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BIFURCATION AND MULTIPLICITY OF SOLUTIONS FOR THE
FRACTIONAL LAPLACIAN WITH CRITICAL EXPONENTIAL

NONLINEARITY

PAWAN KUMAR MISHRA, KONIJETI SREENADH

Abstract. We study the fractional elliptic equation

(−∆)1/2u = λu+ |u|p−2ueu2
, in (−1, 1),

u = 0 in R \ (−1, 1),

where λ is a positive real parameter, p > 2 and (−∆)1/2 is the fractional

Laplacian operator. We show the multiplicity of solutions for this problem

using an abstract critical point theorem of literature in critical point theory.
Precisely, we extended the result of Cerami, Fortuno and Struwe [5] for the

fractional Laplacian with exponential nonlinearity.

1. Introduction

We study the fractional elliptic equation

(−∆)1/2u = λu+ |u|p−2ueu
2
, in (−1, 1),

u = 0 in R \ (−1, 1),
(1.1)

where λ is a positive real parameter, p > 2 and (−∆)1/2 is the fractional Laplacian
operator which is defined as follows

−(−∆)1/2u(x) =
1

2π

∫
R

u(x+ y) + u(x− y)− 2u(x)
|y|2

dy for all x ∈ R.

The fractional Laplacian operator has been a classical topic in Fourier analysis and
nonlinear partial differential equations for a long time. In the recent past the frac-
tional Laplacian operator has been widely studied by many researchers due to its
wide range of applications in many fields such as optimization, finance, phase tran-
sitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films,
semipermeable membranes, flame propagation, conservation laws, ultra-relativistic
limits of quantum mechanics, quasi-geostrophic lows, multiple scattering, minimal
surfaces, materials science, water waves, thin obstacle problem, optimal transport,
image reconstruction and many more, see [1, 3, 25, 26] and references therein.

Bifurcation and multiplicity results for the case of Laplace operator with criti-
cal polynomial growth was initially studied in [5], where authors showed that the
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problem

−∆u = λu+ u2∗−2u, in Ω, u = 0 on ∂Ω (1.2)

has m pairs of solutions for λ lying in the suitable left neighborhood of any eigen-
value with multiplicity m of the Laplace operator with Dirichlet boundary condi-
tions. Moreover the asymptotic behavior of the solutions is studied when the length
of neighborhood goes to zero. Further the bifurcation and multiplicity results for
the quasilinear counterpart of the problem in (1.2) have been discussed in [20] using
critical point theorem based on a pseudo-index related to the cohomological index.
The problems with critical exponential nonlinearity has been discussed in [6], where
authors have obtained the local multiplicity results for the problem having singular
exponential nonlinearity. Also the asymptotic behavior of the connected unbounded
branch of solutions is shown in the radial case.

In the recent past the existence and multiplicity results have been obtained for
the problems involving nonlocal fractional operators, see [8, 15, 16, 17, 18, 21] and
references therein. In [8], the authors considered the critical exponent problem

(−∆)su = λu+ u2s
∗−2u, in Ω, u = 0 on ∂Ω,

where Ω ⊂ Rn, s ∈ (0, 1) and 2s∗ = 2n
n−2s is the fractional critical Sobolev exponent.

Using the abstract critical point theorem, authors have generalized the results of
Cerami, Fortuno and Struwe [5] for the nonlocal setting. For the case of p-fractional
operator, Perera Squassina et al. showed the multiplicity results in [21] using the
idea of [20].

Recently the fractional nonlocal operators with exponential nonlinearity has been
studied in [9, 10, 11, 14]. In [11], authors showed the existence of at least two so-
lutions in the bounded domain of R by showing the Palais-smale condition in the
suitable range. These results are fractional generalizations of results obtained in
[7]. In [14], authors obtained the existence result in whole R by assuming a van-
ishing potential which tackles the compactness issue. Further in [10], existence and
multiplicity results were obtained with superlinear and convex-concave type sign
changing critical exponential nonlinearity using idea of Nehari manifold by convert-
ing the nonlocal problem into local setting by harmonic extensions introduced in
[4]. In [10], authors obtained the existence result for whole R using the suitable
fractional version of Moser-Trudinger inequality.

In this work we obtain the similar results as in [8] for the nonlinearity having
critical exponential growth in R. The main difficulty in our problem is the lack
of compactness. We use the Moser-Trundinger inequality, see (2.1) below, adapted
from [9, 11] to get pass the limit.

Now we define the function space where we look for the solutions of problem
(1.1). Also, we discuss the spectrum for the fractional Laplacian and some spectral
properties related to our nonlocal operator. In [22], Servedei and Valdinoci intro-
duced such spaces for the problems involving nonlocal operators. We adopt the
same idea to define the linear space as follows:

X =
{
u : R→ R is measurable, u|(−1,1) ∈ L2((−1, 1)) and∫
Q

|u(x)− u(y)|2

|x− y|2
dx dy <∞

}
,
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where Q = R2 \ (C(−1, 1)×C(−1, 1)) and C(−1, 1) = R \ (−1, 1). The space X is a
normed linear space endowed with the norm

‖u‖2X = ‖u‖22 +
∫
Q

|u(x)− u(y)|2

|x− y|2
dx dy,

where ‖ · ‖2 denotes the L2((−1, 1)) norm of u. Then we define the space X0 as

X0 = {u ∈ X : u = 0 a.e. in R \ (−1, 1)}.
The space X0 is a Hilbert space, see [22], with the inner product

〈u, v〉 =
∫

R×R

(u(x)− u(y))(v(x)− v(y))
|x− y|2

dx dy. (1.3)

The norm on X0, induced from the scalar product in (1.3) is defined as

‖u‖X0 =
(∫

R×R

|u(x)− u(y)|2

|x− y|2
dxdy

)1/2

.

Now we define an equivalent norm on X0 as follows

‖u‖ =
( 1

2π

∫
R×R

|u(x)− u(y)|2

|x− y|2
dxdy

)1/2

.

Then from [19, Proposition 3.6], we have

‖u‖ = ‖(−∆)1/4u‖22.
Problems of the type (1.1) are motivated from the following Moser-Trudinger in-
equality, see [12].
Moser-Trudinger inequality: For any u ∈ X0, eαu

2 ∈ L1((−1, 1)) for all α > 0.
Moreover for α ≤ π

sup
u∈X0, ‖u‖≤1

∫ 1

−1

eαu
2
dx <∞. (1.4)

The above inequality is sharp in the sense that if α > π the integral in (1.4) is
not finite. Now we discuss the eigenvalue problem of the type

(−∆)1/2u = λu in (−1, 1), u = 0 in R \ (−1, 1).

It is known that there exists a infinite sequence of eigenvalues λ1 < λ2 ≤ · · · ≤
λn ≤ . . . with λn → +∞ as n → ∞. The eigenfunctions {ϕn} corresponding to
each eigenvalue λn form an orthonormal basis for L2((−1, 1)) and an orthogonal
basis for X0. For more details see the work of Servedei and Valdinoci in [23, 24].

Let λ ∈ R be given. Denote λ∗ = min{λn : λ < λn} then λ∗ = λn for some
n ∈ N and λ∗ ≥ λ1. Let λ∗ have multiplicity m, then

λ∗ = λ1 < λ2 if n = 1,
λn−1 < λ∗ = λn = λn+1 = · · · = λn+m−1 < λn+m if n ≥ 2.

For more details related to eigenvalue for the square root of the Laplacian in the
interval (−1, 1) see [13]. Now we state our main result.

Theorem 1.1. Problem (1.1) has m pairs of nontrivial solutions {−uλj , uλj } for
λ lying in the sufficiently small left neighborhood of λ∗. Moreover ‖uλj ‖ → 0 as
λ→ λ∗.

To prove the Theorem 1.1 we use the following result, see [2, Theorem 2.4].
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Theorem 1.2. Let H be a Hilbert space with the norm ‖ · ‖ and I : H → R be a
C1(H,R) functional satisfying the following conditions:

(A1) I(0) = 0 and I(−u) = I(u);
(A2) I satisfies the Palais-Smale condition, in short (PS)c, for c ∈ (0, β) for

some β > 0;
(A3) There exists closed subspaces V,W of H and constants ρ, δ, η with δ < η < β

such that
(i) I(u) ≤ η for all u ∈W
(ii) I(u) ≥ δ for any u ∈ V with ‖u‖ = ρ

(iii) codim(V ) <∞ and dimW ≥ codimV .
Then there exists at least dimW − codimV pairs of critical points of I with critical
values belonging to the interval [δ, η].

2. Bifurcation and multiplicity result

In this section, we define the variational functional related to the problem and
we show that the functional satisfies the requirement of critical point Theorem 1.2.

A function u ∈ X0 is called a weak solution of (1.1) if

1
2π

∫
R×R

(u(x)− u(y))(φ(x)− φ(y))
|x− y|2

dx dy

− λ
∫ 1

−1

u(x)φ(x)dx−
∫ 1

−1

g(u(x))φ(x)dx = 0

for all φ ∈ X0.
The variational functional Iλ : X0 → R associated with (1.1) is defined as

Iλ(u) =
1
2
‖u‖2 − λ

2

∫ 1

−1

|u|2dx−
∫ 1

−1

G(u)dx,

where G(t) =
∫ t
0
g(s)ds is the primitive of g. It is clear that the functional Iλ ∈

C1(X0,R) and critical points of the functional Iλ are the solutions of (1.1). From
the definition, Iλ(0) = 0 and from g being an odd function, Iλ(−u) = Iλ(u). Hence
the assumption (A1) is satisfied.

Now we show the geometric requirements as in (A3). We assume that

W = span{ϕ1, ϕ2, . . . ϕn+m−1}

and V = X0 if n = 1, otherwise

V = {u ∈ X0 : 〈u, ϕj〉 = 0 ∀ 1 ≤ j ≤ n− 1}.

Then both W and V are closed subspaces of X0 with dim W = n + m − 1 and
codimV = n− 1. Now take u ∈W then u(x) =

∑n+m−1
j=1 αjϕj(x) and

‖u‖2 =
n+m−1∑
j=1

α2
j‖ϕj‖2 =

n+m−1∑
j=1

λjα
2
j ≤ λn

n+m−1∑
j=1

α2
j = λn‖u‖22 = λ∗‖u‖22.

Now using that G(t) ≥ 1
p |t|

p, for u ∈W , we obtain

Iλ(u) =
1
2
‖u‖2 − λ

2
‖u‖22 −

∫ 1

−1

G(u(x))dx ≤ 1
2

(λ∗ − λ)‖u‖22 −
∫ 1

−1

G(u(x))dx
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≤ 1
2

(λ∗ − λ)2
p

p−2 ‖u‖2p −
1
p
‖u‖pp.

Define f(t) = 1
2 (λ∗ − λ)2

p
p−2 t2 − 1

p t
p, then f(t) has a maximum at

t0 =
(

(λ∗ − λ)2
p

p−2

) 1
p−2

.

Hence

Iλ(u) ≤ η = (
1
2
− 1
p

)
(

(λ∗ − λ)2
p

p−2

) 1
p−2

.

Note that we can make η to be arbitrary small positive number by choosing λ
suitably close to λ∗.

For the second part, we make use of the fact that for u ∈ V , we have ‖u‖2 ≥
λ∗‖u‖22 and G(t) ≤ 1

pe
t2 |t|p. Therefore

Iλ(u) ≥
(λ∗ − λ

2λ∗

)
‖u‖2 − 1

p

∫ 1

−1

|u|peu
2
dx ≥

(λ∗ − λ
2λ∗

)
‖u‖2 − C

p
‖u‖p = δ > 0

for ‖u‖ = ρ with sufficiently small value of ρ > 0. Note that the second integral
in the above expression is well defined by Moser-Trudinger inequality (1.4) for the
choice of ρ > 0 taken. Now we prove few Lemmas which are useful for showing
compactness of Palais-Smale sequence.

Lemma 2.1. Every Palais-Smale sequence of Iλ is bounded in X0.

Proof. Let {uk} be a Palais-Smale sequence that is

|Iλ(uk)| ≤ C and 〈I ′λ(uk), uk〉 ≤ C‖uk‖, (2.1)

for any k ∈ N. Also using the fact that G(t) ≤ 1
pg(t)t, we obtain

Iλ(uk)− 1
2
I ′λ(uk)(uk) ≥

(1
2
− 1
p

) ∫ 1

−1

g(uk)ukdx

≥
(1

2
− 1
p

) ∫ 1

−1

|uk|pdx ≥ C0‖uk‖p.
(2.2)

On the other hand, from (2.1), we obtain

Iλ(uk)− 1
2
〈I ′λ(uk)(uk)〉 ≤ C(1 + ‖uk‖). (2.3)

Now, from (2.2) and (2.3), we obtain ‖uk‖p ≤ C(1 + ‖uk‖), which implies that
sequence {uk} is bounded in X0. �

Lemma 2.2. Let {uk} be a Palais-Smale sequence for Iλ then g(uk) → g(u) in
L1((−1, 1)) for some u ∈ X0.

Proof. From Lemma 2.1, we obtain that {uk} is bounded, therefore

‖u‖ ≤ C,
∫ 1

−1

g(uk)ukdx ≤ C,
∫ 1

−1

G(uk)dx ≤ C. (2.4)

So there exists u ∈ X0 such that uk ⇀ u in X0, uk → u in Lγ((−1, 1)) for all γ > 1
and uk(x)→ u(x) a.e. in (−1, 1). Now the proof follows from Lebesgue dominated
convergence theorem, see [7, Lemma 2.1]. �

Now we state a version of higher integrability Lemma. Proof is adapted from
[10, Lemma 4.1].
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Lemma 2.3. Let {uk} be a sequence in X0 with ‖uk‖ = 1 and uk ⇀ u weakly in
X0. Then for any r such that 1 < r < 1

1−‖u‖2 , we have

sup
k

∫ 1

−1

eαr(uk)2dx <∞, for all 0 < α < π.

Proof. First we note that from Young’s inequality, for 1
µ + 1

ν = 1, we have

es+t ≤ 1
µ
eµs +

1
ν
eνt. (2.5)

Now using the inequality u2
k ≤ (1 + ε)(uk − w0)2 + C(ε)u2 and (2.5), we obtain

eαru
2
k ≤ eαr((1+ε)(uk−u)2+c(ε)u2)

≤ 1
µ
eαrµ((1+ε)(uk−u)2) +

1
ν
eαrν(c(ε)u

2).

Now using that ‖uk − u‖2 = 1− ‖u‖2 + ok(1), we obtain

αrµ
(
(1 + ε)(uk − u)2

)
=
(
αrµ(1 + ε)(1− ‖u‖2 + ok(1))

) ( (uk − u)
‖uk − u‖

)2

.

Hence for any 1 < r < 1
1−‖u‖2 , and ε > 0 small enough and µ > 1 close to 1, we

have
αrµ(1 + ε)(1− ‖u‖2) < π

and the proof follows from (1.4). �

Now we show a compactness result. The proof follows closely [7, Proposition
2.1].

Proposition 2.4. Let {uk} be a Palais-Smale sequence, that is

Iλ(uk) = c+ ok(1) and I ′λ(uk) = ok(1) (2.6)

then it has a strongly convergent subsequence for c ∈ (0, π2 ).

Proof. From Lemma 2.1, there exists u ∈ X0 such that uk ⇀ u in X0, uk → u in
Lγ((−1, 1)) for all γ > 1 and uk(x)→ u(x) a.e. in (−1, 1). Following the Lebesgue
dominated convergence theorem and the relation (2.4), we have G(uk) → G(u) in
L1((−1, 1)) and

lim
k→∞

‖uk‖2 = 2c+ λ‖u‖22 + 2
∫ 1

−1

G(u)dx,

lim
k→∞

∫ 1

−1

g(uk)ukdx = 2c+ 2
∫ 1

−1

G(u)dx.
(2.7)

Now from the weak convergence of uk in X0, strong convergence in L2((−1, 1)) and
the Lemma 2.2, u solves the problem (1.1). Moreover,

‖u‖2 − λ‖u‖22 =
∫ 1

−1

g(u)u dx ≥ 2
∫ 1

−1

G(u) dx.

Therefore Iλ(u) ≥ 0. Now we divide the proof into three cases.
Case 1: c = 0. In this case lim inf Iλ(uk) = 0. Therefore ‖uk‖ → ‖u‖, and the
proof is complete.
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Case 2: c 6= 0, u = 0. As u = 0, so from (2.7) we obtain limk→∞ ‖uk‖ = 2c. Hence
for every ε > 0 and for large k, ‖uk‖ ≤ 2c+ ε. Now for some q > 1 and close to 1,
we have the estimate∫ 1

−1

|g(uk)|qdx =
∫ 1

−1

|uk|qpequ
2
kdx

≤ ‖uk‖qp
(∫ 1

−1

eqlu
2
kdx
)1/l

≤ C
(

sup
‖v‖≤1

∫ 1

−1

elq‖uk‖2v2dx
)1/l

<∞

(2.8)

for c < π/2, l > 1 close to 1 and ε sufficiently small. Now from (2.6), we obtain∣∣‖uk‖2 − λ‖uk‖22 − ∫ 1

−1

g(uk)ukdx
∣∣ ≤ εk‖uk‖. (2.9)

Now from the estimate in (2.8) inequality (2.9) and uk → 0 in Lγ((−1, 1)) we obtain
‖uk‖ → 0, which is the contradiction from (2.7) as c 6= 0.
Case 3: c 6= 0, u 6= 0. In this case we claim that Iλ(u) = c. If the claim is proved
then from (2.7), limk→∞ ‖uk‖ = ‖u‖ and hence the proof of the Lemma. Suppose
not, then Iλ(u) < c and consequently

‖u‖2 < 2c+ λ‖u‖22 +
∫ 1

−1

G(u)dx. (2.10)

Now choose wk = uk/‖uk‖ then ‖wk‖ = 1, wk ⇀ w for

w =
u

2c+ λ‖u‖22 +
∫ 1

−1
G(u)dx

and ‖w‖ < 1. Therefore, using Lemma 2.3, we have∫ 1

−1

erαw
2
kdx <∞ for all α < π and r < (1− ‖w‖2)−1.

Using the above inequality we have the estimate∫ 1

−1

|g(uk)|qdx =
∫ 1

−1

|uk|qpequ
2
kdx ≤ ‖uk‖qp

(∫ 1

−1

elqu
2
kdx
)1/l

≤ C
(∫ 1

−1

elq‖uk‖2w2
kdx
)1/l

<∞
(2.11)

for

lq‖uk‖2 <
π

1− ‖w‖2
= π

c+ λ
2 ‖u‖

2
2 +

∫ 1

−1
G(u)dx

c− Iλ(u)
which holds when l, q are greater than 1 and sufficiently close to 1 and c < π

2 .
Now using the above estimate and (2.6) with (uk−u) as test function, and using

weak convergence of uk in X0 we obtain that ‖uk‖2 → ‖u‖2 as k → ∞. However,
from (2.7) and (2.10) we obtain a contradiction. �

Proof of Theorem 1.1. By taking λ in the sufficiently small neighborhood of λ∗, we
have δ < η < β. Now invoking Theorem 1.2, we obtain at least m pairs of critical
points of Iλ, hence the solutions of the problem (1.1), with critical values in the
range [δ, η].
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Now we estimate the X0 bound of the solutions using the relation Iλ(uλj ) < η
for all 1 ≤ j ≤ m as follows(1

2
− 1
p

) (
(λ∗ − λ)2

p
p−2

) 1
p−2 ≥ Iλ(uλj ) = Iλ(uλj )− 1

2
〈I ′λ(uλj ), uλj 〉

=
1
2

∫ 1

−1

g(uλj (x))uλj (x)dx−
∫ 1

−1

G(uλj (x))dx

≥
(1

2
− 1
p

) ∫ 1

−1

g(uλj (x))uλj (x)dx

≥
(1

2
− 1
p

)
‖uλj ‖pp ≥ C‖uλj ‖p.

Now letting λ→ λ∗ we obtain ‖uλj ‖ → 0. �
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