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NONLINEAR FREDHOLM ALTERNATIVE FOR THE
p-LAPLACIAN UNDER NONHOMOGENEOUS NEUMANN
BOUNDARY CONDITION

GUSTAVO FERRON MADEIRA

ABSTRACT. The nonlinear Fredholm alternative for the p-Laplacian in higher
dimensions is established when nonhomogeneous terms appear in the equation
and in the Neumann boundary condition. Further, the geometry of the asso-
ciated energy functional is described and compared with the Dirichlet coun-
terpart. The proofs require only variational methods.

1. INTRODUCTION

The nonlinear Fredholm alternative for the p-Laplacian under Dirichlet boundary
condition has been of interest to several authors, see for instance [2] [5 6] [7, [8, 9,
10, [12] [13], [15]. Given a bounded domain with smooth boundary Q@ ¢ RN, N > 1,
it consists of finding sufficient (and possibly necessary) conditions on f(x) for the
following problem to have a solution:

—Apu = \|ulP"2u+ f(z) inQ

1.1
u=0 on 01, (1.1)

where A\; > 0 is the first eigenvalue of the p-Laplacian in VVO1 P(Q). In the case
p = 2 it is known from the theory of linear equations that the condition

/ ferdz =0, (1.2)
Q

where 1 > 0 is the normalized principal eigenfunction corresponding to Ai, is
necessary and sufficient for the solvalility of (L.1)). For p # 2, the previous condition
is not necessary for the solvability of problem as showed in [2] through an
example in the case N = 1. Still in the one dimensional case a characterization of
how should be f(z) for to have a solution is given in [B]. Characterizations on
f(z) in higher dimensional domains were given in [12] [I3] and [I0] using variational
and topological methods, bifurcation theory or combinations of them.

In this article we are interested in the Neumann boundary condition counterpart.
Actually, we establish the nonlinear Fredholm alternative for the p-Laplacian with
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nonhomogeneous terms appearing in the equation and in the Neumann boundary
condition. More precisely, we consider the problem

~Apu = |ulP2u+ f(z) inQ

(1.3)
|Vu|p_2% =g(z) on 9Q,

where v is the outward normal vector to the boundary 0f) of a smooth domain
Q c RY, with N > 2. The number x; = 0 is the first eigenvalue of the p-Laplacian
operator under zero Neumann boundary condition. We obtain a necessary and
sufficient condition on f(x) and g(x) so that can be solved, characterizing the
solution set. Further, we describe the geometry of the energy functional associated
with and compare with the geometry of the functional in the Dirichlet case.
In fact, contrary to the Dirichlet boundary condition case the analogous condition

of (|1.1)) for problem (|1.3), namely,

/Qfdx—&—/mgdHN_lzo (1.4)

(where HN =1 denotes the (N — 1)-dimensional Haursdorff measure) besides being
necessary suffices for the solvability of . To state our first result let p > 1 and
p*, px be the critical Sobolev exponents for the embeddings W1?(Q2) — L9(Q) and
WhP(Q) — L(H9), respectively. Let also p*’, p. be the corresponding conjugate
exponents; that is, 1/p* + l/p*/ =1 and 1/p, + 1/p, = 1. We prove the following
result.

Theorem 1.1. For (f,g) € Lp*,(Q) x LP(99) problem ([1.3) has a solution if and
only if condition (L.4]) holds. In this case the solution set of (1.3) is

{fue W'P(Q):u=u+e¢, ceR} (1.5)
where u € WHP(Q) is a uniquely determined function.

Theorem [[1] establishes the nonlinear Fredholm alternative for the Neumann
problem in higher dimensions, providing a characterization of the solution
set. In dimension N = 1 it was considered in [6, 14, [15], see also the references
therein.

The proof of Theorem[I.I|requires only variational methods and it is performed as
follows. For p > 1 the energy functional associated with isJ, : WhP(Q) — R,
given by

jp(u):l/ \Vu\pdx—/fudx—/ gqudHN L. (1.6)
pJa Q a0

If holds then it is clear that 7, is not coercive on Wl’p(Q). Restricting J, to
a subspace of W1P(§2) of codimension one induced by then J, turns out to
be coercive and strictly convex. Thus J, has a global minimizer in that subspace,
which is proved to be a critical point over W1P() using the Lagrange multiplier
theorem and will help us to precisely describe the solution set of .

Another question of interest is understanding the geometries of the energy func-
tionals corresponding to and . The associated energy functional for the
Dirichlet problem is & Wol’p(Q) —> R, p > 1, defined by

Sp(u):%/Q|Vu\pdx—%/ﬂ|u|pdx—/9fudm. (1.7)
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When p # 2, so that is driven by a nonlinear operator, the geometry of
&p changes strongly according to p € (1,2) or p € (2,00). Actually, it was showed
in [8] that for p € (1,2), &, is unbounded above and below and has a saddle point
geometry. For p € (1,2) it follows that &, is bounded below and has the global
minimizer geometry. Further, for p # 2 the set of critical points of £, is a priori
bounded, see [8] [].

Concerning the Neumann problem and the Dirichlet problem from
the viewpoint of the geometry of its energy functionals, the conclusion one can
draw is J, behaves like &, for all p > 1. Indeed, the strategy used for the proof
of Theorem helps to infer that J, and &£ have the global minimizer geometry
for all p > 1 and also have unbounded sets of critical points. Thus from such a
perspective nonlinear problem behaves like the linear one (for p = 2).
That is the content of the following theorem.

Theorem 1.2. The energy functional J, for the nonlinear Neumann problem (L.3)
and the energy functional & for the linear Dirichlet problem (1.1)) have the global

minimizer geometry for all p > 1. Further, their sets of critical points are un-
bounded.

The rest of this article is organized as follows. In Section 2 we prove Theorem
In Section 3, after proving a necessary lemma to apply the ideas used in the
proof of Theorem we prove Theorem [T.2

2. PROOF OF THEOREM [L.1]

For p > 1 the critical Sobolev exponents p*, p, for the embeddings W1P(Q) —
L4(Q) and WHP(Q) — LI(9R), respectively, are defined by (see [I])

ﬁ—fp, forl<p< N
pri= 0, forp> N
arbitrary ¢ € (1,00), forp=N
and
p(lflvjpl), forl<p< N
Py 1= § 00, forp > N

arbitrary ¢ € (1,00) for p= N.

Given (f,g) € LP*/(Q) x LP+(99), a function u € WP(Q) is a (weak) solution of
(1.3) when

/|Vu|”_2Vu-V¢dx=/f¢dac+/ gpdHN ! (2.1)
Q Q o

for all ¢ € W1P(Q), that is, if and only if uw € W1P(Q) is a critical point of J,. We

want to prove that problem (|1.3)) has a solution if and only if ([1.4) holds and, in
this case, the solution set of (1.3]) is given by (|1.5)

Proof of Theorem[I1]. As a matter of fact, taking ¢ = 1 in (2.I) it is easy to see
that condition (|1.4) is necessary for the solvability of (1.3)).
Now assume (1.4)) holds and consider the closed subspace of WP (Q),

M= {uce Wl’p(Q):/udazzo}.

Q
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From Poincaré-Wirtinger inequality, see [3], the norm |[ju| = ([, [Vul? dm)% is
equivalent to the usual norm || - ||[y1.» of WHP(Q) in 4.
Let ¢ € 4™ given by

(p,u) ::/fudac—i—/ gqudHN L.
Q o9

Using Holder inequality and the embeddings W1?(Q) < LP" (Q) and W'P(Q) —
LP+(99) one can show the linear functional ¢ is really continuous on ..
Define the functional 7, : W?(Q) — R by

1
jp(“) = |Vu|p dr — <(p7u>a (22)
pJa

which is of class C! in W1P(£2). We split the rest of the proof into 5 steps.

Step 1: Jp’ _y 18 coercive and strictly convex on .. Indeed, since |- || is equivalent
to || - |lwre in A, from the embeddings above and Holder inequality we have

1
5] @)l 2l = 1l el — Nl el
1 _
> full [ ™" = const. (£ +lglz)] — oo as fJull = oo,

proving that J,|  is coercive on .#. The strict convexity of J,|  can be deduced

| »
since the function z + |z|P, z € RY is strictly convex and ¢ is linear.

Step 2: jp| “ has a global minimizer 4 € .#. Note that from the expression
in , which is the difference between a norm and a bounded linear functional,
we obtain Jp| 18 weakly lower semicontinuous. Last information and coercivity
imply jp‘/{ has a global minimizer w € .Z, i.e.,

jp’j{(a> = ulen/f” jp‘/ﬂ(u) (23)

Indeed, by coercivity one gets p > 0 such that jp|//[(u) > jp|%(0) for all u €
(B;”(O))C, where B;”(O) ={ue A |u|| <p} If jp‘//[ were unbounded from
below in Bp‘/”(()) one could obtain (uy) C BPJ”(O) verifying jp‘%(uk) — —o0, as
k — oo. The reflexivity of W1P(Q), p > 1, allows one to use Banach-Alaoglu
theorem (see [3]) and pass to a subsequence (ug;) satisfying uy, — @ (weakly) for
some 4 € ./, and then

T (@) < timint 7| (us,) = =00

what is impossible. Hence jp| _ 18 bounded from below in a such way that the
infimum in is finite and can be attained through a minimizing sequence by
coercivity and weak lower semicontinuity.

Step 3: « is the unique global minimizer and is the only critical point of jp‘ VL
Stricty convexity assures uniqueness of the global minimizer 4 € . in (2.3)). In
fact, if @, # @y were two global minimizers in one would have

, 1 1 1 ) .
a0, Tl ) < T (5014 72)) < 37| @0) + 57| (52) = inf, T )

a contradiction. Now let ( € .Z be a critical point of jp’(/fz' Given w € ., define
o(t) = j,,|%(g + tw) for ¢ € R. It is not difficult to infer that ¢ is differentiable,
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strictly convex and satisfies ¢/(0) = 0. Thus from the fact that ¢’ is strictly
increasing one can deduce o’ (t) # 0 for ¢ # 0; that is, <‘7P|,//1(C + tw), w) # 0.
Hence Jp|/ﬂ(§ +tw) # 0 for t # 0 and since w € # is arbitrary J,

other critical point than ¢. It follows from step 2 that J,
critical point.

Step 4: @ is a weak solution to (L.3). Let F(u) := [,udz, for u € WP(Q).
Thanks to (2.3)) the Lagrange multiplier theorem (see [I1]) yields p € R verifying
Jy(u) = pF'(u); that is,

|Vu|lP~2Vu-Vodr — [ fode— | gopdHN ' =p | ¢do
/ fyteee= ], k

for all $ € W1P(£2). Using ¢ =1 as a test function in previous relation one obtains

,u—glu[/ﬂfd:v+/899dHN1]

and by (1.4) it follows that u = 0. Hence (2.1]) holds, and & € W1P(Q) is a weak
solution to (1.3).

Step 5: The set (1.5)) is the solution set of (1.3). Actually, define u := @. It is
clear that u + ¢ solves (1.3 for any constant ¢ € R. Conversely, given a solution
u of (L.3) one has u — (W Joudz) € A satisfies (2.1]) and then is a critical point
of ‘71’{//{' The uniqueness from step 3 implies © = u + ¢, with ¢ = ﬁ fQ udx. The
proof is complete. O

f/” has no

| _y has u as its unique

3. PROOF OF THEOREM
Recall that the first and second eigenvalues of —A in H}(Q2) are

Vul|?d
A = inf fﬂ‘iw (3.1)
weHY(Q),u0  [ou? dx
and
Vul?d
)\2 = inf M’ (3.2)

u€El, u#0 fQ u? dz

respectively, where
0 :={u€ H)(Q) : / upy dz =0} (3.3)
Q

and ¢1 > 0 is the normalized eigenfunction associated with A;. Also one has
A2 > A1 >0 (see [E]).

Lemma 3.1. In the Hilbert space O given by (3.3|) the expression

1/2
lulle = (/QIVuPda:—)\l /ﬂqux)

defines a norm equivalent to the usual norm in H ().

Proof. Note that || - ||¢ is induced by the inner product, in &,

(um)@::/Vu-Vvdx—)\l/uvdac.
Q Q
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Indeed, linearity and symmetry of (-,-)g are trivial. For v € &, with u Z 0, by

(3-1) and (3.2) one gets
(u,u)e > / |Vu|? dz — )\2/ u? da > 0;
Q Q

that is, (u,u)s = 0 if and only if v = 0. Hence, (+,-)s is an inner product and
induces the norm || - ||¢. Finally, the equivalence between the norms || - || ¢ and the
usual norm [[ul| g1 o) = (fo, |Vul? dz)'/? follows from and (3.2)) since

A1
s gy = ||uuﬁ_/ Vul? de A [)\g/u de
/|Vu|2 xf— /|Vu|2dx

— - ]||u||H1m),
where 1 — £+ > 0. The proof is complete. ([

Proof of Theorem[1.Z The proof will be given in two steps.
Step 1: J, has the global minimizer geometry for all p > 1. Indeed, from Theorem
all critical points of 7, belong to the set

{ue W'P(Q):u=u+e¢, ceR}

of solutions to (1.3). Thus under condition (|1.4)), and thanks to u being a global
minimizer of Jp| ,, one obtains that for all ¢,d € R and v € .#,

Tp(u+c) = Tp(u jp‘j/ <~7p‘//1 = Jp(v +d).
Since W1P(Q) = R® .# for p > 1 and v, ¢, d are arbitrary, we conclude that
Tp(u+c) < Tp(u)

for all w € WHP(Q); that is, all critical points of J, are global minimizers. Thus
Jp has the global minimizer geometry for all p > 1.

Step 2: & has the global minimizer geometry. First note that the set & given by
(3.3)) is a closed subspace of H{(£2) of codimension one. When restricted to €, the
functional & given by (|1.7)) can be expressed, using previous lemma, as

€2|ﬁ(u) = ||ull¢ f/ﬂfudx

for allu € 0. That is, & | P is the sum of a norm with a continuous linear functional

and thus all arguments used in steps 1 to 5 of the proof of Theorem [I.1] apply.
Then, like jp"  one has 82‘ o coercive and strictly convex, having a global

minimizer &t on & which is a critical point of & in H{(Q2). Also, the unbounded set

{tor +0:teR}

is the set of critical points of £&. A similar procedure as in step 1 allows one to
infer that all those critical points are global minimizers of &; that is, & has the
global minimizer geometry. The proof is complete. (I
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