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OPTIMAL HARVESTING IN DIFFUSIVE POPULATION
MODELS WITH SIZE RANDOM GROWTH AND

DISTRIBUTED RECRUITMENT

QIANGJUN XIE, ZE-RONG HE, XIAOHUI WANG

Abstract. In this article, we consider an optimal harvesting control problem

for a spatial diffusion population system, which incorporates individual’s ran-

dom growth of size and distributed style of recruitment. The existence and
uniqueness of nonnegative solutions to this practical model is established by

means of Banach’s fixed point theorem. The continuous dependence of pop-
ulation density on the harvesting effort is analyzed. The optimal harvesting

strategies are discussed through normal cone and adjoint techniques. Some

conditions are presented to assure that there is only one optimal policy.

1. Introduction

Structured population models provide the connection between the population
level dynamics and individual level vital rates. It has attracted a lot of attention
from a rather diverse group of scientific researchers in biology and mathematics
[8, 19]. Dynamic analyses on the size-structured and age-structured population
models are presented in [1, 10]. Optimal control and optimization analyses have
also been considered extensively from the economical and ecological points of view
[1, 2, 3, 9, 16, 20]. To the optimal harvesting problems, there are quite many
meaningful results on the age-structured population systems with or without spatial
diffusion [1, 2, 17, 18, 22] and the references therein.

For more realistic biological significance of modeling, Hadeler [15] proposed struc-
tured population models with diffusion in the size-space. The biological motivation
is that the diffusion allows for “stochastic noise” to be incorporated in the models,
namely, the stochastic fluctuations around the tendency to growth. Faugeras and
Maury [14] established an advection-diffusion-reaction model of fish with length
(i.e. size structure) and plane position (i.e. spatial structure) distributions. The
diffusion-convection process with respect to size is also called the random growth
process [7]. For these models, the existence and asymptotic behaviors of solutions
were shown by semigroup theories in [13] and Hopf bifurcation properties with the
modified Ricker type birth function were studied in [7]. Recently, some numeri-
cal approximate solutions by the method of lines were investigated in [6]. Up to
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present, it seems that very few results on the optimal harvesting control problems
is presented for these biological models with the size random growth.

Inspired by the above results, we are concerned with the optimal harvesting
for the following diffusive population model with the size random growth (Let
Q := Ω× (S0, S1)× (0, T ), and Σ := ∂Ω× (S0, S1)× (0, T )):

∂tp− k∆p = ∂s(d(s)∂sp− g(s)p)− µp− up

+
∫ S1

S0

β(x, s, t, ŝ)p(x, ŝ, t) dŝ, in Q,
(1.1)

∂p

∂s
(x, S0, t) =

∂p

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ), (1.2)

∂p

∂n
(x, s, t) = 0, on Σ, (1.3)

p(x, s, 0) = p0(x, s), ∀(x, s) ∈ Ω× (S0, S1), (1.4)

where ∆ stands for the Laplace operator with respect to the spatial variable x, and
Ω ⊂ RN (N ≤ 3) is a bounded open domain with a boundary ∂Ω smooth enough,
k > 0 is the spatial diffusion coefficient, µ := µ(x, s, t) denotes the death rate,
and u := u(x, s, t) is the harvesting effect which can be controlled by the outside
force. The constants S0 and S1 stand for the minimal and maximal sizes of in-
dividuals, respectively. T > 0 is the finite horizon of control, independent of any
initial-boundary conditions. p(x, s, t) denotes the population density of individuals
of size s ∈ [S0, S1] at time t ∈ [0, T ] at location x ∈ Ω. The homogeneous Neu-
mann boundary conditions are introduced with respect to the N -dimension spatial
variable x and 1-dimension size variable s.

The individuals’ size random growth process is described here by the term
∂s(d(s)∂sp − g(s)p) in the Eq. (1). Here, d(s) > 0 on [S0, S1] stands for the
size-specific diffusion coefficient, and g(s) is the growth modulus. Similar to [13],
we choose the non-local integral term in (1) as the recruitment process. The dis-
tributed recruitment means that individuals may be recruited into the population
at different sizes with the rate β(x, s, t, ŝ). This choice is different from the one
given in [14].

The aim of this article is to study the optimal harvesting control problem max-
imize

J(u) :=
∫ T

0

∫ S1

S0

∫
Ω

[wpuu− 1
2
ρu2] dxdsdt, (1.5)

subject to

u ∈ U = {v ∈ L2(Q) : 0 ≤ ζ1(x, s, t) ≤ v(x, s, t) ≤ ζ2(x, s, t) a.e. in Q},
where w := w(x, s, t) denotes the economic value of an individual of size s ∈ [S0, S1]
at time t ∈ [0, T ] at x ∈ Ω. ρ > 0 is a cost factor for implementing the harvesting
policy u, and pu(x, s, t) is the solution of the system (1.1)–(1.4) corresponding to
u.

We assume that the following conditions hold throughout this article:
(H1) g ∈ C1[S0, S1], g(S0) > 0;
(H2) µ ∈ L∞loc(Ω× [S0, S1)× [0, T ]), µ(x, s, t) ≥ 0, a.e. in Q;
(H3) β(x, s, t, ŝ) ≥ 0 a.e. in Ω × (S0, S1) × (0, T ) × (S0, S1), β ∈ L∞ and let

β := ‖β‖∞;
(H4) d(s) ≥ d1 > 0 a.e. in (S0, S1), d ∈ L∞(S0, S1) and let d := ‖d‖∞;
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(H5) p0(x, s) ≥ 0 a.e. in Ω× (S0, S1), p0 ∈ L2(Ω× (S0, S1));
(H6) w(s, t, x) > 0 a.e. in Q from (1.5), w ∈ L∞(Q) and let W := ‖w‖∞.

The rest of this article is organized as follows. In Section 2, we deal with the
existence and uniqueness of solutions of the state system (1.1)–(1.4) with the given
parameters. Then we display the optimal strategies by feedback laws in Section
3, and establish the existence of optimal harvesting control and a unique optimal
policy in Section 4. A short conclusion is given in Section 5.

2. Existence and uniqueness of solution of the state system

In this section, we establish the existence and uniqueness of a positive weak
solution to the state system (1.1)–(1.4).

Let Q = Ω × (S0, S1) be an open subset of RN+1. Then Q = Q × (0, T ). We
regard p(x, s, ·) as an element of the functional space H := L2(Q). For any t ∈ [0, T ]
we have ∫ S1

S0

∫
Ω

|p(x, s, t)|2 dxds <∞. (2.1)

Denote by H1(Q) the Sobolev space W 1,2(Q) endowed with the norm

‖p‖H1(Q) =
(∫ S1

S0

∫
Ω

(p2 + |∇xp|2 + |∂sp|2) dxds
)1/2

. (2.2)

Let H1(Q)∗ denote the dual of H1(Q). Then we have the chain of dense and
continuous embeddings

H1(Q) ↪→ H ↪→ H1(Q)∗, (2.3)

and any F ∈ H1(Q)∗ can be continuously extended to H if and only if there is
some f ∈ H such that

F (p) =
∫ S1

S0

∫
Ω

f · pdx ds = (f, p)H , ∀p ∈ H1(Q). (2.4)

Definition 2.1. We denote by W (0, T ) the linear space of all p ∈ L2(0, T ;H1(Q))
which has a distributional derivative p′ ∈ L2(0, T ;H1(Q)∗), equipped with the
norm

‖p‖W (0,T ) =
(∫ T

0

(
‖p‖2H1(Q) + ‖p′(t)‖2H1(Q)∗

)
dt
)1/2

. (2.5)

The space W (0, T ) = {p ∈ L2(0, T ;H1(Q)) : dpdt ∈ L
2(0, T ;H1(Q)∗)} is a Hilbert

space with the inner product

(p, q)W (0,T ) =
∫ T

0

(p, q)H1(Q) dt+
∫ T

0

(p′(t), q′(t))H1(Q)∗ dt. (2.6)

From [20], we have

W (0, T ) ↪→ C([0, T ];H). (2.7)

For the sake of convenience, we change the unknown function p in the equation
(1.1)) by p̂ = e−θtp (θ is to be determined latter). Then we have the following
proposition.
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Proposition 2.2. The function p satisfies the state system (1.1)–(1.4) if and only
if p̂ is a solution to the equation

∂tp̂−k∆p̂ = ∂s(d(s)∂sp̂−g(s)p̂)−µp̂−up̂−θp̂+
∫ S1

S0

β(x, s, t, ŝ)p̂(x, ŝ, t) dŝ, (2.8)

endowed with the analogical initial-boundary conditions:

∂p̂

∂s
(x, S0, t) =

∂p̂

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ), (2.9)

∂p̂

∂n
(x, s, t) = 0, on Σ, (2.10)

p̂(x, s, 0) = p0(x, s), ∀(x, s) ∈ Ω× (S0, S1). (2.11)

Multiplying the equation (2.8) by a function q and using integration by parts on
Q, we arrive at the following definition.

Definition 2.3. The bilinear mapping a(t; ·, ·) : H1(Q)) × H1(Q)) → R for t ∈
[0, T ], is defined as

a(t; p̂, q) =
∫
Q

(k∇p̂ · ∇q + d(∂sp̂)(∂sq) + g(∂sp̂)q + (µ+ u+ θ + gs)p̂q) dxds.

(2.12)

According to classical discussions (see, e.g. [21]), we cite the following result and
omit the proof.

Lemma 2.4. For almost every t ∈ (0, T ), a(t; p̂, q) is continuous on H1(Q) ×
H1(Q), and for θ large enough, a(t; p̂, q) is coercive on H1(Q). There exist two
constants M > 0 and δ > 0, depending on k, d, ‖µ‖∞, |gs|max, d1, and θ, such that

|a(t; p̂, q)| ≤M‖p̂‖H1(Q)‖q‖H1(Q), ∀p̂, q ∈ H1(Q), (2.13)

a(t; p̂, p̂) ≥ δ‖p̂‖2H1(Q), ∀p̂ ∈ H1(Q). (2.14)

Now we are ready to define the weak solutions p̂ to (2.8)–(2.11).

Definition 2.5. A function p̂ ∈ W (0, T ) is said to be a solution of (2.8)–(2.11) if
the following variational equation holds for all q ∈ L2(0, T ;H1(Q)):∫ T

0

(dp̂
dt
, q
)
H
dt+

∫ T

0

a(t; p̂, q)dt =
∫ T

0

(Ip̂, q)Hdt, (2.15)

and
p̂(x, s, 0) = p0(x, s) in Ω× (S0, S1),

where Ip̂ :=
∫ S1

S0
β(x, s, t, ŝ)p̂(x, ŝ, t) dŝ.

Lemma 2.6. System (2.8)–(2.11) has a unique non-negative bounded solution p̂ ∈
W (0, T ).

Proof. Firstly, we define an operator A by freezing the integral term Ip̂, and then
apply the Banach fixed-point theorem to A. So it is clear to see that the fixed point
is our desired solution.

Let p̂∗ be fixed in W (0, T ) and replace (Ip̂, q)H by (Ip̂∗, q)H in (2.15). For all
q ∈ L2(0, T ;H1(Q)) and some appropriate T , the problem reduces to the following
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standard linear problem in the sense of distribution:(dp̂
dt
, q
)
H

+ a(t; p̂, q) = (Ip̂∗, q)H ,

p̂(x, s, 0) = p0(x, s).
(2.16)

We get a unique solution p̂ ∈W (0, T ) of the problem (2.16) by the classical discus-
sion. So this solution defines an operator A on W (0, T ) and Ap̂∗ = p̂.

Taking q = p̂ in (2.16), integrating it on [0, t], using the coerciveness of a(t; p, q)
in (15) and Cauchy-Schwarz inequality, we have∫ t

0

(1
2
d

dt
‖p̂(τ)‖2H + δ‖p̂(τ)‖2H1

)
dτ ≤

∫ t

0

‖Ip̂∗(τ)‖H · ‖p̂(τ)‖Hdτ. (2.17)

By using Young’s inequality, for all α > 0 we obtain

1
2
(
‖p̂(t)‖2H − ‖p0‖2H

)
+ δ

∫ t

0

‖p̂(τ)‖2H1
dτ ≤

∫ t

0

1
α
‖Ip̂∗(τ)‖2H dτ +

∫ t

0

α‖p̂(τ)‖2H dτ.

(2.18)
Choosing α = δ, by the norm definition of H1 in (2.2) and the assumption (H3),
we derive that

‖p̂(t)‖2H ≤
2
δ

∫ t

0

‖Ip̂∗(τ)‖2Hdτ + 2‖p0‖2H

≤ 2
δ

∫ T

0

∫
Q

(∫ S1

S0

β(x, s, τ, ŝ)p̂∗(x, ŝ, τ)dŝ
)2

dx ds dτ + 2‖p0‖2H

≤ 2β
2
(S1 − S0)2T

δ
‖p̂∗‖2H + 2‖p0‖2H .

(2.19)

Thus, we have

‖p̂(t)‖2L∞(0,T ;H) ≤
2β

2
(S1 − S0)2T

δ
‖p̂∗‖2L∞(0,T ;H) + 2‖p0‖2H . (2.20)

Define a ball domain

Br :=
{
p ∈W (0, T ) : ‖p‖L∞(0,T ;H) ≤ r, r ≥

‖p0‖H√
1
2 −

β
2
(S1−S0)2T

δ

}
, (2.21)

where T < δ/(2β
2
(S1 − S0)2). Then we have ABr ⊂ Br by (2.20), because if

‖p̂∗‖L∞(0,T ;H) ≤ r, it gives ‖p̂‖L∞(0,T ;H) ≤ r for 2β
2
(S1−S0)2T

δ r2 + 2‖p0‖2H ≤ r2

from (2.21).
Furthermore, we claim that A is a strict contraction on Br. In fact, Let Ap̂∗i =

p̂i, p̂i, p̂i
∗ ∈ Br, i = 1, 2. By using a similar deduction from (2.16) to (2.20) to

p̂1 − p̂2, we have

‖p̂1 − p̂2|2L∞(0,T ;H) ≤
2β

2
(S1 − S0)2T

δ
‖p̂∗1 − p̂∗2‖2L∞(0,T ;H). (2.22)

For T < δ

2β
2
(S1−S0)2

, namely, 2β
2
(S1−S0)2T

δ < 1, A is a strict contraction. Banach
fixed-point theorem allows us to conclude that there exists a unique p̂ ∈ Br such
that Ap̂ = p̂. This point is the desired unique bounded solution p̂ ∈W (0, T ).
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Since T does not depend on p0, we can apply the same procedure as the above
on (T, 2T ), (2T, 3T ), . . . and so on. So we deduce that a solution of (2.8)–(2.11)
can be found on the desired time interval.

We now prove the non-negativity. Let p̂1 ≥ 0 be given in W (0, T ) and define the
sequence {p̂n}n≥1 by Ap̂n = p̂n+1.

Taking p̂−2 = max{0,−p̂2} as a test function in (2.16) leads to(dp̂2

dt
, p̂−2

)
H

+ a(t; p̂2, p̂
−
2 ) = (Ip̂1, p̂

−
2 )H . (2.23)

If we let p̂+
2 = max{0, p̂2}, then p̂2 = p̂+

2 − p̂
−
2 and p̂+

2 · p̂
−
2 = 0, and it gives

1
2
d

dt
‖p̂−2 ‖2H ≤

1
2
d

dt
‖p̂−2 ‖2H + a(t; p̂−2 , p̂

−
2 ) = −(Ip̂1, p̂

−
2 )H . (2.24)

Since p̂1 ≥ 0, it leads to Ip̂1 ≥ 0 and −(Ip̂1, p̂
−
2 )H ≤ 0. Then we find d

dt‖p̂
−
2 ‖2H ≤ 0,

and
‖p̂(t)−2 ‖2H ≤ ‖p̂(0)−2 ‖2H = ‖p0−‖2H = 0, (2.25)

which means that p̂2 ≥ 0. By induction, we can further show that p̂n ≥ 0, for all
n ≥ 1. The unique solution p̂ ∈ W (0, T ) (the limiting point of the sequence) is
non-negative. �

From Lemma 2.6 and Proposition 2.2, we have the following result.

Theorem 2.7. Assume that the hypotheses (H1)–(H5) hold. For any u ∈ U , the
system (1.1)–(1.4) has a unique nonnegative solution pu(x, s, t) ∈W (0, T ) in Q and

0 ≤ pu(x, s, t) ≤M1, a.e. in Q, (2.26)

where M1 > 0 is a constant independent of pu and u.

3. Optimal strategies

In this section, we derive the first-order necessary optimality conditions for the
optimal harvesting control problem (1.5).

We present an auxiliary result for the continuous dependence of the population
density with the harvesting effort u reads as follows.

Lemma 3.1. Let pu1 , pu2 be the solutions of (1.1)–(1.4) corresponding to the con-
trols u1, u2 ∈ U , respectively. Then we have

|pu1 − pu2 | ≤ TC1‖u1 − u2‖L∞(Q), (3.1)

where C1 is a positive constant independent of u1 and u2.

Proof. Let y = pu1 − pu2 . Then y is the solution of the system

∂ty − k∆y = ∂s(d(s)∂sy − g(s)y)− µy − u1y + (u2 − u1)pu2

+
∫ S1

S0

β(x, s, t, ŝ)y(x, ŝ, t) dŝ,

∂y

∂s
(x, S0, t) =

∂y

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ),

∂y

∂n
(x, s, t) = 0, on Σ,

y(x, s, 0) = 0, ∀(x, s) ∈ Ω× (S0, S1).

(3.2)
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Multiplying the first equation of (3.2) by y and integrating it on Qt := Ω×(S0, S1)×
(0, t), we deduce that

‖y(·, t, ·)‖2H

≤
∫ t

0

∫
Ω

g(S0)y(x, S0, τ)2dxdτ −
∫
Qt

g′(s)y2dσ

+ 2
∫
Qt

(u2 − u1)pu2ydσ + 2
∫
Qt

(∫ S1

S0

β(x, s, τ, ŝ)y(x, ŝ, τ)dŝ
)
ydσ

≤ |g′(s)|max

∫ t

0

‖y(·, τ, ·)‖2Hdτ + 2
∫
Qt

|u1 − u2||M1y|dσ

+ 2β(S1 − S0)
∫ t

0

‖y(·, τ, ·)‖2Hdτ

≤ |g′(s)|max

∫ t

0

‖y(·, τ, ·)‖2Hdτ +
∫
Qt

(
|M1(u1 − u2)|2 + |y|2

)
dσ

+ 2β(S1 − S0)
∫ t

0

‖y(·, τ, ·)‖2Hdτ

= M2
1

∫ t

0

‖u1 − u2‖2Hdτ +
(
|g′(s)|max + 2

+ 2β(S1 − S0)
)∫ t

0

‖y(·, τ, ·)‖2Hdτ.

(3.3)

It follows from Bellman’s lemma that

‖y(·, t, ·)‖2H ≤M2
1 e

(|g′(s)|max+1+2β(S1−S0))T ‖u1 − u2‖2H . (3.4)

Integrating it on (0, T ) yields

‖y‖2L2(0,T ;H) ≤ TM
2
1 e

(|g′(s)|max+1+2β(S1−S0))T ‖u1 − u2‖2L2(0,T ;H). (3.5)

Thus, by the fundamental embedding inequality, we know that (2.25) holds for
some constant C1 > 0. �

To characterize the structure of the optimal controller, we need to define the
following dual problem associated with (1.1)–(1.4):

∂tq + k∆q = −∂s(d(s)∂sq)− g(s)∂sq + (µ+ u∗)q + wu∗

−
∫ S1

S0

β(x, ŝ, t, s)q(x, ŝ, t) dŝ,

d(s)∂sq + g(s)q|s=S0 = d(s)∂sq + g(s)q|s=S1 = 0, ∀(x, t) ∈ Ω× (0, T ),
∂q

∂n
(x, s, t) = 0, on Σ,

q(x, s, T ) = 0, ∀(x, s) ∈ Ω× (S0, S1).

(3.6)
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Under the changes τ = T − t and q̃(x, s, τ) := q(x, s, T − τ), the above problem
becomes

∂τ q̃ − k∆q̃ = ∂s(d(s)∂sq̃) + g(s)∂sq̃ − (µ+ u∗)q̃ − wu∗

+
∫ S1

S0

β(x, ŝ, τ, s)q̃(x, ŝ, τ) dŝ,

d(s)∂sq̃ + g(s)q̃|s=S0 = d(s)∂sq̃ + g(s)q̃|s=S1 = 0, ∀(x, τ) ∈ Ω× (0, T ),
∂q̃

∂n
(x, s, τ) = 0, on Σ,

q̃(x, s, 0) = 0, ∀(x, s) ∈ Ω× (S0, S1).

(3.7)

Using classical results for parabolic equations associated with (3.7), and discussing
in the same manner as that in Lemmas 2.6 and 3.1, we can derive the following
lemma.

Lemma 3.2. Problem (3.6) has a unique solution qu ∈ L2(0, T ;H1(Q)) and

|qu(x, s, t)| ≤M2, a.e. in Q, (3.8)

where M2 is a positive constant independent of qu and u.
Furthermore, let qu1 , qu2 be the solutions of (3.6) corresponding to u1, u2 ∈ U ,

respectively. Then there exists a positive constant C2, which is independent of
u1, u2, such that

|qu1 − qu2 | ≤ TC2‖u1 − u2‖L∞(Q). (3.9)

We now describe the structure of optimal controllers as follows.

Theorem 3.3. Let u∗(x, s, t) ∈ U be an optimal control for the problem (1.1)–
(1.5), and pu

∗
and qu

∗
be the corresponding solutions of system (1.1)–(1.4) and

(3.6), respectively. Then we have

u∗(x, s, t) = F
{ [w + qu

∗
]pu
∗

ρ

}
(x, s, t), (3.10)

in which the mapping F is defined as

(Fh)(x, s, t) =


ζ1(x, s, t), h(s, t, x) < ζ1(x, s, t),
h(x, s, t), ζ1(x, s, t) ≤ h(x, s, t) ≤ ζ2(x, s, t),
ζ2(x, s, t), h(x, s, t) > ζ2(x, s, t).

(3.11)

Proof. Let TU (u∗) be the tangent cone to U at u∗(see [4]). For any v ∈ TU (u∗), we
know that u∗ + εv ∈ U for the sufficient small ε > 0. Since u∗ is optimal, it follows
that ∫

Q

(
wu∗pu

∗
− 1

2
ρu∗2

)
dx ds dt

≥
∫
Q

(
w(u∗ + εv)pu

∗+εv − 1
2
ρ(u∗ + εv)2

)
dx ds dt,

(3.12)

which implies∫
Q

(
wu∗

pu
∗+εv − pu∗

ε
+ wvpu

∗+εv − 1
2
ρv(2u∗ + εv)

)
dx ds dt ≤ 0. (3.13)
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Let z(x, s, t) be the solution of

∂tz − k∆z = ∂s(d(s)∂sz − g(s)z)− (µ+ u∗)z − vpu
∗

+
∫ S1

S0

β(x, s, t, ŝ)z(x, ŝ, t) dŝ,

∂z

∂s
(x, S0, t) =

∂z

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ),

∂z

∂n
(x, s, t) = 0, on Σ,

z(x, s, 0) = 0, ∀(x, s) ∈ Ω× (S0, S1).

(3.14)

The existence and uniqueness of solutions to (3.14) follows from the theory of
nonhomogeneous parabolic equations (see, e.g. [12]).

Let

wε(x, s, t) =
pu
∗+εv − pu∗

ε
− z(x, s, t), (x, s, t) ∈ Q. (3.15)

It is not hard to deduce that wε(x, s, t) is the solution of

∂tw − k∆w = ∂s(d(s)∂sw − g(s)w)− µw − u∗w

− v(pu
∗+εv − pu

∗
) +

∫ S1

S0

β(x, s, t, ŝ)w(x, ŝ, t) dŝ,

∂w

∂s
(x, S0, t) =

∂w

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ),

∂w

∂n
(x, s, t) = 0, on Σ,

w(x, s, 0) = 0, ∀(x, s) ∈ Ω× (S0, S1).

(3.16)

In what follows, we show wε → 0 as ε→ 0+. By estimating (2.25), we may infer

pu
∗+εv − pu

∗
→ 0, in L2(0, T ;H) as ε→ 0+. (3.17)

We now consider the limit system

∂tw − k∆w = ∂s(d(s)∂sw − g(s)w)− µw − u∗w +
∫ S1

S0

β(x, s, t, ŝ)w(x, ŝ, t) dŝ,

∂w

∂s
(x, S0, t) =

∂w

∂s
(x, S1, t) = 0, ∀(x, t) ∈ Ω× (0, T ),

∂w

∂n
(x, s, t) = 0, on Σ,

w(x, s, 0) = 0, ∀(x, s) ∈ Ω× (S0, S1),
(3.18)

which is a homogenous linear parabolic system and has a unique solution w(x, s, t) =
0 a.e. in Q. Hence, we have

pu
∗+εv − pu∗

ε
→ z, in L2(0, T ;H) asε→ 0+. (3.19)

Passing to the limit in (3.13) we find∫
Q

(
wu∗z + (wpu

∗
− ρu∗)v

)
dx ds dt ≤ 0. (3.20)
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Multiplying (3.6) by z(x, s, t) and integrating it over Q (denoting u by u∗), we
deduce that ∫

Q

wu∗z dx ds dt =
∫
Q

vpu
∗
qu
∗
dx ds dt. (3.21)

Then it follows from (3.20) and (3.21) that∫
Q

{[
(w + qu

∗
)pu

∗
− ρu∗

]
v
}

(s, t, x) dxdtds ≤ 0, ∀v ∈ TU (u∗). (3.22)

According to the properties of normal cone (see [22]), the expression in the square
brackets of (3.22) satisfies (w + qu

∗
)pu

∗ − ρu∗ ∈ NU (u∗), the normal cone to U at
u∗. Consequently the conclusion follows. �

4. Existence and uniqueness of optimal solutions

In this section, we show that there is one and only one solution for optimal
harvesting control problem (1.5). We need the following lemma which can be proven
by the definition of normal cones (see, e.g. [5]).

Lemma 4.1. Suppose that η(x, s, t) ∈ L1(Q) satisfies∫
Q

[η(x, s, t)v(x, s, t) + α|v(x, s, t)|] dx ds dt ≥ 0, ∀v ∈ TU (u), (4.1)

where α is some small positive constant. Then there exists some θ ∈ L∞(Q) such
that |θ|∞ ≤ 1 and u+ αθ ∈ NU (u).

The following result guarantees the existence and uniqueness of the optimal
strategies.

Theorem 4.2. Assume that (H1)–(H6) hold. If

T (C1(W +M2) + C2M1)ρ−1 < 1, (4.2)

where W is the same as in (H6), and Mi, Ci (i = 1, 2) are given in Theorem 2.7,
Lemmas 3.1 and 3.2, then the optimal control problem (1.1)–(1.5) has a unique
solution.

Proof. Define a functional Φ : L1(Q)→ (−∞,+∞] by

Φ(u) =

{
−J(u) =

∫
Q

(
1
2ρu

2 − wpuu
)
dx ds dt, if u ∈ U ,

+∞, if u /∈ U ,
(4.3)

where J(·) is of the form (1.5). By Lemma 3.1, it is easily seen that Φ is lower
semi-continuous. According to the Ekeland variational principle [11], for each ε > 0
there exists uε ∈ U such that

Φ(uε) ≤ inf
u∈U

Φ(u) + ε, (4.4)

Φ(uε) ≤ inf
u∈U
{Φ(u) +

√
ε|u− uε|1}, (4.5)

where | · |1 denotes the norm in L1(Q).
Note that the perturbed functional Φε(u) := Φ(u) +

√
ε|u − uε|1 attains its

infimum at uε. By the same argument as in the previous section, we obtain the
condition∫

Q

(
ρuε − (w + quε)puε

)
v dx ds dt+

√
ε

∫
Q

|v(x, s, t)| dx ds dt ≥ 0, ∀v ∈ TU (uε).

(4.6)
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By Lemma 4.1, we see that there exists θε ∈ L∞(Q), and |θ|∞ ≤ 1, such that

ρuε − (w + quε)puε −
√
εθε ∈ NU (uε), (4.7)

and consequently,

uε(x, s, t) = F [(1/ρ)
(
(w + quε)puε +

√
εθε
)
], a.e. in Q. (4.8)

To show the uniqueness of the optimal controller u, we define J : U ⊂ L∞(Q)→
U by

(J (u))(x, s, t) = F
(w(x, s, t) + qu(x, s, t)

ρ
pu(x, s, t)

)
, a.e. in Q. (4.9)

For (x, s, t) ∈ Q we have

|(J (u))(x, s, t)− (J (v))(x, s, t)|
= |F((1/ρ)(w + qu)pu)−F((1/ρ)(w + qv)pv)|

≤ W

ρ
|pu − pv|+ 1

ρ
|qu||pu − pv|+ 1

ρ
|pv||qu − qv|.

(4.10)

By the estimates (2.24), (2.25), (3.8) and (3.9), we obtain

‖(J (u))(x, s, t)− (J (v))(x, s, t)‖L∞(Q)

≤ T (C1(W +M2) + C2M1)ρ−1‖u− v‖L∞(Q).
(4.11)

So J is a contraction if T (C1(W + M2) + C2M1)ρ−1 < 1, and J has one and
only one fixed point u ∈ U . Theorem 3.3 implies that an optimal controller u∗,
if it exists, must coincide with this fixed point. Hence, the uniqueness of optimal
controls is proved.

Next, we prove the existence of optimal controls. In fact, we only need to show
that the fixed point u minimizes Φ(·). By (4.8) and (4.9), we have

‖J (uε)− uε‖L∞(Q)

= ‖F(ρ−1(w + qu)pu)−F [ρ−1((w + quε)puε +
√
εθε)]‖L∞(Q)

≤ ρ−1
√
ε.

(4.12)

This leads to
‖u− uε‖L∞(Q) ≤ ‖J (u)− J (uε)‖L∞(Q) + ρ−1

√
ε

≤ T (C1(W +M2) + C2M1)ρ−1‖u− uε‖L∞(Q) + ρ−1
√
ε;

(4.13)

that is,

‖u− uε‖L∞(Q) ≤ [1− T (C1(W +M2) + C2M1)ρ−1]−1ρ−1
√
ε. (4.14)

So, we see that uε → u in L∞(Q), and by (4.4) we have Φ(u) = infu∈U Φ(u) which
completes the proof. �

Conclusions and comments. In this article, we introduced a linear structured
population model with spatial diffusion, size random growth (namely, diffusion in
the size space) and the distributed recruitment. Application of the size diffusion
is natural and significant in the biological phenomena [15, 13], since individuals
that have the same size initially, may disperse as time progresses. We equipped
our model with the homogeneous Neumann boundary condition with respect to the
N -dimension spatial variable x and 1-dimension size variable s, and presented the
results of the existence and uniqueness of solution of the state system, which laid
a sufficient foundation for the optimal harvesting control problems.
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By applying the Ekeland variational principle [11] and the properties of normal
cone and adjoint techniques [5], we developed the optimal harvesting strategies
and deduced the conditions to assure only one optimal policy. Theorem 4.2 tells
us that, under the given conditions, our optimal control problem admits one and
only one solution. Furthermore, Theorem 3.3 described the structure, other than
a specific analytical expression, of optimal strategy. Unfortunately, one could not
derive the explicit formula for the optimal strategy since the strategy, the state and
the costate are coupled into a complex system. The results at this stage may be
regarded as a middle step to real world applications and serve as a starting point
for numerical computations.
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