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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SEMILINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

ABSTRACT. In this article we study radial solutions of Au + K(r)f(u) = 0
on the exterior of the ball of radius R > 0 centered at the origin in RV
where f is odd with f < 0 on (0,3), f > 0 on (8,4), f = 0 for u > §, and
where the function K(r) is assumed to be positive and K(r) — 0 as 7 — oco.
The primitive F(u) = [;* f(t)dt has a “hilltop” at u = §. We prove that if
K(r) ~r~® with a > 2(N — 1) and if R > 0 is sufficiently small then there
are a finite number of solutions of Au + K (r)f(u) = 0 on the exterior of the
ball of radius R such that u — 0 as r — oco. We also prove the nonexistence
of solutions if R is sufficiently large.

1. INTRODUCTION

In this article we study radial solutions of

Au+ K(r)f(u) =0 in Q, (1.1)
u=0 on 0f, (1.2)
u—0 as|z|]— o0 (1.3)

where x € Q = RN\ Bg(0) is the complement of the ball of radius R > 0 centered
at the origin.

We assume there exist 8,0 with 0 < 8 < § such that f(0) = f(8) = f(0) =0
and F(u) = [ f(s)ds where:

(H1) f is odd and locally Lipschitz, f < 0 on (0,5), f > 0 on (8,d), f =0 on

(6,00), and F(d) > 0.
We note it follows that F(u) = [, f(s)ds is even and has a unique positive zero,
v, with 8 < v < § such that
(H2) F <0on (0,7), FF > 0on (y,00), and F is strictly monotone on (0, 5) and
on (3,0).

In earlier papers [5]-[6] we studied (1.1, when Q = RY and K(r) =1. In
[7] we studied (L.I)-(L.3) with K(r) = 1 and Q = RV\Bg(0). In that paper we
proved existence of an infinite number of solutions - one with exactly n zeros for
each nonnegative integer n such that v — 0 as |z|] — oo. Interest in the topic
for this paper comes from recent papers [4, [T, 13] about solutions of differential
equations on exterior domains.
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When f grows superlinearly at infinity - i.e. lim, % = 00, and Q = RV

then problem (1.1))—(1.3) has been extensively studied [1]-[2], [I0, 12, 14]. The type
of nonlinearity addressed here has not been studied as extensively [5]-[7].
Since we are interested in radial solutions of ([1.1))-(1.3) we assume that u(x) =

u(|z]) = u(r) where z € RN and r = |z|=y/2? + - - - + 2%, so that u solves

u”(r) + ?u’(r) + K(r)f(u(r)) =0 on (R,o0) where R > 0, (1.4)

w(R) =0, u'(R)=0b>0. (1.5)
We assume that there exist constants ¢; > 0, ¢co > 0, and « > 0 such that
(H3) c17r™* < K(r) < cor~® for a > 2(N — 1) on [R, 00).

In addition, we assume that

(H4) K, K’ are continuous on [R, 00), lim,_ TTK/ = —q, and TII((/
on [R,00).

+2(N-1)<0

Note that (H4)implies 72V=U K (r) is nonincreasing. In papers [§]-[9] we have
discussed the case when 0 < o < 2(N —1).

Theorem 1.1. Let N > 2 and o > 2(N — 1). Assuming (H1)—(H4) then if R is
sufficiently large then there are no solutions of (L.4)-(1.5) such that lim,_ o u(r) =
0.

Theorem 1.2. Let N > 2 and o > 2(N — 1). Assuming (H1)-(H4) and given a
nonnegative integer n then if R > 0 is sufficiently small then there are constants
b; > 0 and solutions u; with 0 < ¢ < n of — with b = b; such that
lim, o wi(r) = 0 and u; has i zeros on (R, c0).

An important step in proving this result is showing that solutions can be obtained
with more and more zeros by choosing b appropriately. Intuitively it can be of help
to interpret as an equation of motion for a point u(r) moving in a double-
well potential F(u) subject to a damping force —~=1u/. This potential however
becomes flat at © = +4§. According to the system has initial position zero
and initial velocity b > 0. We will see that if b > 0 is sufficiently small then the
solution will “fall” into the well at uw = 8 and - due to damping - it will be unable
to leave the well whereas if b > 0 is sufficiently large the solution will reach the
top of the hill at v = ¢ and will continue to move to the right indefinitely. For an
appropriate value of b - which we denote b** - the solution will reach the top of the
hill at u = 6 as r — oo. For values of b slightly less than b** the solutions will not
make it to the top of the hill at u = § and they will nearly stop moving. Thus the
solution “loiters” near the hilltop at F(d) on a sufficiently long interval and will
usually “fall” into the positive well at u = 8 or the negative well at v = —f after
passing the origin a finite number of times, say n. For the right value of b - which
we denote as b,, - the solution comes to rest at the local maximum of the function
F(u) at the origin as r — oo after passing the origin n times.

In contrast to this is a double-well potential that goes off to infinity as |u| — oo
- for example F(u) = u*(u® — 4). Here the solutions of (L.4)-(L.5) behave quite
differently. As b increases the number of zeros of u increases as b — oco. Thus the
number of times that u reaches the local maximum of F'(u) at the origin increases
as the parameter b increases. See for example [10, [12] [14].
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2. PRELIMINARIES AND PROOF OF THEOREM [I.]]
Proof of Theorem[1.1. We observe since o > 2(N — 1), by (L.4]) and (H4)

1u? ! u'? rK’
L 4R ):— (2N—1 )>0. 2.1
(2K+ @) i PN D+ ) = 21)
Hence 1% 4 F(u) is nondecreasing. Now suppose there is a solution of (|1.4])-(|1.5))
2K

such that lim,_ ., u(r) = 0. Then u must have a first local maximum, M, such

that ' > 0 on [R, M). Then since %% + F(u) is nondecreasing we see that

12

570 HFW) < F(u(M)) on (R, M).

Rewriting this and using (H3) we see that
||

V2/Fu()) - F(w)

Integrating on (R, M) and noting that o > 2 (since a > 2(N —1) and N > 2) gives

<VK < \/57“70‘/2 on (R, M).

u(M) dt Ve -9 1-g Ve 1-g
o VEVEGOO F® go1o M st )

In addition, since %“—; + F(u) is nondecreasing we see that 0 < %% < F(u

so u(M) > ~. Further it follows from (H1)-(H2) that F(u(M)) < F(J) and F(t) >
—Fy for all ¢ > 0 where Fy > 0 and therefore F(u(M)) — F(t) < F(d) + Fo.

Therefore (2.2) implies

—~
~—
~—

i < Ve piog (2.3)

V2 JF(O)+ Fy ~ 5 -1
We note that the left-hand side of (2.3) is positive and independent of R but that
the right-hand side goes to zero as R — oo since a > 2. Thus we see that if R is

sufficiently large then ([2.3)) is violated hence there are no solutions u of (1.4)-(1.5))
such that lim, ., u(r) = 0 if R is sufficiently large. This completes the proof. O

For the remainder of this paper we assume a > 2(N — 1) and N > 2. Now we
make the change of variables

u(r) = w(r?™N).
Then (1.4)-(1.5) becomes
W+ h(t) f(w) =0, (2.4)
and
WMy =0, WM =B (2.5)
’ N -2 ’
! NV K (r) :
where h(t) = T(t?-~) and T'(r) = —w—sz - Then from (H3) and (H4) we see:
e t 2—-N
h(t) =T({tF=~) ~ N oo for0 <t <R, (2.6)
where
_a—2(N-1) . th'(t)
1=~ N-g -0 Mmoo =¢
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In addition, it follows from (H3)-(H4) that

C1 C2 / 2—N
—— ' <h(t) < ——=tland ' >0 for0<t < R*%. 2.7
T ()_(]\772)2 an or < (2.7)
Since we are seeking solutions of (|1.4)-(1.5) with lim, . u(r) = 0 we see that
this is equivalent to seeking solutions of (2.4)-(2.5) with lim,_ g+ w(t) = 0. Instead
though we now attempt to solve (2.4) with initial conditions at ¢ = 0 instead of

t=R>N,
w(0) =0, w'(0)=a>0. (2.8)

(We note that we will occasionally write w(t) = w(t, a) to emphasize the dependence
of w on a).

We attempt now to show that if R > 0 is sufficiently small and n is a nonnegative
integer then there are a; > 0 with a9 < a1 < --- < a,, such that w(Rz’N, a;) =0
and w(t, a;) has i zeros on (0, RZ~V).

To proceed we temporarily extend the definition of the function A so that

/(R2—N
%[tq — R(27N)q] for ¢ > R27N.
q

Note then that (2.7) holds on (0, c0).
A useful function in the analysis of (2.4)-(2.5) is

h(t) = h(R*N) +

1w(t)
Elt) == Fw(t for ¢ > 0. 2.9
(t) > h) T (w(t)) fort> (2.9)
Using ([2.4)), we obtain
leh/
E'(t)=— 572 <0 since b’ >0 for t > 0. (2.10)

Thus FE is nonincreasing. Also note that lim;_ g+ E(t) = +00. We also observe

using (2.4,
¢
%wQ + h(t)F(w) = %aQ + / h'(s)F(w) ds. (2.11)
0

Another useful equation is obtained by integrating (2.4]) on (0,¢) and using (2.8)
which gives

w'(t) =a —/0 h(z)f(w(z)) dx. (2.12)

Integrating again on (0,¢) gives
t S
w(t) = at — / / h(z)f(w(x)) dzds. (2.13)
0o Jo

3. PROOF OF THEOREM [I.2]

From the standard theory of ordinary differential equations there exists a unique
solution of ([2.4)), on [0,2¢) for some € > 0. Since F is nonincreasing then

%wf;t()t) + F(w(t)) = E(t) < E(e) for t > € from which it follows that w and w’
are uniformly bounded on compact subsets of [0,00) and thus the solution w(t)
of (2.4), (2.8]) exists on all of [0,00) and varies continuously with respect to a on

compact subsets of [0, c0).
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Lemma 3.1. Let o > 2(N — 1), N > 2, and let w satisfy (2.4), (2.8)). Suppose
(H1)-(H4) hold. Then there exists anrq > 0 such that w(ry) = f and 0 < w < G on
(0,74). Also, rq — 00 as a — 0%. In addition, |w(t,a)| < & if a > 0 is sufficiently
small.

Proof. By (12.8) we have w’(0) = a > 0 so it follows that w is initially increasing.
If 0 <w < g forallt >0 then f(w) < 0 by (H1) and we see from (2.13]) that
w(t) > at. Thus w(t) exceeds [ for large enough ¢ contradicting that 0 < w < (.
Thus there is an 7, > 0 such that w(r,) = f and 0 < w < B on (0,74,).

For the next part of the lemma we note first that if |w(t,a)|] < v for all ¢ > 0
then there is nothing to prove since v < 4. So suppose now that there exists s, > 0
such that |w(sq)| = and |w| <y on (0, s,). Evaluating (2.11) at t = s, gives

1 1
iw’2(sa) < §a2 (3.1)
since F(w(sq)) = F(y) =0 and F(w) <0 on (0,s,). Using (3.1) and the fact that
F is nonincreasing gives
Flw) < 2% L Fw) = Bt) < B(s.) = u/(s0) < 2o for t > (3.2)

—— = W) == W) < = ri> s, .
w_2h(t) w < E(s 5w (s 54 fo s
Thus if € > 0 and a > 0 is sufficiently small then we see from (H2) and (3.2) that
lw| < v+ €< for t >0. This proves the last statement in Lemma [3.1]

Next observe from (H1) that |f(w)| < Cy|w]| for all w for some C; > 0. Using
this along with (2.7)) in (2.13)) and estimating gives

0102 t
w(t Sat—i—itqﬂ/ w(s)|ds.
wit)] < ot + 22zt [ )

Applying the Gronwall inequality [3] we then obtain

t
lw| < a(t er(t)/ seP=P(s) ds) (3.3)
0
where:
t t 1 2
CICZSQ+ Clcgtq+
P = = = .
(t) /0 p(s)ds /0 (N —2)2 ds (q+2)(N —2)2

Evaluating (3.3) at ¢t = r, gives
8 < a(ra er(ra)/ seP(ra)=P(s) ds). (3.4)
0

It follows from (3.4) and since p(t), P(¢) are continuous that r, — oo as a — 0t.
This completes the proof. ([

Lemma 3.2. Let a > 2(N — 1), N > 2, and let w satisfy (2.4)), (2.8). Suppose
(H1)-(H4) hold. If a > 0 is sufficiently large then there exists a t, > 0 such that
w(ty) =0 and w(t) < J on [0,t,).

Proof. Tt follows from (H1) that |f(w)| < Cs for some Cy > 0 so by (2.7) and
12):
’ CQCth+1

>q— - > 0.
w >a (T DN =2 fort >0
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Integrating on (0,t) gives
CQCth+2
w(t) > at — for t > 0.
0= 0 g DIV =22

Thus for large enough a we have

CQCQ
vl e gy e =

Therefore w(t) exceeds § if a > 0 is sufficiently large. This completes the proof. O

Let
S ={a>0: thereisat, >0 such that w(ts,a) =6 and 0 < w < § on (0,%,)}.

By Lemma [3.2) the set S is nonempty and from Lemma [3.1] the set S is bounded
from below by a positive constant. Now we let:

0<a*=infS.

Lemma 3.3. Let o > 2(N — 1), N > 2, and let w satisfy (2.4), (2.8)). Suppose
(H1)—(H4) hold. Then w(t,a*) — ¢ ast — oo and w'(t,a*™) > 0 on [0, 00).

Proof. We first show w(t,a*) < ¢ on [0,00). If not then there is a t,« > 0 such
that w(te«,a*) = § and w(t,a*) < § on [0,t4+). Thus w'(te«,a*) > 0. In fact
w (tgx,a*) > 0 for if w'(te+,a*) = 0 then by uniqueness of solutions of initial value
problems w(t,a*) = ¢ contradicting that w(0,a*) = 0. So since w'(te+,a*) > 0
and w(te+,a*) = ¢ then there is an x4« > to+ such that w(zes,a*) > § + € for
some € > 0. Now for a < a* but a close to a* then by continuity with respect to
initial conditions we have w(xq+,a) > § contradicting the definition of a*. Thus
w(t,a*) < ¢ on [0,00). Next we show

E(t,a*) > F(6) forallt > 0. (3.5)

So suppose not. Then there is a ¢y > 0 such that E(tg,a*) < F(4). By continuity
with respect to initial conditions E(tg,a) < F(§) for a > a* and a close to a*.
However, for a > a* there is a t, > 0 such that w(t,,a) = 0 and w'(te,a) > 0
so therefore since f(w) = 0 for w > § (by (H1)) then by it follows that
w(t,a) = W (tq,a)(t —te) +0 > 9 for t > t, and thus E(t,a) > F(0) for all t > ¢,.
Then since E is nonincreasing (by (2.10))) it follows that E(t,a) > F(4) for all t > 0
contradicting that E(to,a) < F(J). Thus E(t,a*) > F(6) for t > 0.

Next we show w'(t,a*) > 0 for t > 0. First, since w'(0,a) = a > 0 we see that
w'(t,a) > 0 for small ¢ > 0. Suppose then there is an M > 0 such that w'(M,a*) =
0 and w'(t,a*) > 0 on [0, M). Then from we have w”(M,a*) < 0 and so
f(w(M,a*)) > 0. Thus w(M,a*) > (. Also since we showed at the beginning of
the proof that w(t,a*) < ¢ for ¢ > 0 it follows that 8 < w(M,a*) < § and since F is
increasing on (3,0) (by (H2)) then E(M,a*) = F(w(M,a*)) < F(§). On the other
hand it follows from that E(M,a*) > F(§) and so we obtain a contradiction.
Thus, w'(t,a*) > 0 on [0, 00).

It now follows from Lemmas [3.1] and [3.2] that there is an L with 8 < L < § such
that lim; oo w(t,a*) = L. From we see that w”h((tt’;l*) — —f(L) as t — oo.
If f(L) # 0 then |w”| > €eoh(t) > 0 for large ¢ > 0 and for some ey > 0. Since
h(t) ~ t9 with ¢ > 0 then integrating the inequality |w”| > €ph(t) > 0 twice on
(to,t) where tg is large we see that |w| — oo contradicting that w(t,a*) — L. Thus
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f(L) =0 and since § < L <4 it follows from (H1) that L = 6. This completes the
proof. ([

Next we let
a™* =inf{a: w'(t,a) > 0 for t > 0 and Jim. w(t,a) =d}. (3.6)
By Lemma [3.3] we see that
a* € {a:w'(t,a) >0 for t >0 and tlirgo w(t,a) = §}.

Thus the set on the right-hand side of (3.6)) is nonempty and by Lemma it is
bounded from below by a positive constant. Thus 0 < ¢** < @* and a similar
argument as in Lemma shows that w(t,a**) — 6 as t — oo and w'(¢t,a™) > 0
for ¢ > 0.

Lemma 3.4. Let o > 2(N — 1), N > 2, and let w satisfy (2.4), (2.8)). Suppose
(H1)-(H4) hold. If 0 < a < a** then w(t,a) has a local mazimum, M, > 0,
and M, — o0 as a — (a**)~. In addition, w(My,a) < 0 and w(My,a) — § as
a— (a*).

Proof. If a < o™ and w'(t,a) > 0 for t > 0 then we see as in Lemma that
w(t,a) — ¢ contradicting the definition of a**. Thus there exists M, > 0 such
that w'(t,a) > 0 on [0,M,) and w'(Mg,a) = 0. Then w”(M,,a) < 0 and so
f(w(Mg,,a)) > 0. Thus w(M,,a) > 8. Since we know w(t,a) does not attain
the value ¢ because a < a** < a* we therefore have 8 < w(M,,a) < §. Now
if the {M,} were bounded then a subsequence would converge to some M+~ and
so by the Arzela-Ascoli theorem a subsequence of w(t,a) and w’(¢,a) would con-
verge uniformly to w(t,a**) and w’'(¢,a**) on [0, Mg+ + 1] as a — (a™*)~ and
w' (My»+,a**) = 0 contradicting w’(¢,a**) > 0 from the remarks after Lemma
Thus M, — oo as a — (a**)~.

Also, as a — (™)~ with a < a** we know w(t, a) must get arbitrarily close to §
by continuity with respect to initial conditions and so w(M,,a) — § as a — (a™)~.
This completes the proof. O

Lemma 3.5. Let a > 2(N — 1), N > 2, and let w satisfy , . Suppose
(H1)—(H4) hold. Given a positive integer n if 0 < a < a** and a s sufficiently close
to a** then w(t,a) has at least n zeros on (0,00). In addition denoting the nth zero
as zy(a) then z,(a) < R>~N if R is sufficiently small and a is sufficiently close to
a** with a < a**.

Proof. From Lemma we know that for a sufficiently close to ¢** with a < a**
then w has a local maximum M, and w(M,) > v > 3. From it follows that
w” < 0 while w > 8 and since w'(M,) = 0 it follows that there exists y, > M,
such that w(y,) = 6. Thus there is an z, with M, < z, < y, such that w(z,) = 7.

From ([2.10) we have

12
%% 4 F(w) = E(t) < E(M,) = F(w(Ma,a)) for t > M,.
Rewriting this gives

|w'|

< V2/Flw(M,, a) — F(w). (3.7)

S
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Now it follows from (2.6)) that 0 < % < ¢3 for some c3 > 0 and ¢ > 0. Then from
this and (2.7]) we see that

ootk 1 e3(N—-2) 1

0<3em = hmie s Nl A (38)
Thus from (2.10), (3.7)-(3.8), and (H3)
e w2l _ ‘w/‘ 1 |wl|
2h2 2\/E h3/2
(3.9)
< W22 i, @) = Flw) ]
= \/E as t%+1 .

Suppose now that M, < s < t and that w’ < 0 on (M,,t). Then integrating (3.9)
on (M,,t) and estimating we obtain

B0 - B < S D ) - R (310)
a, @) — y ) = q w a)@)) — y)ay. .
2c1 ]\4(154_1 w(t,a)

Let us assume w(t,a) > 0 and w'(t,a) < 0 for ¢ > M,. Then [w(t, a), w(M,,a)] C
[0, 6] and the integrand in (3.10)) is bounded hence the integral in (3.10) is bounded
independent of a. Thus the right-hand side of (3.10) goes to 0 as a — (a**)~
because M, — oo from Lemma [3.4] and the integral is uniformly bounded. Thus
since E(M,,a) = F(u(M,,a)) — F(5) as a — (a**)~ by Lemma[3.4]it follows from
(310) that E(t,a) — F(8) as a — (a**)~. Thus E(t,a) > 1 F(8) for a close to a**
and a < a**. In particular on (z,,t) where 0 < w(t,a) < ~ it follows that F'(w) <0
S0

;wlh(é’)“) > ;w'hii’)“) + Fw(t,a)) = B(t,a) > %F(&) on (zat)  (3.11)
hence from and (H3)-(H4),
—w'(t,a) > %(;)tqm on (x4,t)

and so integrating on (x,,t) gives
q

aF (6 q 141

which contradicts that w > 0. Thus there exists z, > z, such that w(zq,a) =0
and w(t,a) > 0 on (0, z,). By uniqueness of solutions of initial value problems we
have w'(zq,a) < 0 and so while — < w(¢,a) < 0 then w” < 0 by and so we
see that there is a Y, > z, such that w(Y,,a) = —8. Now if w(t, a) does not have a
local minimum for ¢ > Y, then we can show in a similar way as we did in Lemma 3.3
that w — L but now where L < —( and f(L) = 0 implying L = —§. But since E
is nonincreasing and F' is even this would imply F(§) = F(—9) < lim; . E(t,a) <
E(M,,a) = F(w(M,,a)) and hence by (H2) we have w(M,,a) > 6. But recall from
Lemma that since a < a** then w(M,,a) < § thus we obtain a contradiction.
Therefore it must be the case that w(t,a) has a local minimum, m, > z,, and in a
similar way as in Lemma [3.4]it is possible to show m, — co and w(mg,a) — —§ as
a — (a**)7. Also as we did at the beginning of this lemma we can show that w(t, a)
has a second zero z3 4 > z, if a is sufficiently close to a** and a < ¢**. Similarly

’lU(t,a) S V=
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we can show that w(t,a) has any desired (finite) number of zeros by choosing a
sufficiently close to a** with a < a**. This completes the proof. ([

Thus we see that zi(a) the kth zero of w(t,a) on (0,00) is defined as long as a
is sufficiently close to a™* with a < a**. It follows from continuous dependence of
solutions on initial conditions that zj(a) is a continuous function of a. In addition
lim,_, (q++)- zx(a) = oco. This follows for if the zx(a) were bounded then for a
subsequence (again labeled a) we would have z;(a) — z** and by the Arzela-Ascoli
theorem w(z**,a**) = 0 contradicting that w(¢,a**) > 0 on (0, 00).

Finally suppose R is sufficiently small and a < a** is sufficiently close to a**
so that zx(a) < R?>~N. Then since we know zi(a) is continuous with zy(a) <
R*™N < 00 and lim,_, (q++)- 2x(a) = oo then it follows from the intermediate value
theorem that there is a smallest value of a denoted aj, such that zx(ax) = R2-N,
Thus w(t, a) is a solution of with k zeros on (0, R2~V]. Now we let by =
(2—N)R'Nw'(R?>~N a;,) and then finally if we let uy (7, by) = (= 1) w(r>=N api1)
then wuy(r, by) is a solution of - with b = by, with k zeros on (R, c0), and
lim, o ug(r, br) = 0. This completes the proof.
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