sufficiently large then there are no solutions of (1.4)-(1.5) such that limr→∞ u(r) =
0.

Theorem 1.2. Let N > 2 and α > 2(N − 1). Assuming (H1)–(H4) and given a
nonnegative integer n then if R > 0 is sufficiently small then there are constants
bi > 0 and solutions ui with 0 ≤ i ≤ n of (1.4)-(1.5) with b = bi such that
limr→∞ ui(r) = 0 and ui has i zeros on (R,∞).

An important step in proving this result is showing that solutions can be obtained
with more and more zeros by choosing b appropriately. Intuitively it can be of help
to interpret (1.4) as an equation of motion for a point u(r) moving in a double-
well potential F (u) subject to a damping force −N−1

r u′. This potential however
becomes flat at u = ±δ. According to (1.5) the system has initial position zero
and initial velocity b > 0. We will see that if b > 0 is sufficiently small then the
solution will “fall” into the well at u = β and - due to damping - it will be unable
to leave the well whereas if b > 0 is sufficiently large the solution will reach the
top of the hill at u = δ and will continue to move to the right indefinitely. For an
appropriate value of b - which we denote b∗∗ - the solution will reach the top of the
hill at u = δ as r →∞. For values of b slightly less than b∗∗ the solutions will not
make it to the top of the hill at u = δ and they will nearly stop moving. Thus the
solution “loiters” near the hilltop at F (δ) on a sufficiently long interval and will
usually “fall” into the positive well at u = β or the negative well at u = −β after
passing the origin a finite number of times, say n. For the right value of b - which
we denote as bn - the solution comes to rest at the local maximum of the function
F (u) at the origin as r →∞ after passing the origin n times.

In contrast to this is a double-well potential that goes off to infinity as |u| → ∞
- for example F (u) = u2(u2 − 4). Here the solutions of (1.4)-(1.5) behave quite
differently. As b increases the number of zeros of u increases as b → ∞. Thus the
number of times that u reaches the local maximum of F (u) at the origin increases
as the parameter b increases. See for example [10, 12, 14].
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2. Preliminaries and Proof of Theorem 1.1

Proof of Theorem 1.1. We observe since α > 2(N − 1), by (1.4) and (H4)(1
2
u′2

K
+ F (u)

)′
= − u′2

2rK

(
2(N − 1) +

rK ′

K

)
≥ 0. (2.1)

Hence 1
2
u′2

K +F (u) is nondecreasing. Now suppose there is a solution of (1.4)-(1.5)
such that limr→∞ u(r) = 0. Then u must have a first local maximum, M , such
that u′ > 0 on [R,M). Then since 1

2
u′2

K + F (u) is nondecreasing we see that

1
2
u′2

K
+ F (u) ≤ F (u(M)) on (R,M).

Rewriting this and using (H3) we see that

|u′|√
2
√
F (u(M))− F (u)

≤
√
K ≤

√
c2r
−α/2 on (R,M).

Integrating on (R,M) and noting that α > 2 (since α > 2(N −1) and N ≥ 2) gives∫ u(M)

0

dt√
2
√
F (u(M))− F (t)

≤
√
c2

α
2 − 1

(R1−α2 −M1−α2 ) ≤
√
c2

α
2 − 1

R1−α2 . (2.2)

In addition, since 1
2
u′2

K +F (u) is nondecreasing we see that 0 < 1
2

b2

K(R) ≤ F (u(M))
so u(M) > γ. Further it follows from (H1)-(H2) that F (u(M)) ≤ F (δ) and F (t) ≥
−F0 for all t ≥ 0 where F0 > 0 and therefore F (u(M)) − F (t) ≤ F (δ) + F0.
Therefore (2.2) implies

γ√
2
√
F (δ) + F0

≤
√
c2

α
2 − 1

R1−α2 . (2.3)

We note that the left-hand side of (2.3) is positive and independent of R but that
the right-hand side goes to zero as R → ∞ since α > 2. Thus we see that if R is
sufficiently large then (2.3) is violated hence there are no solutions u of (1.4)-(1.5)
such that limr→∞ u(r) = 0 if R is sufficiently large. This completes the proof. �

For the remainder of this paper we assume α > 2(N − 1) and N > 2. Now we
make the change of variables

u(r) = w(r2−N ).

Then (1.4)-(1.5) becomes
w′′ + h(t)f(w) = 0, (2.4)

and

w(R2−N ) = 0, w′(R2−N ) = −bR
N−1

N − 2
< 0 (2.5)

where h(t) = T (t
1

2−N ) and T (r) = r2(N−1)K(r)
(N−2)2 . Then from (H3) and (H4) we see:

h(t) = T (t
1

2−N ) ∼ tq

(N − 2)2
for 0 < t ≤ R2−N , (2.6)

where

q =
α− 2(N − 1)

N − 2
> 0, lim

t→0+

th′(t)
h(t)

= q.
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In addition, it follows from (H3)-(H4) that
c1

(N − 2)2
tq ≤ h(t) ≤ c2

(N − 2)2
tq and h′ > 0 for 0 < t ≤ R2−N . (2.7)

Since we are seeking solutions of (1.4)-(1.5) with limr→∞ u(r) = 0 we see that
this is equivalent to seeking solutions of (2.4)-(2.5) with limt→0+ w(t) = 0. Instead
though we now attempt to solve (2.4) with initial conditions at t = 0 instead of
t = R2−N ,

w(0) = 0, w′(0) = a > 0. (2.8)

(We note that we will occasionally write w(t) = w(t, a) to emphasize the dependence
of w on a).

We attempt now to show that if R > 0 is sufficiently small and n is a nonnegative
integer then there are ai > 0 with a0 < a1 < · · · < an such that w(R2−N , ai) = 0
and w(t, ai) has i zeros on (0, R2−N ).

To proceed we temporarily extend the definition of the function h so that

h(t) = h(R2−N ) +
h′(R2−N )

qR(2−N)(q−1)
[tq −R(2−N)q] for t > R2−N .

Note then that (2.7) holds on (0,∞).
A useful function in the analysis of (2.4)-(2.5) is

E(t) =
1
2
w′2(t)
h(t)

+ F (w(t)) for t > 0. (2.9)

Using (2.4), we obtain

E′(t) = −w
′2h′

2h2
≤ 0 since h′ > 0 for t > 0. (2.10)

Thus E is nonincreasing. Also note that limt→0+ E(t) = +∞. We also observe
using (2.4),

1
2
w′2 + h(t)F (w) =

1
2
a2 +

∫ t

0

h′(s)F (w) ds. (2.11)

Another useful equation is obtained by integrating (2.4) on (0, t) and using (2.8)
which gives

w′(t) = a−
∫ t

0

h(x)f(w(x)) dx. (2.12)

Integrating again on (0, t) gives

w(t) = at−
∫ t

0

∫ s

0

h(x)f(w(x)) dx ds. (2.13)

3. Proof of Theorem 1.2

From the standard theory of ordinary differential equations there exists a unique
solution of (2.4), (2.8) on [0, 2ε) for some ε > 0. Since E is nonincreasing then
1
2
w′2(t)
h(t) + F (w(t)) = E(t) ≤ E(ε) for t > ε from which it follows that w and w′

are uniformly bounded on compact subsets of [0,∞) and thus the solution w(t)
of (2.4), (2.8) exists on all of [0,∞) and varies continuously with respect to a on
compact subsets of [0,∞).
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Lemma 3.1. Let α > 2(N − 1), N > 2, and let w satisfy (2.4), (2.8). Suppose
(H1)–(H4) hold. Then there exists an ra > 0 such that w(ra) = β and 0 < w < β on
(0, ra). Also, ra →∞ as a→ 0+. In addition, |w(t, a)| < δ if a > 0 is sufficiently
small.

Proof. By (2.8) we have w′(0) = a > 0 so it follows that w is initially increasing.
If 0 < w < β for all t > 0 then f(w) < 0 by (H1) and we see from (2.13) that
w(t) > at. Thus w(t) exceeds β for large enough t contradicting that 0 < w < β.
Thus there is an ra > 0 such that w(ra) = β and 0 < w < β on (0, ra).

For the next part of the lemma we note first that if |w(t, a)| < γ for all t ≥ 0
then there is nothing to prove since γ < δ. So suppose now that there exists sa > 0
such that |w(sa)| = γ and |w| < γ on (0, sa). Evaluating (2.11) at t = sa gives

1
2
w′2(sa) ≤ 1

2
a2 (3.1)

since F (w(sa)) = F (γ) = 0 and F (w) ≤ 0 on (0, sa). Using (3.1) and the fact that
E is nonincreasing gives

F (w) ≤ 1
2
w′2

h(t)
+ F (w) = E(t) ≤ E(sa) =

1
2
w′2(sa) ≤ 1

2
a2 for t ≥ sa. (3.2)

Thus if ε > 0 and a > 0 is sufficiently small then we see from (H2) and (3.2) that
|w| < γ + ε < δ for t ≥ 0. This proves the last statement in Lemma 3.1.

Next observe from (H1) that |f(w)| ≤ C1|w| for all w for some C1 > 0. Using
this along with (2.7) in (2.13) and estimating gives

|w(t)| ≤ at+
C1c2

(N − 2)2
tq+1

∫ t

0

|w(s)| ds.

Applying the Gronwall inequality [3] we then obtain

|w| ≤ a
(
t+ p(t)

∫ t

0

seP (t)−P (s) ds
)

(3.3)

where:

P (t) =
∫ t

0

p(s) ds =
∫ t

0

C1c2s
q+1

(N − 2)2
ds =

C1c2t
q+2

(q + 2)(N − 2)2
.

Evaluating (3.3) at t = ra gives

β ≤ a
(
ra + p(ra)

∫ ra

0

seP (ra)−P (s) ds
)
. (3.4)

It follows from (3.4) and since p(t), P (t) are continuous that ra → ∞ as a → 0+.
This completes the proof. �

Lemma 3.2. Let α > 2(N − 1), N > 2, and let w satisfy (2.4), (2.8). Suppose
(H1)–(H4) hold. If a > 0 is sufficiently large then there exists a ta > 0 such that
w(ta) = δ and w(t) < δ on [0, ta).

Proof. It follows from (H1) that |f(w)| ≤ C2 for some C2 > 0 so by (2.7) and
(2.12):

w′ ≥ a− C2c2t
q+1

(q + 1)(N − 2)2
for t ≥ 0.
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Integrating on (0, t) gives

w(t) ≥ at− C2c2t
q+2

(q + 2)(q + 1)(N − 2)2
for t ≥ 0.

Thus for large enough a we have

w(1) ≥ a− C2c2
(q + 2)(q + 1)(N − 2)2

≥ δ.

Therefore w(t) exceeds δ if a > 0 is sufficiently large. This completes the proof. �

Let

S = {a > 0 : there is a ta > 0 such that w(ta, a) = δ and 0 < w < δ on (0, ta)}.

By Lemma 3.2 the set S is nonempty and from Lemma 3.1 the set S is bounded
from below by a positive constant. Now we let:

0 < a∗ = inf S.

Lemma 3.3. Let α > 2(N − 1), N > 2, and let w satisfy (2.4), (2.8). Suppose
(H1)–(H4) hold. Then w(t, a∗)→ δ as t→∞ and w′(t, a∗) > 0 on [0,∞).

Proof. We first show w(t, a∗) < δ on [0,∞). If not then there is a ta∗ > 0 such
that w(ta∗ , a∗) = δ and w(t, a∗) < δ on [0, ta∗). Thus w′(ta∗ , a∗) ≥ 0. In fact
w′(ta∗ , a∗) > 0 for if w′(ta∗ , a∗) = 0 then by uniqueness of solutions of initial value
problems w(t, a∗) ≡ δ contradicting that w(0, a∗) = 0. So since w′(ta∗ , a∗) > 0
and w(ta∗ , a∗) = δ then there is an xa∗ > ta∗ such that w(xa∗ , a∗) > δ + ε for
some ε > 0. Now for a < a∗ but a close to a∗ then by continuity with respect to
initial conditions we have w(xa∗ , a) > δ contradicting the definition of a∗. Thus
w(t, a∗) < δ on [0,∞). Next we show

E(t, a∗) ≥ F (δ) for all t > 0. (3.5)

So suppose not. Then there is a t0 > 0 such that E(t0, a∗) < F (δ). By continuity
with respect to initial conditions E(t0, a) < F (δ) for a > a∗ and a close to a∗.
However, for a > a∗ there is a ta > 0 such that w(ta, a) = δ and w′(ta, a) > 0
so therefore since f(w) ≡ 0 for w > δ (by (H1)) then by (2.4) it follows that
w(t, a) = w′(ta, a)(t− ta) + δ ≥ δ for t ≥ ta and thus E(t, a) ≥ F (δ) for all t > ta.
Then since E is nonincreasing (by (2.10)) it follows that E(t, a) ≥ F (δ) for all t > 0
contradicting that E(t0, a) < F (δ). Thus E(t, a∗) ≥ F (δ) for t > 0.

Next we show w′(t, a∗) > 0 for t ≥ 0. First, since w′(0, a) = a > 0 we see that
w′(t, a) > 0 for small t > 0. Suppose then there is an M > 0 such that w′(M,a∗) =
0 and w′(t, a∗) > 0 on [0,M). Then from (2.4) we have w′′(M,a∗) ≤ 0 and so
f(w(M,a∗)) ≥ 0. Thus w(M,a∗) ≥ β. Also since we showed at the beginning of
the proof that w(t, a∗) < δ for t ≥ 0 it follows that β ≤ w(M,a∗) < δ and since F is
increasing on (β, δ) (by (H2)) then E(M,a∗) = F (w(M,a∗)) < F (δ). On the other
hand it follows from (3.5) that E(M,a∗) ≥ F (δ) and so we obtain a contradiction.
Thus, w′(t, a∗) > 0 on [0,∞).

It now follows from Lemmas 3.1 and 3.2 that there is an L with β < L ≤ δ such
that limt→∞ w(t, a∗) = L. From (2.4) we see that w′′(t,a∗)

h(t) → −f(L) as t → ∞.
If f(L) 6= 0 then |w′′| ≥ ε0h(t) > 0 for large t > 0 and for some ε0 > 0. Since
h(t) ∼ tq with q > 0 then integrating the inequality |w′′| ≥ ε0h(t) > 0 twice on
(t0, t) where t0 is large we see that |w| → ∞ contradicting that w(t, a∗)→ L. Thus
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f(L) = 0 and since β < L ≤ δ it follows from (H1) that L = δ. This completes the
proof. �

Next we let

a∗∗ = inf{a : w′(t, a) > 0 for t ≥ 0 and lim
t→∞

w(t, a) = δ}. (3.6)

By Lemma 3.3 we see that

a∗ ∈ {a : w′(t, a) > 0 for t ≥ 0 and lim
t→∞

w(t, a) = δ}.

Thus the set on the right-hand side of (3.6) is nonempty and by Lemma 3.1 it is
bounded from below by a positive constant. Thus 0 < a∗∗ ≤ a∗ and a similar
argument as in Lemma 3.3 shows that w(t, a∗∗) → δ as t → ∞ and w′(t, a∗∗) > 0
for t ≥ 0.

Lemma 3.4. Let α > 2(N − 1), N > 2, and let w satisfy (2.4), (2.8). Suppose
(H1)–(H4) hold. If 0 < a < a∗∗ then w(t, a) has a local maximum, Ma > 0,
and Ma → ∞ as a → (a∗∗)−. In addition, w(Ma, a) < δ and w(Ma, a) → δ as
a→ (a∗∗)−.

Proof. If a < a∗∗ and w′(t, a) > 0 for t ≥ 0 then we see as in Lemma 3.3 that
w(t, a) → δ contradicting the definition of a∗∗. Thus there exists Ma > 0 such
that w′(t, a) > 0 on [0,Ma) and w′(Ma, a) = 0. Then w′′(Ma, a) ≤ 0 and so
f(w(Ma, a)) ≥ 0. Thus w(Ma, a) ≥ β. Since we know w(t, a) does not attain
the value δ because a < a∗∗ ≤ a∗ we therefore have β ≤ w(Ma, a) < δ. Now
if the {Ma} were bounded then a subsequence would converge to some Ma∗∗ and
so by the Arzela-Ascoli theorem a subsequence of w(t, a) and w′(t, a) would con-
verge uniformly to w(t, a∗∗) and w′(t, a∗∗) on [0,Ma∗∗ + 1] as a → (a∗∗)− and
w′(Ma∗∗ , a

∗∗) = 0 contradicting w′(t, a∗∗) > 0 from the remarks after Lemma 3.3.
Thus Ma →∞ as a→ (a∗∗)−.

Also, as a→ (a∗∗)− with a < a∗∗ we know w(t, a) must get arbitrarily close to δ
by continuity with respect to initial conditions and so w(Ma, a)→ δ as a→ (a∗∗)−.
This completes the proof. �

Lemma 3.5. Let α > 2(N − 1), N > 2, and let w satisfy (2.4), (2.8). Suppose
(H1)–(H4) hold. Given a positive integer n if 0 < a < a∗∗ and a is sufficiently close
to a∗∗ then w(t, a) has at least n zeros on (0,∞). In addition denoting the nth zero
as zn(a) then zn(a) < R2−N if R is sufficiently small and a is sufficiently close to
a∗∗ with a < a∗∗.

Proof. From Lemma 3.4 we know that for a sufficiently close to a∗∗ with a < a∗∗

then w has a local maximum Ma and w(Ma) > γ > β. From (2.4) it follows that
w′′ < 0 while w > β and since w′(Ma) = 0 it follows that there exists ya > Ma

such that w(ya) = β. Thus there is an xa with Ma < xa < ya such that w(xa) = γ.
From (2.10) we have

1
2
w′2

h(t)
+ F (w) = E(t) ≤ E(Ma) = F (w(Ma, a)) for t ≥Ma.

Rewriting this gives

|w′|√
h
≤
√

2
√
F (w(Ma, a))− F (w). (3.7)
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Now it follows from (2.6) that 0 < th′

h ≤ c3 for some c3 > 0 and t > 0. Then from
this and (2.7) we see that

0 <
h′

h3/2
=
th′

h

1
th1/2

≤ c3(N − 2)
√
c1

1
t
q
2+1

. (3.8)

Thus from (2.10), (3.7)-(3.8), and (H3)

−E′ =
w′2h′

2h2
=
|w′|
2
√
h

h′

h3/2
|w′|

≤ c3(N − 2)√
2c1

√
F (w(Ma, a))− F (w)

1
t
q
2+1
|w′|.

(3.9)

Suppose now that Ma < s < t and that w′ < 0 on (Ma, t). Then integrating (3.9)
on (Ma, t) and estimating we obtain

E(Ma, a)− E(t, a) ≤ c3√
2c1

(N − 2)

M
q
2+1
a

∫ w(Ma,a)

w(t,a)

√
F (w(Ma, a))− F (y) dy. (3.10)

Let us assume w(t, a) > 0 and w′(t, a) < 0 for t > Ma. Then [w(t, a), w(Ma, a)] ⊂
[0, δ] and the integrand in (3.10) is bounded hence the integral in (3.10) is bounded
independent of a. Thus the right-hand side of (3.10) goes to 0 as a → (a∗∗)−

because Ma → ∞ from Lemma 3.4 and the integral is uniformly bounded. Thus
since E(Ma, a) = F (u(Ma, a))→ F (δ) as a→ (a∗∗)− by Lemma 3.4 it follows from
(3.10) that E(t, a)→ F (δ) as a→ (a∗∗)−. Thus E(t, a) ≥ 1

2F (δ) for a close to a∗∗

and a < a∗∗. In particular on (xa, t) where 0 < w(t, a) < γ it follows that F (w) ≤ 0
so

1
2
w′2(t, a)
h(t)

≥ 1
2
w′2(t, a)
h(t)

+ F (w(t, a)) = E(t, a) ≥ 1
2
F (δ) on (xa, t) (3.11)

hence from (2.6) and (H3)-(H4),

−w′(t, a) ≥
√
c1F (δ)
N − 2

tq/2 on (xa, t)

and so integrating on (xa, t) gives

w(t, a) ≤ γ −
√
c1F (δ)

(N − 2)( q2 + 1)
(
t
q
2+1 − x

q
2+1
a

)
→ −∞ as t→∞

which contradicts that w > 0. Thus there exists za > xa such that w(za, a) = 0
and w(t, a) > 0 on (0, za). By uniqueness of solutions of initial value problems we
have w′(za, a) < 0 and so while −β < w(t, a) < 0 then w′′ < 0 by (2.4) and so we
see that there is a Ya > za such that w(Ya, a) = −β. Now if w(t, a) does not have a
local minimum for t > Ya then we can show in a similar way as we did in Lemma 3.3
that w → L but now where L < −β and f(L) = 0 implying L = −δ. But since E
is nonincreasing and F is even this would imply F (δ) = F (−δ) ≤ limt→∞E(t, a) ≤
E(Ma, a) = F (w(Ma, a)) and hence by (H2) we have w(Ma, a) ≥ δ. But recall from
Lemma 3.4 that since a < a∗∗ then w(Ma, a) < δ thus we obtain a contradiction.
Therefore it must be the case that w(t, a) has a local minimum, ma > za, and in a
similar way as in Lemma 3.4 it is possible to show ma →∞ and w(ma, a)→ −δ as
a→ (a∗∗)−. Also as we did at the beginning of this lemma we can show that w(t, a)
has a second zero z2,a > za if a is sufficiently close to a∗∗ and a < a∗∗. Similarly
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we can show that w(t, a) has any desired (finite) number of zeros by choosing a
sufficiently close to a∗∗ with a < a∗∗. This completes the proof. �

Thus we see that zk(a) the kth zero of w(t, a) on (0,∞) is defined as long as a
is sufficiently close to a∗∗ with a < a∗∗. It follows from continuous dependence of
solutions on initial conditions that zk(a) is a continuous function of a. In addition
lima→(a∗∗)− zk(a) = ∞. This follows for if the zk(a) were bounded then for a
subsequence (again labeled a) we would have zk(a)→ z∗∗ and by the Arzela-Ascoli
theorem w(z∗∗, a∗∗) = 0 contradicting that w(t, a∗∗) > 0 on (0,∞).

Finally suppose R is sufficiently small and a < a∗∗ is sufficiently close to a∗∗

so that zk(a) < R2−N . Then since we know zk(a) is continuous with zk(a) <
R2−N <∞ and lima→(a∗∗)− zk(a) =∞ then it follows from the intermediate value
theorem that there is a smallest value of a denoted ak such that zk(ak) = R2−N .
Thus w(t, ak) is a solution of (2.4) with k zeros on (0, R2−N ]. Now we let bk =
(2−N)R1−Nw′(R2−N , ak) and then finally if we let uk(r, bk) = (−1)kw(r2−N , ak+1)
then uk(r, bk) is a solution of (1.4)-(1.5) with b = bk, with k zeros on (R,∞), and
limr→∞ uk(r, bk) = 0. This completes the proof.
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