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NONLINEAR FREDHOLM ALTERNATIVE FOR THE
p-LAPLACIAN UNDER NONHOMOGENEOUS NEUMANN

BOUNDARY CONDITION

GUSTAVO FERRON MADEIRA

Abstract. The nonlinear Fredholm alternative for the p-Laplacian in higher

dimensions is established when nonhomogeneous terms appear in the equation

and in the Neumann boundary condition. Further, the geometry of the asso-
ciated energy functional is described and compared with the Dirichlet coun-

terpart. The proofs require only variational methods.

1. Introduction

The nonlinear Fredholm alternative for the p-Laplacian under Dirichlet boundary
condition has been of interest to several authors, see for instance [2, 5, 6, 7, 8, 9,
10, 12, 13, 15]. Given a bounded domain with smooth boundary Ω ⊂ RN , N ≥ 1,
it consists of finding sufficient (and possibly necessary) conditions on f(x) for the
following problem to have a solution:

−∆pu = λ1|u|p−2u+ f(x) in Ω
u = 0 on ∂Ω,

(1.1)

where λ1 > 0 is the first eigenvalue of the p-Laplacian in W 1,p
0 (Ω). In the case

p = 2 it is known from the theory of linear equations that the condition∫
Ω

fϕ1 dx = 0, (1.2)

where ϕ1 > 0 is the normalized principal eigenfunction corresponding to λ1, is
necessary and sufficient for the solvalility of (1.1). For p 6= 2, the previous condition
is not necessary for the solvability of problem (1.1) as showed in [2] through an
example in the case N = 1. Still in the one dimensional case a characterization of
how should be f(x) for (1.1) to have a solution is given in [5]. Characterizations on
f(x) in higher dimensional domains were given in [12, 13] and [10] using variational
and topological methods, bifurcation theory or combinations of them.

In this article we are interested in the Neumann boundary condition counterpart.
Actually, we establish the nonlinear Fredholm alternative for the p-Laplacian with
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nonhomogeneous terms appearing in the equation and in the Neumann boundary
condition. More precisely, we consider the problem

−∆pu = µ1|u|p−2u+ f(x) in Ω

|∇u|p−2 ∂u

∂ν
= g(x) on ∂Ω,

(1.3)

where ν is the outward normal vector to the boundary ∂Ω of a smooth domain
Ω ⊂ RN , with N ≥ 2. The number µ1 = 0 is the first eigenvalue of the p-Laplacian
operator under zero Neumann boundary condition. We obtain a necessary and
sufficient condition on f(x) and g(x) so that (1.3) can be solved, characterizing the
solution set. Further, we describe the geometry of the energy functional associated
with (1.3) and compare with the geometry of the functional in the Dirichlet case.

In fact, contrary to the Dirichlet boundary condition case the analogous condition
of (1.1) for problem (1.3), namely,∫

Ω

f dx+
∫
∂Ω

g dHN−1 = 0 (1.4)

(where HN−1 denotes the (N − 1)-dimensional Haursdorff measure) besides being
necessary suffices for the solvability of (1.3). To state our first result let p > 1 and
p?, p? be the critical Sobolev exponents for the embeddings W 1,p(Ω) ↪→ Lq(Ω) and
W 1,p(Ω) ↪→ Lq(∂Ω), respectively. Let also p?

′
, p′? be the corresponding conjugate

exponents; that is, 1/p? + 1/p?
′

= 1 and 1/p? + 1/p′? = 1. We prove the following
result.

Theorem 1.1. For (f, g) ∈ Lp?′

(Ω)×Lp′
?(∂Ω) problem (1.3) has a solution if and

only if condition (1.4) holds. In this case the solution set of (1.3) is{
u ∈W 1,p(Ω) : u = u + c, c ∈ R

}
(1.5)

where u ∈W 1,p(Ω) is a uniquely determined function.

Theorem 1.1 establishes the nonlinear Fredholm alternative for the Neumann
problem (1.3) in higher dimensions, providing a characterization of the solution
set. In dimension N = 1 it was considered in [6, 14, 15], see also the references
therein.

The proof of Theorem 1.1 requires only variational methods and it is performed as
follows. For p > 1 the energy functional associated with (1.3) is Jp : W 1,p(Ω) −→ R,
given by

Jp(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

fu dx−
∫
∂Ω

gu dHN−1. (1.6)

If (1.4) holds then it is clear that Jp is not coercive on W 1,p(Ω). Restricting Jp to
a subspace of W 1,p(Ω) of codimension one induced by (1.4) then Jp turns out to
be coercive and strictly convex. Thus Jp has a global minimizer in that subspace,
which is proved to be a critical point over W 1,p(Ω) using the Lagrange multiplier
theorem and will help us to precisely describe the solution set of (1.3).

Another question of interest is understanding the geometries of the energy func-
tionals corresponding to (1.1) and (1.3). The associated energy functional for the
Dirichlet problem (1.1) is Ep : W 1,p

0 (Ω) −→ R, p > 1, defined by

Ep(u) =
1
p

∫
Ω

|∇u|p dx− λ1

p

∫
Ω

|u|p dx−
∫

Ω

fu dx. (1.7)
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When p 6= 2, so that (1.1) is driven by a nonlinear operator, the geometry of
Ep changes strongly according to p ∈ (1, 2) or p ∈ (2,∞). Actually, it was showed
in [8] that for p ∈ (1, 2), Ep is unbounded above and below and has a saddle point
geometry. For p ∈ (1, 2) it follows that Ep is bounded below and has the global
minimizer geometry. Further, for p 6= 2 the set of critical points of Ep is a priori
bounded, see [8, 9].

Concerning the Neumann problem (1.3) and the Dirichlet problem (1.1) from
the viewpoint of the geometry of its energy functionals, the conclusion one can
draw is Jp behaves like E2, for all p > 1. Indeed, the strategy used for the proof
of Theorem 1.1 helps to infer that Jp and E2 have the global minimizer geometry
for all p > 1 and also have unbounded sets of critical points. Thus from such a
perspective nonlinear problem (1.3) behaves like the linear one (1.1) (for p = 2).
That is the content of the following theorem.

Theorem 1.2. The energy functional Jp for the nonlinear Neumann problem (1.3)
and the energy functional E2 for the linear Dirichlet problem (1.1) have the global
minimizer geometry for all p > 1. Further, their sets of critical points are un-
bounded.

The rest of this article is organized as follows. In Section 2 we prove Theorem
1.1. In Section 3, after proving a necessary lemma to apply the ideas used in the
proof of Theorem 1.1, we prove Theorem 1.2.

2. Proof of Theorem 1.1

For p > 1 the critical Sobolev exponents p?, p? for the embeddings W 1,p(Ω) ↪→
Lq(Ω) and W 1,p(Ω) ↪→ Lq(∂Ω), respectively, are defined by (see [1])

p? :=


pN
N−p , for 1 < p < N

∞, for p > N

arbitrary q ∈ (1,∞), for p = N

and

p? :=


p(N−1)
N−p , for 1 < p < N

∞, for p > N

arbitrary q ∈ (1,∞) for p = N.

Given (f, g) ∈ Lp?′

(Ω) × Lp′
?(∂Ω), a function u ∈ W 1,p(Ω) is a (weak) solution of

(1.3) when ∫
Ω

|∇u|p−2∇u · ∇φdx =
∫

Ω

fφ dx+
∫
∂Ω

gφ dHN−1 (2.1)

for all φ ∈W 1,p(Ω), that is, if and only if u ∈W 1,p(Ω) is a critical point of Jp. We
want to prove that problem (1.3) has a solution if and only if (1.4) holds and, in
this case, the solution set of (1.3) is given by (1.5)

Proof of Theorem 1.1. As a matter of fact, taking φ = 1 in (2.1) it is easy to see
that condition (1.4) is necessary for the solvability of (1.3).

Now assume (1.4) holds and consider the closed subspace of W 1,p(Ω),

M
.=
{
u ∈W 1,p(Ω) :

∫
Ω

u dx = 0
}
.
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From Poincaré-Wirtinger inequality, see [3], the norm ‖u‖ := (
∫

Ω
|∇u|p dx)

1
p is

equivalent to the usual norm ‖ · ‖W 1,p of W 1,p(Ω) in M .
Let ϕ ∈M ? given by

〈ϕ, u〉 :=
∫

Ω

fu dx+
∫
∂Ω

gu dHN−1.

Using Hölder inequality and the embeddings W 1,p(Ω) ↪→ Lp
?

(Ω) and W 1,p(Ω) ↪→
Lp?(∂Ω) one can show the linear functional ϕ is really continuous on M .

Define the functional Jp : W 1,p(Ω) −→ R by

Jp(u) :=
1
p

∫
Ω

|∇u|p dx− 〈ϕ, u〉, (2.2)

which is of class C1 in W 1,p(Ω). We split the rest of the proof into 5 steps.
Step 1: Jp

∣∣
M

is coercive and strictly convex on M . Indeed, since ‖·‖ is equivalent
to ‖ · ‖W 1,p in M , from the embeddings above and Hölder inequality we have

|Jp
∣∣
M

(u)| ≥ 1
p
‖u‖p − ‖f‖p?′‖u‖p? − ‖g‖p′

?
‖u‖p?

≥ ‖u‖
[1
p
‖u‖p−1 − const.(‖f‖p?′ + ‖g‖p′

?
)
]
→∞ as ‖u‖ → ∞ ,

proving that Jp
∣∣
M

is coercive on M . The strict convexity of Jp
∣∣
M

can be deduced
since the function x 7→ |x|p, x ∈ RN , is strictly convex and ϕ is linear.
Step 2: Jp

∣∣
M

has a global minimizer ū ∈ M . Note that from the expression
in (2.2), which is the difference between a norm and a bounded linear functional,
we obtain Jp

∣∣
M

is weakly lower semicontinuous. Last information and coercivity
imply Jp

∣∣
M

has a global minimizer ū ∈M , i.e.,

Jp
∣∣
M

(ū) = inf
u∈M

Jp
∣∣
M

(u). (2.3)

Indeed, by coercivity one gets ρ > 0 such that Jp
∣∣
M

(u) ≥ Jp
∣∣
M

(0) for all u ∈
(BM

ρ (0))c, where BM
ρ (0) .= {u ∈ M : ‖u‖ < ρ}. If Jp

∣∣
M

were unbounded from
below in BM

ρ (0) one could obtain (uk) ⊂ BM
ρ (0) verifying Jp

∣∣
M

(uk) → −∞, as
k → ∞. The reflexivity of W 1,p(Ω), p > 1, allows one to use Banach-Alaoglu
theorem (see [3]) and pass to a subsequence (ukj

) satisfying ukj
⇀ ũ (weakly) for

some ũ ∈M , and then

Jp
∣∣
M

(ũ) ≤ lim inf
j→∞

Jp
∣∣
M

(ukj
) = −∞

what is impossible. Hence Jp
∣∣
M

is bounded from below in a such way that the
infimum in (2.3) is finite and can be attained through a minimizing sequence by
coercivity and weak lower semicontinuity.
Step 3: ū is the unique global minimizer and is the only critical point of Jp

∣∣
M

.
Stricty convexity assures uniqueness of the global minimizer ū ∈ M in (2.3). In
fact, if ū1 6= ū2 were two global minimizers in (2.3) one would have

inf
u∈M

Jp
∣∣
M

(u) ≤ Jp
∣∣
M

(1
2

(ū1 + ū2)
)
<

1
2
Jp
∣∣
M

(ū1) +
1
2
Jp
∣∣
M

(ū2) = inf
u∈M

Jp
∣∣
M

(u),

a contradiction. Now let ζ ∈M be a critical point of Jp
∣∣
M

. Given w ∈M , define
σ(t) := Jp

∣∣
M

(ζ + tw) for t ∈ R. It is not difficult to infer that σ is differentiable,



EJDE-2016/210 NONLINEAR FREDHOLM ALTERNATIVE 5

strictly convex and satisfies σ′(0) = 0. Thus from the fact that σ′ is strictly
increasing one can deduce σ′(t) 6= 0 for t 6= 0; that is, 〈Jp

∣∣′
M

(ζ + tw), w〉 6= 0.
Hence Jp

∣∣′
M

(ζ + tw) 6= 0 for t 6= 0 and since w ∈ M is arbitrary Jp
∣∣
M

has no
other critical point than ζ. It follows from step 2 that Jp

∣∣
M

has ū as its unique
critical point.
Step 4: ū is a weak solution to (1.3). Let F (u) :=

∫
Ω
u dx, for u ∈ W 1,p(Ω).

Thanks to (2.3) the Lagrange multiplier theorem (see [11]) yields µ ∈ R verifying
J ′p(ū) = µF ′(ū); that is,∫

Ω

|∇u|p−2∇u · ∇φdx−
∫

Ω

fφ dx−
∫
∂Ω

gφ dHN−1 = µ

∫
Ω

φdx

for all φ ∈W 1,p(Ω). Using φ ≡ 1 as a test function in previous relation one obtains

µ = − 1
|Ω|

[ ∫
Ω

f dx+
∫
∂Ω

g dHN−1
]

and by (1.4) it follows that µ = 0. Hence (2.1) holds, and ū ∈ W 1,p(Ω) is a weak
solution to (1.3).
Step 5: The set (1.5) is the solution set of (1.3). Actually, define u := ū. It is
clear that u + c solves (1.3) for any constant c ∈ R. Conversely, given a solution
u of (1.3) one has u− ( 1

|Ω|
∫

Ω
u dx) ∈M satisfies (2.1) and then is a critical point

of Jp
∣∣
M

. The uniqueness from step 3 implies u = u + c, with c = 1
|Ω|
∫

Ω
u dx. The

proof is complete. �

3. Proof of Theorem 1.2

Recall that the first and second eigenvalues of −∆ in H1
0 (Ω) are

λ1 = inf
u∈H1

0 (Ω), u 6=0

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

(3.1)

and

λ2 = inf
u∈O, u 6=0

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

, (3.2)

respectively, where

O :=
{
u ∈ H1

0 (Ω) :
∫

Ω

uϕ1 dx = 0
}

(3.3)

and ϕ1 > 0 is the normalized eigenfunction associated with λ1. Also one has
λ2 > λ1 > 0 (see [4]).

Lemma 3.1. In the Hilbert space O given by (3.3) the expression

‖u‖O :=
(∫

Ω

|∇u|2 dx− λ1

∫
Ω

u2 dx
)1/2

defines a norm equivalent to the usual norm in H1
0 (Ω).

Proof. Note that ‖ · ‖O is induced by the inner product, in O,

(u, v)O :=
∫

Ω

∇u · ∇v dx− λ1

∫
Ω

uv dx.



6 G. F. MADEIRA EJDE-2016/210

Indeed, linearity and symmetry of (·, ·)O are trivial. For u ∈ O, with u 6≡ 0, by
(3.1) and (3.2) one gets

(u, u)O >

∫
Ω

|∇u|2 dx− λ2

∫
Ω

u2 dx > 0;

that is, (u, u)O = 0 if and only if u = 0. Hence, (·, ·)O is an inner product and
induces the norm ‖ · ‖O . Finally, the equivalence between the norms ‖ · ‖O and the
usual norm ‖u‖H1

0 (Ω) = (
∫

Ω
|∇u|2 dx)1/2 follows from (3.1) and (3.2) since

‖u‖2H1
0 (Ω) ≥ ‖u‖

2
O =

∫
Ω

|∇u|2 dx− λ1

λ2

[
λ2

∫
Ω

u2 dx
]

≥
∫

Ω

|∇u|2 dx− λ1

λ2

[ ∫
Ω

|∇u|2 dx
]

= [1− λ1

λ2
]‖u‖2H1

0 (Ω),

where 1− λ1
λ2
> 0. The proof is complete. �

Proof of Theorem 1.2. The proof will be given in two steps.

Step 1: Jp has the global minimizer geometry for all p > 1. Indeed, from Theorem
1.1 all critical points of Jp belong to the set{

u ∈W 1,p(Ω) : u = u + c, c ∈ R
}

of solutions to (1.3). Thus under condition (1.4), and thanks to u being a global
minimizer of Jp

∣∣
M

, one obtains that for all c, d ∈ R and v ∈M ,

Jp(u + c) = Jp(u) = Jp
∣∣
M

(u) ≤ Jp
∣∣
M

(v) = Jp(v + d).

Since W 1,p(Ω) = R⊕M for p > 1 and v, c, d are arbitrary, we conclude that

Jp(u + c) ≤ Jp(u)

for all u ∈ W 1,p(Ω); that is, all critical points of Jp are global minimizers. Thus
Jp has the global minimizer geometry for all p > 1.

Step 2: E2 has the global minimizer geometry. First note that the set O given by
(3.3) is a closed subspace of H1

0 (Ω) of codimension one. When restricted to O, the
functional E2 given by (1.7) can be expressed, using previous lemma, as

E2
∣∣
O

(u) = ‖u‖O −
∫

Ω

fu dx

for all u ∈ O. That is, E2
∣∣
O

is the sum of a norm with a continuous linear functional
and thus all arguments used in steps 1 to 5 of the proof of Theorem 1.1 apply.

Then, like Jp
∣∣
M

one has E2
∣∣
O

coercive and strictly convex, having a global
minimizer ũ on O which is a critical point of E2 in H1

0 (Ω). Also, the unbounded set{
tϕ1 + ũ : t ∈ R

}
is the set of critical points of E2. A similar procedure as in step 1 allows one to
infer that all those critical points are global minimizers of E2; that is, E2 has the
global minimizer geometry. The proof is complete. �
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