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NONLINEAR SCHRÖDINGER EQUATIONS ON THE HALF-LINE
WITH NONLINEAR BOUNDARY CONDITIONS

AHMET BATAL, TÜRKER ÖZSARI

Abstract. In this article, we study the initial boundary value problem for
nonlinear Schrödinger equations on the half-line with nonlinear boundary con-

ditions

ux(0, t) + λ|u(0, t)|ru(0, t) = 0, λ ∈ R− {0}, r > 0.

We discuss the local well-posedness when the initial data u0 = u(x, 0) belongs

to an L2-based inhomogeneous Sobolev space Hs(R+) with s ∈ ( 1
2
, 7
2

)− { 3
2
}.

We deal with the nonlinear boundary condition by first studying the linear
Schrödinger equation with a time-dependent inhomogeneous Neumann bound-

ary condition ux(0, t) = h(t) where h ∈ H
2s−1

4 (0, T ).

1. Introduction and statement of main result

The nonlinear Schrödinger equation (NLS) is a fundamental dispersive partial
differential equation. NLS can be used in many physical nonlinear systems such as
quantum many body systems, optics, hydrodynamics, acoustics, quantum conden-
sates, and heat pulses in solids.

In this article, we consider the nonlinear Schrödinger equation with nonlinear
boundary condition on the (right) half-line.

i∂tu+ ∂2
xu+ k|u|pu = 0, x ∈ R+, t ∈ (0, T ),

u(x, 0) = u0(x),

∂xu(0, t) + λ|u(0, t)|ru(0, t) = 0,

(1.1)

where u(x, t) is a complex valued function, the real variables x and t are space and
time coordinates, and ∂t, ∂x denote partial derivatives with respect to time and
space. The constant parameters satisfy k, λ ∈ R− {0}, and p, r > 0. When λ = 0,
the boundary condition reduces to the classical homogeneous Neumann boundary
condition. When r = 0, the boundary condition is the classical homogeneous
Robin boundary condition. When λ and r are both non-zero as in the present case,
the boundary condition can be considered as a nonlinear variation of the Robin
boundary condition.

Our main goal is to solve the classical local well-posedness problem for (1.1).
More precisely, we will prove the local existence and uniqueness for (1.1) together
with the continuous dependence of solutions on the initial data u0, which is taken
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from an L2−based inhomogeneous Sobolev space Hs(R+) with s ∈ ( 1
2 ,

7
2 )− { 3

2}.
We will also deduce a blow-up alternative for the solutions of (1.1) in the Hs-sense.

The well-posedness problem will be considered in the function space Xs
T , which

is the set of those elements in

C([0, T ];Hs(R+)) ∩ C(Rx+;H
2s+1

4 (0, T ))

that are bounded with respect to the norm ‖ · ‖XsT . This norm is defined by

‖f‖XsT := sup
t∈[0,T ]

‖f(·, t)‖Hs(R+) + sup
x∈R+

‖f(x, ·)‖
H

2s+1
4 (0,T )

. (1.2)

It is well-known that the trace operators γ0 : u0 → u0(0) and γ1 : u0 → u′0(0) are
well-defined on Hs(R+) when s > 1/2 and s > 3/2, respectively. Therefore, both
u0(0) and u′0(0) make sense if s > 3/2. Hence, we will assume the compatibility
condition u′0(0) = −λ|u0(0)|ru0(0) when s > 3/2 on the initial data to comply with
the desire that the solution be continuous at (x, t) = (0, 0). Now we can state our
main result.

Theorem 1.1 (Local well-posedness). Let T > 0 be arbitrary, s ∈ ( 1
2 ,

7
2 ) − { 3

2},
p, r > 0, k, λ ∈ R − {0}, u0 ∈ Hs(R+) together with u′0(0) = −λ|u0(0)|ru0(0)
whenever s > 3/2. In addition we assume the following restrictions on p and r:

(A1) If s is integer, then p ≥ s if p is an odd integer and [p] ≥ s − 1 if p is
non-integer.

(A2) If s is non-integer, then p > s if p is an odd integer and [p] ≥ [s] if p is
non-integer.

(A3) r > 2s−1
4 if r is an odd integer and [r] ≥

[
2s−1

4

]
if r is non-integer.

Then the following hold:
(i) Local Existence and Uniqueness: There exists a unique local solution u ∈

Xs
T0

of (1.1) for some T0 = T0(‖u0‖Hs(R+)) ∈ (0, T ].
(ii) Continuous Dependence: If B is a bounded subset of Hs(R+), then there

is T0 > 0 (depends on the diameter of B) such that the flow u0 → u is
Lipschitz continuous from B into Xs

T0
.

(iii) Blow-up Alternative: If S is the set of all T0 ∈ (0, T ] such that there exists
a unique local solution in Xs

T0
, then whenever Tmax := supT0∈S T0 < T , it

must be true that limt↑Tmax ‖u(t)‖Hs(R+) =∞.

Remark 1.2. If s = 1 or p is even, then the assumptions on p given in (A1) and
(A2) in Theorem 1.1 are redundant. The same remark applies to r when s = 5/2−ε
or r is even.

Remark 1.3. In the above theorem, when s ≥ 2, the equation is understood in the
L2-sense. However, if s < 2, the equation should be understood in the distributional
sense, namely in the sense of Hs−2(R+). For low values of s, the boundary and the
initial condition can be understood in the sense of [3, Definition 2.2].

Literature Overview. Schrödinger models similar to (1.1) have been studied in
[1, 22, 11], and most recently by [15].

Ackleh-Deng [1] studied the case k = 0, λ = 1, and r > 0. In [1], the main
equation was only linear. More precisely, the authors studied the equation

i∂tu+ ∂2
xu = 0, x ∈ R+, t ∈ (0, T ),

u(x, 0) = u0(x),

∂xu(0, t) + |u(0, t)|ru(0, t) = 0.

(1.3)
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Ackleh-Deng [1] proved that if u0 ∈ H3(R+), then there is T0 > 0 such that (1.3)
possesses a unique local solution u ∈ C([0, T0);H1(R+)). In [1] it was shown that
(large) solutions with negative initial energy blow-up if r ≥ 2, and are global oth-
erwise. Therefore, r = 2 was considered the critical exponent for (1.3). Obtaining
local existence and uniqueness consisted of two steps. First, the authors studied the
linear Schrödinger equation with an inhomogeneous Neumann boundary condition
on the half-line. Secondly, they used a contraction argument once the representa-
tion formula for solutions was restricted to the boundary point x = 0. In other
words, the contraction argument was used on a function space which included only
time dependent elements. Unfortunately, the same technique cannot be applied in
the presence of the nonlinear source term f(u) = k|u|pu in the main equation. The
reason is that even if the representation formula can still be restricted to the point
x = 0, the sought after fixed point in the representation formula would also depend
on the space variable. Therefore, one can no longer use a simple contraction ar-
gument on a function space which includes only time dependent elements. We are
thus motivated to use a contraction argument on a function space which includes
elements that depend on both time and space variables. Of course, this requires
nice linear and nonlinear space-time estimates.

It is well-known from the theory of the linear Schrödinger equation that solutions
are of the same class as the initial state. From this point of view, the generation
of H1 solutions with H3 data seems is not optimal in [1]. Therefore, one of the
novelties in this paper is to show that Hs initial data generates Hs solutions.

Regarding nonlinear boundary conditions, we are aware of very few other re-
sults for Schrödinger equations, e.g., [22, 11, 15]. In [22], the authors study the
Schrödinger equation with nonlinear, attractive, and dissipative boundary condi-
tions of type ∂u

∂ν = ig(u) where g is a monotone function with the property that
the corresponding evolution operator generates a strongly continuous contraction
semigroup on the L2-level. The more recent paper [11] studies Schrödinger equation
with Wentzell boundary conditions. This work also uses the fact that the Wentzell
boundary condition provide a semigroup in an appropriate topology. In the present
case, due to the fact that λ is not a purely imaginary number, the problem does
not have a monotone structure, and the method of [22, 11] cannot be applied here.
Most recently, [15] studied the blow-up properties of the 1D Schrödinger equation
with a point nonlinearity, which was interpreted as a linear Schrödinger equation
with nonlinear boundary conditions similar to given in (1.1).

A common strategy for proving well-posedness of solutions to PDEs with non-
linear terms relies on two classical steps: (1) obtain a good linear theory with
non-homogeneous terms; (2) establish local well-posedness for the nonlinear model
by a fixed point argument.

Obtaining a good linear theory with non-homogeneous terms is a subtle point
for boundary value problems, especially those with low-regularity boundary data.
One might attempt to extend the boundary data into the domain and homoge-
nize the boundary condition. However, this approach in general requires a high
regularity boundary data [4, 9], as opposed to the rough boundary situation as in
the present paper for low values of s. There are different approaches one can fol-
low to study a linear PDE with an inhomogeneous boundary data on the half-line
without employing an extension-homogenization approach, though. For example,
Colliander-Kenig [13] used a technique on the KdV equation by replacing the given
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initial-boundary value problem with a forced initial value problem where the forc-
ing is chosen in such a way that the boundary condition is satisfied by inverting a
Riemann-Liouville fractional integral. Holmer [14] applied this technique on non-
linear Schrödinger equations with inhomogeneous Dirichlet boundary conditions on
the half line. A second approach is to obtain norm estimates on solutions by using
a representation formula, which can be easily obtained through a Laplace/Fourier
transform. This technique has been used for example by Kaikina in [16] for nonlin-
ear Schrödinger equations with inhomogeneous Neumann boundary conditions and
by Bona-Sun-Zhang in [3] for inhomogeneous Dirichlet boundary conditions. In
[16], the well-posedness result assumes the smallness of the given initial-boundary
data while the results of [3] have global character in this sense.

Although nonlinear Schrödinger equations with inhomogeneous boundary con-
ditions have been studied to some extent, most of these papers were devoted to
inhomogeneous Dirichlet boundary conditions; see [3, 4, 5, 6, 7, 8, 10, 14, 17, 24,
25, 27, 28]. There are relatively less results on inhomogeneous Neumann boundary
conditions; see [4, 9, 16, 26, 27]. In [4] and [9], well-posedness is obtained under
smooth boundary data. Relatively less smooth boundary data was treated in [27]
using Strichartz estimates, but the regularity results were not optimal. In [16], the
smallness of initial and boundary data was crucial. In [26], the focus was on the
existence of weak solutions, and questions concerning continuity in time, unique-
ness, and continuous dependence on data were not studied. In the present paper,
we draw a more complete and optimal well-posedness picture where the spatial
domain is half-line.

Orientation. In this paper, we will follow a step-by-step approach to prove The-
orem 1.1:

Step 1 : We will first study the linear Schrödinger equation with inhomogeneous
terms both in the main equation and in the boundary condition. This problem
is written in (2.1). Our aim in this step is to derive optimal norm estimates with
respect to regularities of the initial state u0, boundary data h, and nonhomogeneous
source term f . This linear theory is constructed in Section 2 by adapting the method
of [3] to nonhomogeneous Neumann boundary conditions.

Step 2 : In the second step, we will replace the nonhomogeneous source term
f = f(x, t) in (2.1) with f = f(u) = k|u|pu as in (3.1). We will use a contraction
mapping argument to prove the existence and uniqueness of local solutions together
with continuous dependence on data. The blow-up alternative will be obtained via
a classical extension-contradiction argument. This step is treated in Sections 3.1 -
3.4.

Step 3 : In this step, we will replace the boundary data h = h(x, t) in (2.1) with
h = h(u) = −λ|u(0, t)|ru(0, t), and f with k|u|pu. Arguments similar to those in
Step 2 will eventually give the well-posedness in the presence of nonlinear boundary
conditions. The only difference is that the contraction argument must be adapted
to deal with the nonlinear effects due to the nonlinear boundary source. This is
given in Section 3.5.

Remark 1.4. Step 2 is indeed optional. One can directly run the contraction and
blow-up arguments with nonlinear boundary conditions. However, it is useful to
include the general theory of nonlinear Schrödinger equations with inhomogeneous
Neumann boundary conditions to study other related problems in the future.
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2. Linear nonhomogeneous model

In this section, we study the nonhomogeneous linear Schrödinger equation with
nonhomogeneous Neumann boundary condition. We will later apply this linear the-
ory to obtain the local well-posedness for nonlinear Schrödinger equations first with
inhomogeneous Neumann boundary conditions and then with nonlinear boundary
conditions. To obtain a sufficiently nice linear theory, we adapt the method pre-
sented for nonhomogeneous Dirichlet boundary conditions in [3] to the case with
nonhomogeneous Neumann boundary conditions.

We consider the linear model

i∂tu+ ∂2
xu+ f = 0, x ∈ R+, t ∈ (0, T ),

u(x, 0) = u0, ∂xu(0, t) = h(t),
(2.1)

where f and h lie in appropriate function spaces.

2.1. Compatibility conditions. Suppose u0 ∈ Hs(R+), h ∈ H 2s−1
4 (0, T ) in (2.1).

It is well-known from the trace theory that both u′0(0) and h(0) make sense when
s > 3/2. Therefore, one needs to assume the zeroth order compatibility condition

u′0(0) = h(0)

when s ∈ (3/2, 7/2) in order to get continuous solutions at (x, t) = (0, 0). As the
value of s gets higher, one needs to consider more compatibility conditions. For
example, if s ∈ (2k + 3

2 , 2(k + 1) + 3
2 ) (k ≥ 1), then the k-th order compatibility

condition is defined inductively:

ϕ0 = u0, ϕn+1 = i(∂nt f |t=0 + ∂2
xϕn),

∂kt h|t=0 = ∂xϕk|x=0

provided that f is also smooth enough for traces to make sense. If one wants
to add the end point cases s = 2k + 3

2 to the analysis, then global compatibility
conditions must be assumed (see for example [2] for a discussion of local and global
compatibility conditions in the case of Dirichlet boundary conditions).

2.2. Boundary operator. We will first deduce a representation formula for solu-
tions of the following linear model with an inhomogeneity on the boundary.

i∂tu+ ∂2
xu = 0, x ∈ R+, t ∈ (0, T ),

u(x, 0) = 0, ∂xu(0, t) = h(t).
(2.2)

We study the above model by constructing an evolution operator which acts on the
boundary data. We will start by taking a Laplace (in time) - Fourier (in space)
transform of the given model. In order to do that, we will first extend the boundary
data to the whole line utilizing the following lemma.

Lemma 2.1 (Extension). Let s ∈ ( 1
2 ,

7
2 ) − { 3

2}, h ∈ H
2s−1

4 (0, T ) with h(0) = 0 if
s > 3/2. Then there exists he ∈ H

2s−1
4 with compact support in [0, 2T + 1) which

extends h so that H(t) :=
∫ t
−∞ he(s)ds also has compact support in [0, 2T + 1) and

‖H‖
H

2s+3
4
≤ C(1 + T )‖h‖

H
2s−1

4 (0,T )
for some C > 0 which is independent of T .

Proof. If 1
2 < s < 3

2 , we have 0 < 2s−1
4 < 1

2 . Now we take the zero extension of h
onto R, say we get h0. Then we set he(t) := h0(t)− h0(t− T ).
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If s ∈ ( 3
2 ,

7
2 ), then 1

2 <
2s−1

4 < 3
2 . In this case, we first take an extension hA of

h onto R so that ‖hA‖
H

2s−1
4
≤ 2‖h‖

H
2s−1

4 (0,T )
by using the fact that

‖h‖
H

2s−1
4 (0,T )

:= inf{‖φ‖
H

2s−1
4

: φ ∈ H
2s−1

4 , φ|(0,T ) = h}. (2.3)

Secondly, the restriction hB := hA|(0,∞) ∈ H
2s−1

4 (0,∞) will satisfy the inequality
‖hB‖

H
2s−1

4 (0,∞)
≤ ‖hA‖

H
2s−1

4
. Now we can take the zero extension, say hC , of hB

onto R so that ‖hC‖
H

2s−1
4
≤ C‖hB‖

H
2s−1

4 (R+)
with C independent of T . By the

previous inequalities, we get ‖hC‖
H

2s−1
4
≤ C‖h‖

H
2s−1

4 (0,T )
with C independent of

T . Then we pick a function η ∈ C∞c (R) so that η = 1 on (0, T ) and η = 0 on
[T + 1/2,∞). Now we consider h1 = ηhC , which is of course in H

2s−1
4 , since H

2s−1
4

is a Banach algebra when s > 3/2. Finally, we set he(t) = h1(t)− h1(t− T − 1/2).
Note that ‖he‖

H
2s−1

4
≤ C‖h‖

H
2s−1

4 (0,T )
where the positive constant C does not

depend on T , since all the extensions in the above paragraph and the multiplication
by η are continuous operators between corresponding Sobolev spaces whose norms
do not depend on the initial domain (0, T ). Moreover, we set up he in such a way
that its average is zero. Hence, its antiderivative H(t) :=

∫ t
−∞ he(s)ds is compactly

supported and therefore belongs to the space H
2s+3

4 .
Since H is compactly supported with support in [0, 2T + 1) by the Poincaré

inequality we have ‖H‖L2 ≤ (2T + 1)‖he‖L2 . Hence

‖H‖
H

2s+3
4
' ‖D

2s+3
4 H‖L2 + ‖H‖L2 ≤ C‖D

2s−1
4 he‖L2 + (2T + 1)‖he‖L2

≤ C(1 + T )‖he‖
H

2s−1
4
≤ C(1 + T )‖h‖

H
2s−1

4 (0,T )

for some C > 0. �

Now we consider the following model, which is an extended-in-time version of
(2.2).

i∂tue + ∂2
xue = 0, x ∈ R+, t > 0,

ue(x, 0) = 0, ∂xue(0, t) = he(t)
(2.4)

where he is the extension of h, as in Lemma 2.1.
We first take the Laplace transform of (2.4) in t to get

iλũe(x, λ) + ∂2
xũe(x, λ) = 0,

ũe(+∞, λ) = 0, ∂xũe(0, λ) = h̃e(λ)
(2.5)

with Reλ > 0, where ũe denotes the Laplace transform of ue. The solution of (2.5)
is

ũe(x, λ) =
1

r(λ)
exp(r(λ)x)h̃e(λ)

where Re r(λ) solves iλ+ r2 = 0 together with Re r < 0. Then

ue(x, t) =
1

2πi

∫ +∞i+γ

−∞i+γ
exp(λt)

1
r(λ)

exp(r(λ)x)h̃e(λ)dλ,

where γ > 0 (fixed), solves (2.5). By passing to the limit in γ as γ → 0 and applying
change of variables, we can rewrite u(x, t) as follows:

ue(x, t) =
1
iπ

∫ ∞
0

exp(−iβ2t+ iβx)h̃e(−iβ2)dβ
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− 1
π

∫ ∞
0

exp(iβ2t− βx)h̃e(iβ2)dβ.

Note, that u := ue|[0,T ) is a solution of (2.2). We define ν1(β) := 1
iπ h̃e(−iβ

2)
for β ≥ 0 and zero otherwise. Let φhe be the inverse Fourier transform of ν1,
that is φ̂he(β) = ν1(β) for β ∈ R. Similarly, we define ν2(β) := − 1

π h̃e(iβ
2) for

β ≥ 0 and zero otherwise. Let ψhe be the inverse Fourier transform of ν2, that is
ψ̂he(β) = ν2(β) for β ∈ R. Now, for x ∈ R+, we can write

ue(x, t) = [Wb(t)he](x) := [Wb,1(t)he](x) + [Wb,2(t)he](x)

where

[Wb,1(t)he](x) :=
∫ ∞
−∞

exp(−iβ2t+ iβx)φ̂he(β)dβ, ,

[Wb,2(t)he](x) :=
∫ ∞
−∞

exp(iβ2t− βx)ψ̂he(β)dβ.

Note that we can extend Wb,1(t)he to R without changing its definition. For
such an extension we have the following lemma.

Lemma 2.2. u(x, t) = [Wb,1(t)he](x) solves the initial value problem

i∂tu+ ∂2
xu = 0, u(x, 0) = φhe(x), x ∈ R, t ∈ R+.

Proof. By direct calculation, we have

i∂tu+ ∂2
xu = [i(−iβ2) + (iβ)2][Wb,1(t)he](x) = 0,

and u(x, 0) = F−1(φ̂he)(x) = φhe(x). �

From the above lemma, we can get space time estimates on Wb,1(t)he by using
the well-known linear theory of Schrödinger equations on R. These estimates are
given in Section 2.4. We extend [Wb,2(t)he](x) to R by setting

[Wb,2(t)he](x) :=
∫ ∞
−∞

exp(iβ2t− β|x|)ψ̂he(β)dβ.

However, if s > 3/2, then this extension would not be differentiable at x = 0.
Therefore, if s > 3/2, we cannot directly use the linear theory of Schrödinger equa-
tions on R to estimate various norms of the term Wb,2(t)he. This makes it necessary
to obtain space-time estimates for Wb,2(t)he directly by using its definition.

The relationship between regularities of φhe , ψhe and the regularity of the bound-
ary data h is given by the following lemma.

Lemma 2.3. Let s ≥ 1/2, h ∈ H 2s−1
4 (0, T ) such that h(0) = 0 if s > 3/2. Then

φhe , ψhe ∈ Hs.

Proof. Note that

‖φhe‖2Hs =
∫ ∞
−∞

(1 + β2)s|φ̂he(β)|2dβ =
1
π2

∫ ∞
0

(1 + β2)s|h̃e(−iβ2)|2dβ. (2.6)

Upon changing variables, the last term in (2.6) can be rewritten and estimated as
follows.

1
2π2

∫ ∞
0

(1 + β)s

β
1
2
|h̃e(−iβ)|2dβ . 1

π2

∫ ∞
0

(1 + β2)
2s+3

4 |Ĥ(β)|2dβ . ‖H‖2
H

2s+3
4
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where we use the relationships, h̃e(−iβ) = ĥe(β) and ĥe(β) = iβĤ(β) in the first
inequality. The last estimate combined with Lemma 2.1 implies that φhe ∈ Hs.
We can repeat the same argument for ψhe , too. �

A given pair (q, r) is said to be admissible if 1
q + 1

2r = 1
4 for q, r ≥ 2.

Now, we present several space-time estimates for the second part of the evolution
operator Wb(t).

Lemma 2.4 (Space Traces). Let s ≥ 1/2 and T > 0. Then there exists C > 0
(independent of T ) such that

sup
t∈[0,T ]

‖Wb,2(·)he‖Hs ≤ C(1 + T )‖h‖
H

2s−1
4 (0,T )

(2.7)

for any h ∈ H 2s−1
4 (0, T ) with h(0) = 0 if s > 3/2.

Proof. We can rewrite [Wb,2(t)h](x) as

[Wb,2(t)he](x) :=
∫ ∞
−∞

Kt(x, y)ψhe(y)dy =: K(t)ψhe

where Kt(x, y) =
∫∞
0

exp(iβ2t− β|x| − iyβ)dβ. It is proven in [3, Proposition 3.8]
that

‖K(t)ψhe‖Lq(0,T ;Lr) . ‖ψhe‖L2

for an admissible (q, r). Similarly, taking one derivative in x variable, one gets

‖∂x[K(t)ψhe ]‖Lq(0,T ;Lr) . ‖∂x[ψhe ]‖L2 .

Now, one can interpolate and use the proof of Lemma 2.3 to obtain

‖Wb,2(·)he‖Lq(0,T ;W s,r) . ‖H‖
H

2s+3
4

(2.8)

for s ∈ [ 12 , 1]. For larger s, one can differentiate and interpolate again. Finally,
(2.7) follows by taking r = 2, q = ∞ in (2.8). Now, (2.7) follows from (2.8) and
Lemma 2.1. �

Lemma 2.5 (Time traces). Let s ≥ 1/2 and T > 0. Then there exists C > 0
(independent of T ) such that

sup
x∈R+

‖Wb,2(·)he‖
H

2s+1
4 (0,T )

≤ C(1 + T )‖h‖
H

2s−1
4 (0,T )

(2.9)

for any h ∈ H 2s−1
4 (0, T ) with h(0) = 0 if s > 3/2.

Proof. This result is an application of [20, Theorem 4.1]. For k ≥ 0 (integer)

‖∂ktWb,2(·)he‖2L2
t

=
∫

R+

β4k |ψ̂he(β)|2

2β
dβ

.
∫

R+

(1 + β2)k+
1
2 |Ĥ(β)|2dβ . ‖H‖

Hk+
1
2
.

(2.10)

Upon interpolation, the result follows in the case that h, he, and H are smooth,
then a density argument finishes the proof. Now, (2.9) follows from (2.10) and
Lemma 2.1. �



EJDE-2016/222 NONLINEAR SCHRÖDINGER EQUATIONS ON THE HALF-LINE 9

2.3. Representation Formula. We take an extension of u0 to R, say u∗0 ∈ Hs

such that ‖u∗0‖Hs . ‖u0‖Hs(R+). Therefore, u = WR(t)u∗0 solves the problem

i∂tu+ ∂2
xu = 0, u(0, t) = u∗0(x), x, t ∈ R

whereWR(t) is the evolution operator for the linear Schrödinger equation. Similarly,
if f∗ is an extension of f , then the solution of the non-homogeneous Cauchy problem

iut + uxx = f∗(x, t), u(x, 0) = 0, x, t ∈ R

can be written as

u(x, t) = −i
∫ t

0

WR(t− τ)f∗(τ)dτ.

Therefore, if we define

ue(x, t) = WR(t)u∗0 − i
∫ t

0

WR(t− τ)f∗(τ)dτ +Wb([h− g − p]e(t)) (2.11)

with

g(t) = ∂xWR(t)u∗0|x=0,

p(t) = −i∂x
∫ t

0

WR(t− τ)f∗(τ)dτ |x=0,

then u = ue|[0,T ) will solve

i∂tu+ ∂2
xu = f, t ∈ (0, T ), x ∈ R+,

u(x, 0) = u0, ∂xu(0, t) = h(t).
(2.12)

In the formula we have given, g(t) and p(t) make sense only if s > 3/2. In other
cases, we take those boundary traces equal to zero in the representation formula
(2.11).

2.4. Space-time estimates on R. We will utilize the following space and time
estimates on R for the evolution operator of the linear Schrödinger equation [12].
Note that these estimates can be directly applied to the first part Wb,1 of the
boundary evolution operator.

Lemma 2.6. Let s ∈ R , T > 0, φ ∈ Hs, and u := WRφ. Then there exists
C = C(s) such that

sup
t∈[0,T ]

‖u(·, t)‖Hs + sup
x∈R
‖u(x, ·)‖

H
2s+1

4 (0,T )
≤ C‖φ‖Hs . (2.13)

Lemma 2.7. Let T > 0, f ∈ L1(0, T ;Hs), and u :=
∫ t
0
WR(t − τ)f(τ)dτ . Then,

for any s ∈ R, there exists a constant C = C(s) > 0 such that

sup
t∈[0,T ]

‖u(·, t)‖Hs + sup
x∈R
‖u(x, ·)‖

H
2s+1

4 (0,T )
≤ C‖f‖L1(0,T ;Hs). (2.14)

2.5. Regularity. Combining Lemmas 2.2–2.7, we have the following regularity
theorems for the linear model.

Theorem 2.8. Let T > 0, and s ≥ 1/2. Then there exists C > 0 (independent of
T ) such that for any h ∈ H 2s−1

4 (0, T ) with h(0) = 0 if s > 3/2, u = Wb(t)h satisfies

sup
t∈[0,T ]

‖u(·, t)‖Hs(R+) + sup
x∈R+

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤ C(1 + T )‖h‖
H

2s−1
4 (0,T )

.
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Theorem 2.9. Let T > 0, s ∈ ( 1
2 ,

7
2 )−{3/2}, h ∈ H 2s−1

4 (0, T ), f ∈ L1(0, T ;Hs(R+)),
u0 ∈ Hs(R+), and if s ∈ ( 3

2 ,
7
2 ), we assume the zeroth order compatibility condition

u′0(0) = h(0). Then there exists C > 0 (independent of T ) such that the solution u
of (2.12) satisfies

sup
t∈[0,T ]

‖u(x, ·)‖Hs(R+) + sup
x∈R+

‖u(x, ·)‖
H

2s+1
4 (0,T )

≤ C(‖u0‖Hs(R+) + (1 + T )‖h‖
H

2s−1
4 (0,T )

+ ‖f‖L1(0,T ;Hs(R+))).
(2.15)

Remark 2.10. The optimal local smoothing estimate for the Schrödinger evolution
operator is ‖WRu0‖

L∞x Ḣ
2s+1

4
t

. ‖u0‖Ḣs ; see for instance [20]. This is why we

consider the space Xs
T defined in Section 1 as our solution space. It is shown in

[14] and [3] that the natural space for the boundary data h is H
2s+1

4
t (0, T ), when

one considers Dirichlet boundary conditions. Since one can formally think that one
derivative in the space variable is equivalent to 1/2 derivatives in the time variable,

we are inclined to consider H
2s−1

4
t (0, T ) as the natural space for the boundary data

h when we consider Neumann boundary conditions.

3. Nonlinear Schrödinger equation

In this section, we study nonlinear Schrödinger equations with nonhomogeneous
Neumann type boundary data. More precisely, we consider the model

i∂tu+ ∂2
xu+ f(u) = 0, x ∈ R+, t ∈ (0, T ),

u(x, 0) = u0,

∂xu(0, t) = h,

(3.1)

where f(u) = k|u|pu, p > 0, k ∈ R− {0}, u0 ∈ Hs(R+), and s ∈ ( 1
2 ,

7
2 )− { 3

2}.
Here, we consider two problems. The first one is the open-loop well-posedness

problem when h is taken as a time dependent function in the Sobolev spaceH
2s−1

4 (0, T ).
The second one is the closed-loop well-posedness problem when h is taken as a func-
tion of u(0, t) in the form h(u(0, t)) = −λ|u(0, t)|ru(0, t) with λ ∈ R− {0}.

3.1. Local existence. To prove the existence of local solutions we use the con-
traction mapping argument. For the contraction mapping argument, we will use
the following operator on a closed ball B̄R(0) in the function space Xs

T0
for appro-

priately chosen R > 0 and T0 ∈ (0, T ].

[Ψ(u)](t) := WR(t)u∗0 − i
∫ t

0

WR(t− τ)f(u∗(τ))dτ +Wb(t)([h− g − p(u∗)]e) (3.2)

with g(t) = ∂xWR(t)u∗0|x=0 and [p(u∗)](t) = −i∂x
∫ t
0
WR(t − τ)f(u∗(τ))dτ |x=0.

Here, g(t) and p(t) make sense only if s > 3/2. For s ∈ ( 1
2 ,

3
2 ), we take these

boundary traces equal to zero in (3.2).
To use the Banach fixed point theorem, we have to show that Ψ maps B̄R(0)

onto itself, and moreover that it is a contraction on the same set. Therefore, we will
estimate each term in (3.2) with respect to the norm defined in (1.2). By Lemma
2.6,

‖WR(t)u∗0‖XsT . ‖u
∗
0‖Hs . ‖u0‖Hs(R+). (3.3)

To estimate the second term at the right hand side of (3.2), we l first prove the
following lemma.
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Lemma 3.1 (Nonlinearity). Let f(u) = |u|pu and s > 1
2 . Moreover, let (p, s)

satisfy one of the following assumptions:
(a1) If s is integer, then assume that p ≥ s if p is an odd integer and [p] ≥ s− 1

if p is non-integer.
(a2) If s is non-integer, then assume that p > s if p is an odd integer and [p] ≥ [s]

if p is non-integer.
If u, v ∈ Hs, then

‖f(u)‖Hs . ‖u‖p+1
Hs , (3.4)

‖f(u)− f(v)‖Hs . (‖u‖pHs + ‖v‖pHs)‖u− v‖Hs . (3.5)

Proof. See [12, Lemma 4.10.2] for s being an integer and Lemma 3.10(2) [21] for p
being an even number. Therefore, we will only consider the cases with s being a
non-integer, and p being an odd integer or non-integer.

Let us first consider the case 1/2 < s < 1. By the chain rule [19, Theorem A.7]),
‖Dsf(u)‖L2 . ‖f ′(u)‖L∞‖Dsu‖L2 . Since |f ′(u)| . |u|p, we have ‖f ′(u)‖L∞ .
‖u‖pL∞ . ‖u‖

p
Hs where the last inequality follows by the Sobolev embedding Hs ↪→

L∞ for s > 1/2. Also, ‖Dsu‖L2 ≤ ‖u‖Hs . It follows that ‖Dsf(u)‖L2 . ‖u‖p+1
Hs .

On the other hand, ‖f(u)‖L2 = ‖u‖p+1
L2p+2 . ‖u‖p+1

Hs , where the inequality follows by
the Sobolev’s embedding Hs ↪→ L2p+2 for s > 1

2 . Hence, we have just shown that
‖f(u)‖Hs . ‖u‖p+1

Hs .
Now, consider the case s = σ+m > 1 for some positive integer m and σ ∈ (0, 1).

Then ‖Dsf(u)‖L2 . ‖Dσ(Dmf(u))‖L2 where Dmf(u) is a sum of the terms of type
f (k)(u)

∏k
j=1D

βju where k ranges from k = 1 up to k = m and
∑k
j=1 βj = m.

By the fractional version of the Leibniz rule [19], we can write

‖Dσ(f (k)(u)
k∏
j=1

Dβju)‖L2

. ‖Dσ(f (k)(u))‖Lp1‖
k∏
j=1

Dβju‖Lp2 + ‖f (k)(u)‖L∞‖Dσ(
k∏
j=1

Dβju)‖L2

= I · II + III · IV.

(3.6)

together with 1
2 = 1

p1
+ 1

p2
, p1, p2 > 2. By using the chain rule, the first term is

estimated as I . ‖f (k+1)(u)‖Lq1 ‖Dσu‖Lq2 together with 1
p1

= 1
q1

+ 1
q2

, q1, q2 >

p1 > 2. Here, we choose q1 sufficiently large so that q1(p − k) > 2. Therefore,
‖f (k+1)(u)‖Lq1 . ‖u‖p−kLq1(p−k) . ‖u‖p−kHs and ‖Dσu‖Lq2 ≤ ‖Dσu‖Hm . ‖u‖Hs .
If k = 1 (therefore β1 = m), then the second term can be estimated as II =
‖Dmu‖Lp2 . ‖Dmu‖Hσ . ‖u‖Hs . In the last estimate, if σ < 1/2, then we choose
p2 as 1

p2
= 1

2 − σ, otherwise we can use any p2 > 2. If k > 1, then using Hölder’s
inequality

‖
k∏
j=1

Dβju‖Lp2 ≤
k∏
j=1

‖Dβju‖Lqj .
k∏
j=1

‖Dβju‖H1+σ . ‖u‖kHs

where 1
p2

=
∑k
j=1

1
qj

and qj > 2. Hence, it follows that we always have I · II .
‖u‖p+1

Hs . The third term can be easily estimated as III . ‖u‖p−k+1
L∞ . Regard-

ing the fourth term, the case k = 1 is trivial. So let us consider the case k >
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1. In this case, applying the Leibniz formula, we have ‖Dσ(
∏k
j=1D

βju)‖L2 .∑k
l=1 ‖Dσ+βlu‖Lql

∏k
j=1,j 6=l ‖Dβju‖Lqj for some {qj > 2, j = 1, . . . , k} such that∑k

j=1
1
qj

= 1
2 . But the right hand side of the last inequality is dominated by

k∑
l=1

‖Dσ+βlu‖Hm−βl
k∏

j=1,j 6=l

‖Dβju‖Hs−βj . ‖u‖
k
Hs .

Hence, it follows that III · IV . ‖u‖p+1
Hs . By the above estimates, we deduce (3.4).

Regarding the differences, let us first consider the case 1/2 < s < 1 again. Then,
by using the fractional chain rule and the fact that Hs ↪→ L∞, we obtain

‖Dsf(u)−Dsf(v)‖L2 . ‖f ′(u)− f ′(v)‖L∞‖Dsu−Dsv‖L2

. (‖u‖pL∞ + ‖v‖pL∞)‖u− v‖Hs

. (‖u‖pHs + ‖v‖pHs)‖u− v‖Hs .
(3.7)

Now, we consider the case s = σ+m > 1 for some positive integer m and σ ∈ (0, 1).
Then

‖Dsf(u)−Dsf(v)‖L2 . ‖Dσ(Dm(f(u)− f(v)))‖L2

where Dm(f(u)− f(v)) is a sum of the terms of type

f (k)(u)
k∏
j=1

Dβju− f (k)(v)
k∏
j=1

Dβjv

= (f (k)(u)− fk(v))
k∏
j=1

Dβju− f (k)(v)
k∏
j=1

Dβjwj

where k ranges from k = 1 up to k = m,
∑k
j=1 βj = m, and wj ’s are equal

to u or v, except one, which is equal to u − v. Now the L2-norm of the term
Dσ(f (k)(v)

∏k
j=1D

βjwj) can be estimated in a manner similar to (3.6) using the
fractional Leibniz rule, except we also use several applications of Young’s inequality
to separate the products involving u and v. It remains is to estimate the term
Dσ
[
(f (k)(u)− f (k)(v))

∏k
j=1D

βju
]
, which can also be done as in (3.6) using the

fractional Leibniz rule. To do this, we also use the observation

‖f (k)(u)− f (k)(v)‖L∞ . (‖u‖p−kHs + ‖v‖p−kHs )‖u− v‖Hs ,

which easily follows from the fact that

|f (k)(u)− f (k)(v)| . (|u|p−k + |v|p−k)|u− v|

and the Sobolev embedding Hs ↪→ L∞ for s > 1/2. �

Remark 3.2. The assumption (a1) and (a2) are needed to guarantee that f is
sufficiently smooth. The assumption (a1) guarantees that f is at least Cm(C,C),
which is what one needs in the case s is an integer (see [12, Remark 4.10.3]). Since
f is C∞(C,C) when p is even, no assumption was necessary in this case. If s is
fractional, the proof uses the m+1-th derivative, which forces us to make the second
assumption (a2).
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It follows from Lemmas 2.7 and 3.1 that

∥∥− i ∫ t

0

WR(t− τ)f(u∗(τ))dτ
∥∥
XsT
≤
∫ T

0

‖f(u∗(τ))‖Hsdτ

.
∫ T

0

‖u∗(τ)‖p+1
Hs dτ

.
∫ T

0

‖u(τ)‖p+1
Hs(R+)dτ ≤ T‖u‖

p+1
XsT

.

Similarly,

∥∥− i ∫ t

0

WR(t− τ)[f(u∗(τ))− f(v∗(τ))]dτ
∥∥
XsT

≤
∫ T

0

‖f(u∗(τ))− f(v∗(τ))‖Hsdτ

.
∫ T

0

(‖u∗(τ)‖pHs + ‖v∗(τ)‖pHs)‖u
∗(τ)− v∗(τ)‖Hsdτ

.
∫ T

0

(‖u(τ)‖pHs(R+) + ‖v(τ)‖pHs(R+))‖u(τ)− v(τ)‖Hs(R+)dτ

. T (‖u‖pXsT + ‖v‖pXsT )‖u− v‖XsT .

For s ∈ ( 1
2 ,

3
2 ), since g = p = 0, the last term in (3.2) is estimated as follows by

using Theorem 2.8.

‖Wb(·)he‖XsT ≤ C(1 + T )‖h‖
H

2s−1
4 (0,T )

. (3.8)

For s ∈ ( 3
2 ,

7
2 ), we have the assumption h(0) = u′0(0), and therefore h − g − p

vanishes at x = 0. Moreover, the following estimate holds,

‖Wb(·)([h− g − p]e)‖XsT ≤ C(1 + T )‖h− g − p(u∗)‖
H

2s−1
4 (0,T )

≤ C(1 + T )
(
‖h‖

H
2s−1

4 (0,T )
+ ‖g‖

H
2s−1

4 (0,T )
+ ‖p(u∗)‖

H
2s−1

4 (0,T )

)
.

(3.9)

Note that,

‖g‖
H

2s−1
4 (0,T )

= ‖∂xWR(t)u∗0|x=0‖
H

2s−1
4 (0,T )

≤ sup
x∈R+

‖∂xWR(t)u∗0‖H 2s−1
4 (0,T )

≤ ‖ d
dx
u∗0‖Hs−1

≤ ‖u∗0‖Hs . ‖u0‖Hs(R+).

(3.10)

In (3.10), the second inequality follows from Lemma 2.6 and the fact that ∂xWR(t)u∗0
is a solution of the linear Schrödinger equation on R with initial condition d

dxu
∗
0.
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Similarly,
‖p(u∗)‖

H
2s−1

4 (0,T )

= ‖ − i∂x
∫ t

0

WR(t− τ)f(u∗(τ))dτ |x=0‖
H

2s−1
4 (0,T )

≤ sup
x∈R+

‖ − i∂x
∫ t

0

WR(t− τ)f(u∗(τ))dτ‖
H

2s−1
4 (0,T )

≤ ‖∂xf(u∗)‖L1(0,T ;Hs−1) ≤ ‖f(u∗)‖L1(0,T ;Hs) . T‖u‖p+1
XsT

.

(3.11)

The last term in (3.9) satisfies

‖p(u∗)− p(v∗)‖
H

2s−1
4 (0,T )

. T (‖u(τ)‖pXsT + ‖v(τ)‖pXsT )‖u(τ)− v(τ)‖XsT .

Combining above estimates, we obtain

‖Ψ(u)‖XsT ≤ C
(
‖u0‖Hs(R+) + (1 + T )‖h‖

H
2s−1

4 (0,T )
+ T‖u‖p+1

XsT

)
.

Similarly, regarding the differences, again by the above estimates, we have

‖Ψ(u)−Ψ(v)‖XsT ≤ CT (‖u(τ)‖pXsT + ‖v(τ)‖pXsT )‖u(τ)− v(τ)‖XsT .

Now, let
A := CBig(‖u0‖Hs(R+) + (1 + T )‖h‖

H
2s−1

4 (0,T )

)
,

R = 2A and T be small enough that A+CTRp+1 < 2A. Now, if necessary we can
choose T even smaller so that Ψ becomes a contraction on B̄R(0) ⊂ Xs

T , which is a
complete space. Hence, Ψ must have a unique fixed point in B̄R(0) when we look
for a solution whose lifespan is sufficiently small.

We conclude this section with the proposition below.

Proposition 3.3. Let T > 0, s ∈ ( 1
2 ,

7
2 ) − { 3

2}, p, r > 0, u0 ∈ Hs(R+), h ∈
H

2s−1
4 (0, T ), and u′0(0) = h(0) whenever s > 3/2. We in addition assume (a1)-(a2)

given in Lemma 3.1. Then (3.1) has a local solution u ∈ Xs
T0

for some T0 ∈ (0, T ].

3.2. Uniqueness. In the previous section, we have proved uniqueness in a fixed
ball in the space Xs

T . This does not immediately tell us that the solution must also
be unique in the entire space. Fortunately, this latter statement is also true. To
show this, let u1, u2 ∈ Xs

T0
be two solutions of (3.1). Then

u1(t)− u2(t) = −i
∫ t

0

WR(t− s)[f(u∗1(s))− f(u∗2(s))]ds+Wb(t)([p(u∗2)− p(u∗1)]e)

for a.a. t ∈ [0, T0]. Since s > 1/2,
‖u1(t)− u2(t)‖Hs

≤
∫ T0

0

‖f(u∗1(s))− f(u∗2(s))‖Hs + C(1 + T0)‖p(u∗2)− p(u∗1)‖
H

2s−1
4 (0,T )

≤ C(1 + T0)
∫ T0

0

‖u1(s)− u2(s)‖Hs(‖u1(s)‖pHs + ‖u2(s)‖pHs)ds

≤ C(1 + T0)(‖u1(s)‖pXsT0
+ ‖u2(s)‖pXsT0

)
∫ T0

0

‖u1(s)− u2(s)‖Hsds.

(3.12)

By Gronwall’s inequality, ‖u1(t)− u2(t)‖Hs = 0, which implies u1 ≡ u2.
Now, we can state the uniqueness statement as follows.
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Proposition 3.4. If u1, u2 are two local solutions of (3.1) in Xs
T0

as in Proposition
3.3, then u1 ≡ u2.

3.3. Continuous dependence. Regarding continuous dependence on data, let B
be a bounded subset of Hs(R+)×H 2s−1

4 (0, T ). Let (u0, h1) ∈ B and (v0, h2) ∈ B.
Let u, v be two solutions on a common time interval (0, T0) corresponding to (u0, h1)
and (v0, h2), respectively. Then w = u− v satisfies

i∂tw + ∂2
xw = F (x, t) ≡ f(v)− f(u), x ∈ R+, t ∈ (0, T ),

w(x, 0) = w0(x) ≡ (u0 − v0)(x),

∂xw(0, t) = h(t) ≡ (h1 − h2)(t).

(3.13)

Now, using the linear theory together with the nonlinear Hs estimates on the
differences, we have

‖w‖XsT0
≤ C

(
‖w0‖Hs(R+) + (1 + T0)‖h‖

H
2s−1

4 (0,T )
+ ‖F‖L1(0,T0;Hs(R+))

)
,

where
‖F‖L1(0,T0;Hs(R+)) ≤ CT0(‖u‖pXsT0

+ ‖v‖pXsT0
)‖u− v‖XsT0

.

Choosing R, which depends on u0 and h (i.e., on the bounded set B), as in the
proof of the local existence, and T0 accordingly small enough, we obtain

‖u− v‖XsT0
≤ C(‖u0 − v0‖Hs(R+) + ‖h1 − h2‖

H
2s−1

4 (0,T )
). (3.14)

Hence, we have the following result.

Proposition 3.5. If B is a bounded subset of Hs(R+) ×H 2s−1
4 (0, T ), then there

is T0 > 0 such that the flow (u0, h)→ u is Lipschitz continuous from B into Xs
T0

.

3.4. Blow-up alternative. In this section, we want to obtain a condition which
guarantees that a given local solution on [0, T0] can be extended globally. Let us
consider the set S of all T0 ∈ (0, T ] such that there exists a unique local solution in
Xs
T0

. We claim that if Tmax := supT0∈S T0 < T , then limt↑Tmax ‖u(t)‖Hs(R+) = ∞.
To prove the claim, assume to the contrary that limt↑Tmax ‖u(t)‖Hs(R+) 6=∞. Then
∃M and tn ∈ S such that tn → Tmax and ‖u(tn)‖Hs(R+) ≤ M . For a fixed n, we
know that there is a unique local solution u1 on [0, tn]. Now, we consider the model

i∂tu+ ∂2
xu+ f(u) = 0, x ∈ R+, t ∈ (tn, T ),

u(x, tn) = u1(x, tn),

∂xu(0, t) = h(t).

(3.15)

We know from the local existence theory that the above model has a unique local
solution u2 on some interval [tn, tn + δ] for some δ = δ(M, ‖h‖

H
2s−1

4 (0,T )
) ∈ (0, T −

tn]. Now, choose n sufficiently large that tn + δ > Tmax. If we set

u :=

{
u1, t ∈ [0, tn),
u2, t ∈ [tn, tn + δ],

(3.16)

then u is a solution of (3.1) on [0, tn + δ] where tn + δ > Tmax, which is a contra-
diction.

Proposition 3.6. Let S be the set of all T0 ∈ (0, T ] such that there exists a unique
local solution in Xs

T0
. If Tmax := supT0∈S T0 < T , then limt↑Tmax ‖u(t)‖Hs(R+) =∞.
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3.5. Nonlinear boundary data. In this section, we study the most general non-
linear model given in (1.1). We define the operator Ψ as in (3.2), except that we
take h(t) = h(u(0, t)) = −λ|u(0, t)|ru(0, t). Therefore, the solution operator we
have to use for the contraction argument takes the form

(t) :=WR(t)u∗0 − i
∫ t

0

WR(t− τ)f(u∗(τ))dτ

+Wb(t)([h(u(0, ·))− g − p(u∗)]e)
(3.17)

The proofs of local well-posedness and blow-up alternative now follows similar to
the proofs in Sections 3.1–3.4. The only additional work in this part would be to get
nonlinear Hs estimates on the boundary trace −λ|u(0, t)|u(0, t), which is of course
possible with assumptions on r, which are almost equivalent to the assumptions
we made on p. Indeed, we will assume that r > 2s−1

4 if r is an odd integer and
[r] ≥ [ 2s−1

4 ] if r is non-integer.
We will need the following lemma to get useful estimates on the boundary oper-

ator for the contraction argument.

Lemma 3.7. Let h ∈ Hσ+ε(0, T ), σ, ε > 0. Then ‖h‖Hσ(0,T ) ≤ T
ε

1+σ+ε ‖h‖Hσ+ε(0,T ).

Proof. Let H(t) :=
∫ t
0
h(s)ds. Applying the Cauchy-Schwartz inequality,

‖H‖2L2(0,T ) ≤
∫ T

0

(
∫ T

0

|h(s)|ds)2dt ≤ T 2‖h‖2L2(0,T ).

On the other hand H ′ = h, which implies ‖h‖H−1(0,T ) ≤ ‖H‖L2(0,T ), hence

‖h‖H−1(0,T ) ≤ T‖h‖L2(0,T ).

By interpolation theorem [23, Theorem 12.4, Proposition 2.3], ‖h‖Hσ ≤ ‖h‖θH−1 ·
‖h‖1−θHσ+ε , in which θ = ε

1+σ+ε . Hence we obtain ‖h‖Hσ ≤ T θ‖h‖θL2(0,T ) · ‖h‖
1−θ
Hσ+ε ≤

T θ‖h‖Hσ+ε . �

Let us first consider the case r being an odd integer. In this case, we assume
r > 2s−1

4 . Now, if 2s−1
4 < 1

2 , then we can choose ε = 1
2 so that 1

2 < 2s−1
4 + ε <

1 ≤ r. If 2s−1
4 > 1

2 , then we can choose ε sufficiently small so that we again have
1
2 <

2s−1
4 + ε ≤ r.

Secondly, let us consider the situation for r > 0 being a non-integer. In this case,
we assume [r] ≥ [ 2s−1

4 ]. If 2s−1
4 < 1

2 then we choose ε = 1
2 so that 1

2 <
2s−1

4 + ε. If
2s−1

4 > 1
2 , then we choose ε sufficiently small so that [ 2s−1

4 + ε] = [ 2s−1
4 ].

If r is even and 2s−1
4 < 1

2 , then again we choose ε = 1
2 .

Now, given u ∈ Xs
T , we know that u(0, ·) belongs to H

2s−1
4 +ε(0, T ) for any

ε ∈ (0, 1
2 ]. So, let us take an extension of u(0, ·) ∈ H 2s−1

4 +ε(0, T ), say U ∈ H 2s−1
4 +ε,

so that
‖U‖

H
2s−1

4 +ε ≤ 2‖u(0, ·)‖
H

2s−1
4 +ε(0,T )

, (3.18)

see (2.3). Now, |U |rU is an extension of |u(0, ·)|ru(0, ·), and therefore

‖|u(0, ·)|ru(0, ·)‖
H

2s−1
4 +ε(0,T )

≤ ‖|U |rU‖
H

2s−1
4 +ε . ‖U‖r+1

H
2s−1

4 +ε

by Lemma 3.1. By using the inequality (3.18), we have

‖U‖r+1

H
2s−1

4 +ε
. ‖u(0, ·)‖r+1

H
2s−1

4 +ε(0,T )
.
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Combining the above estimates, we arrive at

‖|u(0, ·)|ru(0, ·)‖
H

2s−1
4 +ε(0,T )

. ‖u(0, ·)‖r+1

H
2s−1

4 +ε(0,T )
≤ ‖u(0, ·)‖r+1

H
2s+1

4 (0,T )
.

Finally, we deduce that
‖Wb(·)[h(u(0, ·)]e‖XsT ≤ C(1 + T )‖|u(0, ·)|ru(0, ·)‖

H
2s−1

4 (0,T )

≤ C(1 + T )T
4ε

2s+3+4ε ‖|u(0, ·)|ru(0, ·)‖
H

2s−1
4 +ε(0,T )

≤ C(1 + T )T
4ε

2s+3+4ε ‖u(0, ·)‖r+1

H
2s+1

4 (0,T )

≤ C(1 + T )T
4ε

2s+3+4ε sup
x∈R+

‖u(x, ·)‖r+1

H
2s+1

4 (0,T )

≤ C(1 + T )T
4ε

2s+3+4ε ‖u‖r+1
XsT

.

(3.19)

We can estimate the differences similarly. Namely, for any given u, v ∈ Xs
T , we

have
‖Wb(·)[h(u(0, ·)− h(v(0, ·)]e‖XsT
≤ C(1 + T )T

4ε
2s+3+4ε

(
‖u‖rXsT + ‖v‖rXsT

)
‖u− v‖XsT .

(3.20)

Local existence. Following the arguments in Section 3.1 and using the estimate
(3.19), we have

‖Ψ(u)‖XsT ≤ C
(
‖u0‖Hs(R+) + (1 + T )T

4ε
2s+3+4ε ‖u‖r+1

XsT
+ T‖u‖p+1

XsT

)
.

On the other hand, using the estimate (3.20) and the arguments in Section 3.1 for
differences, we obtain

‖Ψ(u)−Ψ(v)‖XsT ≤ C
(
T (‖u(τ)‖pXsT + ‖v(τ)‖pXsT )‖u(τ)− v(τ)‖XsT

+ (1 + T )T
4ε

2s+3+4ε
(
‖u‖rXsT + ‖v‖rXsT

)
‖u− v‖XsT

)
.

Now, let A := C(‖u0‖Hs(R+)), R = 2A and T small enough that

A+ C(1 + T )T
4ε

2s+3+4εRr+1 + CTRp+1 < 2A.

Now, if necessary we can choose T even smaller so that Ψ becomes a contraction
on B̄R(0) ⊂ Xs

T , which is a complete space. Hence, Ψ must have a unique fixed
point in B̄R(0) when we look for a solution whose lifespan is sufficiently small.

Uniqueness. To prove uniqueness, we proceed as in Section 3.2, taking into account
that the boundary forcing now depends on the solution itself. So, let u1, u2 ∈ Xs

T0

be two solutions of (1.1). Then

u1(t)− u2(t) = −i
∫ t

0

WR(t− s)[f(u∗1(s))− f(u∗2(s))]ds

+Wb(t)([h(u1(0, ·))− h(u2(0, ·)) + p(u∗2)− p(u∗1)]e)

for a.a. t ∈ [0, T0]. Then

‖u1(t)− u2(t)‖Hs

≤
∫ T0

0

‖f(u∗1(s))− f(u∗2(s))‖Hs + C(1 + T0)‖p(u∗2)− p(u∗1)‖
H

2s−1
4 (0,T )

+ C(1 + T0)T
4ε

2s+3+4ε
0

(
‖u1‖rXsT0

+ ‖u2‖rXsT0

)
‖u1 − u2‖Hs .
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Now, choosing T0 sufficiently small, we can subtract the last term above from the
left hand side, estimate the rest of terms at the right hand side as in Section 3.2,
and then use the Gronwall’s inequality to obtain ‖u1(t)− u2(t)‖Hs = 0.

Continuous Dependence. The proof can be done as in Section 3.3 by taking into
account that h is now a function of u(0, t). For this closed loop problem, the
estimate (3.14) takes the form

‖u− v‖XsT0
≤ C‖u0 − v0‖Hs(R+) (3.21)

for sufficiently small T0. Of course, for the closed loop problem B is taken as a
subset of Hs(R+) with finite diameter.

Blow-up Alternative. The proof is almost identical to the proof given in Section
3.4, and is therefore omitted here. The only modification is that the parameter δ
in the proof given in Section 3.4 now depends only on M .

4. Concluding remarks

4.1. Blow-up and global well-posedness. The long time character of energy
solutions of a more general model than (1.1) has been considered by the second
author in a recent paper [18] assuming that the local well-posedness holds. It has
been found in [18] with (λ > 0, k > 0) that the relationship between p and r plays
an important role on whether solutions blow-up in finite time or not. The results
of [18] were based on a careful analysis of the energy functional given by

E(t) ≡ ‖ux(t)‖2L2(I) −
2λ
r + 2

|u(0, t)|r+2 − 2k
p+ 2

‖u(t)‖p+2
Lp+2(I), t ≥ 0. (4.1)

The most interesting case is when λ and k have competing signs, say λ > 0 and k <
0. This corresponds to the situation where an interior defocusing source competing
with a focusing boundary source. An application of the results obtained in [18] to
our model gives the following theorems in this competing situation.

Theorem 4.1 (Blow-up,[18]). Suppose r > max{2, p− 2}, E(0) ≤ 0, and

Im
∫ ∞

0

xu0(x)′ū0(x)dx > 0.

Then there exists T > 0 such that the corresponding local H1 solution u satisfies
limt→T− ‖ux(t)‖L2(I) =∞.

Theorem 4.2 (Global-wellposedness,[18]). Suppose u is a local H1 solution and
one of the following assumptions is satisfied:

(i) r < 2,
(ii) 2 ≤ r < p/2,

(iii) r = 2, p ≤ 4, and u0 is sufficiently small in L2 sense,
(iv) r > 2, r ≥ p/2, and u0 is sufficiently small in H1 ∩ Lp+2 sense,

then u is global.

Remark 4.3. Based on the above theorem, it is an open problem whether local
large solutions turn out to be also global for the two cases: r = 2, p ≤ 4 and
r > 2, r ≥ p

2 . An affirmative answer to this question will determine the critical
exponent for our model.
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4.2. Range of s: Dirichlet vs. Neumann Problem. Regarding the theory
with linear Dirichlet boundary data, the best results as far as we know have chosen
the range of s usually as s ≥ 0 with h ∈ H

2s+1
4 (0, T ), see for example [14] and

[3]. This assumption guarantees that the boundary data is in particular an element
of the L2(0, T ) space. On the other hand, our analysis was carried out under the
assumption that the Neumann data h belongs to the H

2s−1
4 (0, T ) with s ≥ 1/2. If

s < 1
2 , then h is no longer an element of L2(0, T ) and the problem is much more

difficult since we used the assumption h ∈ L2(0, T ) in our estimates. Note that,
one space derivative should be formally considered to be equivalent to one-half
time derivative for the Schrödinger equation. From this point of view, obtaining a
regularity theory with s ≥ 1/2 for the Neumann problem formally corresponds to
obtaining a regularity theory with s ≥ 0 for the Dirichlet problem.
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